MEMORANDUM

Missouri Department of Transportation Construction - Materials Central Laboratory

TO: Matt Sonner-nw/gs

CC/ATT: Kevin Griep-co/gs

FROM: Kevin Moore, PE

Senior Geotechnical Specialist

DATE: May 21, 2015

SUBJECT: Materials

Geotechnical Section

Foundation Investigation for King City Maintenance Building

Job No. R35G-FI2297

DeKalb County

Attached are logs of geotechnical borings for the above referenced structure, a proposed new maintenance facility building. Also attached is an aerial photo showing boring locations. See Figure 1: Boring Locations.

Based on information provided with your request, we assume a single-story maintenance building with garage bay doors is proposed to be constructed to the north of the existing maintenance building on the MoDOT maintenance lot at King City, MO. See Figure 1: Boring Locations. The planned building finished grade is at 1104 ft. msl while the building finished floor is at 1104.83 ft. msl. General notes No. 2 on Page 5 of 28 of the project plans states the foundation design is based on an assumed bearing capacity of 2000 psf.

Four borings were drilled at the staked locations as indicated on Figure 1: Boring Locations. Based on observations during drilling and sampling from the borings in the vicinity of the proposed structure, the allowable bearing of the foundation soil was estimated to be 2000 psf and will be adequate for your building. Further construction recommendations are provided below.

<u>Recommendations</u> - The following recommendations are made based upon information provided regarding the proposed building and conditions observed at the site:

• Proof roll the proposed building areas with a tandem axle dump truck loaded with a minimum of 12 tons of material prior to construction or fill placement. Any areas exhibiting pumping or rutting should be excavated to remove the soft material and backfilled with acceptable fill materials and compacted. This recommendation is made because much of the proposed building pad was constructed with lean clay fill materials placed without monitoring of compactions by a qualified construction technician.

- It is recommended that fill materials meet the general requirements of Section 203 of the
 Missouri Department of Transportation Specifications for Highway Construction. Fill
 should be compacted to 95% of standard Proctor maximum dry density. Non-granular
 fill material should be compacted at or within 3% of optimum moisture content. All fill
 and cut slopes should be constructed to slope and drain away from the proposed building.
- If non-granular fill material is used, at least 10 inches of crushed aggregate base should be placed above the non-granular fill in traffic areas outside the proposed building to bring the surface to final grade.
- One of the boring encountered dark brown lean clay, believed to be topsoil or loam. If this material is encountered in foundation excavations, it should be excavated to remove it and the excavation backfilled with granular fill materials compacted to 95% of its proctor value to re-establish footing bearing surface. Foundation bearing surfaces should be free of loose soil or loose fill materials. Loose materials should be hand tamped into the foundation bearing surface prior to placement of reinforcement and concrete for the foundation.
- Care should be taken to protect soil subgrade from excessive changes in moisture during foundation and floor slab construction. Avoid leaving excavations open for extended periods of time. Protect footing and floor slab bearing surfaces from rain or drying out during construction.

cs j:\suble\kevin moore\fi2297 king city maintenance ltr.doc Attachments

Missouri Department of Transportation Construction and Materials

Design: Fi2297 Skew: Location: King City Bent: Logged By: Kevin Moore Operator: Raymond Murray Station: Northing: 1410043.7 Date of Work: 05/12/15-05/12/15	
Station: Northing: 1410043.7 Date of Work: 05/12/15-05/12/15	
Offset: Easting: 2781046.7 Depth to Water:	
Elevation: 1103.7 Requested Northing: Depth Hole Open:	
Requested Station: Requested Easting: Time Change:	
Requested Offset: Equipment: _Acker Soil XLS ,Split-Spoon Sampler	
Requested Elevation: Location Note: New maintenace building.	
Drill No.: G-9462 Hammer Efficiency: 69% Drilling Method: Hollow Stem Auger	
Graphic Graphic Graphic Sample Type (ft) (RQD %) (RQD %) (N _{so}) (N _{so})	Index rests
0 ///// 0.141 Drown and light brown I FAN CLAY	
0-11' Brown and light brown, LEAN CLAY (CL), stiff to medium stiff	
1100 67 (14) PP = 3.00 tsf	
5	
1095 100 2-4-4 (9) PP = 1.25 tsf	
11-11.5' Brown and light brown, FAT CLAY	
\ (CH), very stiff	
Bottom of borehole at 11.5 feet.	
N ₆₀ = (Em/60)Nm N ₆₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in percent; Nm - Observed N-value	

