MoDOT TSR QC/QA TRAINING/CERTIFICATION COURSE

Missouri University of Science & Technology

Department of Civil, Architectural, and Environmental Engineering

9-21-06 1-29-07, 11-9-07 4-24-08 5-13-09, 5-14-09, 11-18-09 11-11-10 1-17-11 1-23-15, 4-22-15 1-9-17

TSR CERTIFICATION COURSE 2016-2017

Time	Module	Location	Topic	Instructor
8:00-8:15	Intro	Lecture	Intro/welcome	Richardson
8:15-9:40		Lecture	TSR	Richardson
9:50-??		Lab	Lab demo:	Lusher
			 Shipping Sample 	
			 TSR test 	
			Hands-on practice	
½ hour		Lecture	Course Review	Richardson
2 hours		Lecture	Written Exam	Richardson
			attendee can start their proficien	
Whether the	attendee w	ants to leave	e for lunch is their decision. Profi	ciency exam
proctor will be	on duty u	ıntil all attend	lees have finished their proficien	cy exam.
?-Until all		Lab	Proficiency Exam	Lusher
have				
finished				

MoDOT TSR QC/QA TRAINING/CERTIFICATION COURSE

Missouri University of Science & Technology

Department of Civil, Architectural, and Environmental Engineering

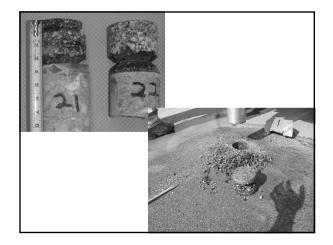
9-21-06 1-29-07, 11-9-07 4-24-08 5-13-09, 5-14-09, 11-18-09 11-11-10 1-17-11 1-23-15, 4-22-15 1-9-17

AASHTO T283 Tensile Strength