Coordinate System: U.S. State Plane 1983 Coordinate Zone: Missouri West Coordinate Proj. Factor:

Coordinate Datum: NAD 83 (CONUS) Coordinate Units: U.S. Survey Feet

LETTER BOREHOLE - R35G-S2109.GPJ - 5/21/15 12:06 - J:\SG\GINT\PROJECT FILES\R35G_F12297.GPJ * Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.

Missouri Department of Transportation Construction and Materials

Job N	o.: _R	35G_Fi2297 Cou	nty: Dek					Route: 169			
							Location: King City				
Bent: Logged By:							Operator: Raymond Murray				
Station: Northing: _14			09973	3.9			Date of Work: _05/				
Offset: Easting:			1046.	7			Depth to Water:				
			uested No	orthing	j:			Depth Hole Open:			
								Time Change:			
			Requested Easting: Time Change: Equipment: _Acker Soil XLS ,Split-Spoon Sampler								
Reque	ested E		Location Note: New maintenace building.								
			nmer Effic	iency:	699	%		Drilling Method: Hollow Stem Auger			
Depth (ft)	Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests	
0		0-8' Brownish gray, LEAN CLAY (CL),	stiff to								
		medium stiff, moist	t	_							
			1			100	4-4-4		PP = 2.00 tsf		
- <u> </u>			+	1100		100	(9)	_	11 - 2.00 (3)		
5			+			100	3-2-3		PP = 1.00 tsf		
			t			100	(6)		FF - 1.00 tsi		
_]		0.4015. 15.11		_		100	2-3-5		PP = 1.75 tsf		
10		8-10' Reddish brown, LEAN CLAY (CL moist		1095_		100	(9)		FF = 1.73 tsi		
		10-11.5' Brownish gray, FAT CLAY (C stiff, moist	H), very		X	100	2-4-5 (10)		PP = 2.25 tsf		
		Bottom of borehole at 11.5 feet	t.								
N ₆₀ = (E	Em/60)N	Im N_{60} - Corrected N value for standard 60% SP , (2) = Actual	T efficiency:	Em - M	leasur	ed hamme	er efficiency in pe	ercent; Nm - Observed N	l-value		
Coord	ınate S	System: U.S. State Plane 1983	Coordina	ite Zor	ne: _i	viissouri	vvest	Coordinate Pro	oj. ractor:		

LETTER BOREHOLE - R35G-S2109.GPJ - 5/21/15 12:06 - J:\SG\GINT\PROJECT FILES\R35G_F12297.GPJ

Coordinate Datum: NAD 83 (CONUS)

Coordinate Units: U.S. Survey Feet

* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.

Missouri Department of Transportation Construction and Materials

Job N	lo .: _R	35G_Fi2297	County: De	Kalb				Route: 169			
Design: Fi2297 Skew: Bent: Logged By: Station: Northing:		Skew:					Location: King City				
		Kevin	Moor	е		Operator: Raymond Murray					
		410044	1.4			Date of Work: 05	/12/15-05/12/15				
Offset:			80896.	6			Depth to Water:				
							-				
							Depth Hole Open: Time Change:				
								mpler			
		Elevation:	Location Not					,p101			
		G-9462	Hammer Effic				bulluling.	Drilling Method:	Hollow Stem Auge		
D	10C		riaminer Em	Ciciloy.	00	70		The law otom 7 regor			
Depth (ft)	Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests	
0		0-3' Grayish brown, LEAN CLA'	Y (CL), stiff.								
		moist, FILL	(- /)	[
				1100	\		3-5-6		DD 6.001.1		
	71/2 1	3-4' Dark brown, LEAN CLAY (0	CL), stiff,			87	(13)		PP = 2.00 tsf		
<u> </u>		4-11.5' Brown and dark brown, (CH), stiff, moist	FAT CLAY	- - -	X	87	2-3-5 (9)		PP = 1.75 tsf		
				1095			,				
					\times	100	2-3-4 (8)		PP = 1.50 tsf		
10				ļ -			(-)				
				-	X	100	2-4-5 (10)		PP = 1.50 tsf		
		Bottom of borehole at 1	1.5 feet.	1			(10)				
$N_{60} = (1) = A$	Em/60)N	Nm N ₆₀ - Corrected N value for standard 6 l, (2) = Actual	60% SPT efficiency	r; Em - N	1easur	ed hamme	r efficiency in po	ercent; Nm - Observed N	N-value		

LETTER BOREHOLE - R35G-S2109.GPJ - 5/21/15 12:06 - J:\SG\GINT\PROJECT FILES\R35G_F12297.GPJ Coordinate System: U.S. State Plane 1983 Coordinate Zone: Missouri West Coordinate Proj. Factor:

Coordinate Datum: NAD 83 (CONUS) Coordinate Units: U.S. Survey Feet

^{*} Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.

Missouri Department of Transportation Construction and Materials

Job N	o.: R	35G_Fi2297	County: De	/_IL			aleriais	Route : 169		
		Skew:	Skew:					Location: King City		
			Logged By: Kevin Moore					Operator: Raymond Murray		
		Northing: _1	409984	.7			Date of Work: _05/12/15-05/12/15			
			Easting: 27					Depth to Water:		
			Requested Northing: Requested Easting:					Time Change:		
			Equipment:							
			Location Not	e : Ne	w ma	intenace	building.			
			Hammer Effic	ciency:	699	%		Drilling Method:	Hollow Stem Auger	
Depth (ft)	Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		0-3' Brown, LEAN CLAY with grav stiff, moist, FILL.	rel, (CL),							
 5		3-11.5' Light greenish gray, LEAN stiff, moist	CLAY (CL),	1100	X	67	7-6-7 (15)			
 				- - -	X	67	4-4-6 (12)		PP = 1.75 tsf	
 _ 10				1095	\times	100	3-4-4 (9)		PP = 1.00 tsf	
				-	X	100	2-4-4 (9)		PP = 2.00 tsf	
	,,,,,,	Bottom of borehole at 11.5	feet.							
$N_{60} = (I_{60} = I_{60} = $	Em/60)N	Im N ₆₀ - Corrected N value for standard 60%, (2) = Actual	% SPT efficiency	; Em - M	leasur	ed hamme	er efficiency in p	ercent; Nm - Observed N	N-value	

Coordinate System: U.S. State Plane 1983 Coordinate Zone: Missouri West Coordinate Proj. Factor:

Coordinate Datum: NAD 83 (CONUS) Coordinate Units: U.S. Survey Feet

LETTER BOREHOLE - R35G-S2109.GPJ - 5/21/15 12:06 - J:\SG\GINT\PROJECT FILES\R35G_F12297.GPJ

^{*} Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.

CLIENT

PROJECT NAME New maintenance building.

PROJECT NUMBER R35G_Fi2297

PROJECT LOCATION King City

LITHOLOGIC SYMBOLS (Unified Soil Classification System)

CH: USCS High Plasticity Clay

CL: USCS Low Plasticity Clay

FILL: Fill (made ground)

TOPSOIL: Topsoil

SAMPLER SYMBOLS

Split-Spoon Sampler

WELL CONSTRUCTION SYMBOLS

ABBREVIATIONS

LL - LIQUID LIMIT (%)

PI - PLASTIC INDEX (%)

W - MOISTURE CONTENT (%)

DD - DRY DENSITY (PCF)

NP - NON PLASTIC

-200 - PERCENT PASSING NO. 200 SIEVE

PP - POCKET PENETROMETER (TSF)

TV - TORVANE

PID - PHOTOIONIZATION DETECTOR

UC - UNCONFINED COMPRESSION

ppm - PARTS PER MILLION

▼ Water Level at End of Drilling

▼ Water Level after Drilling

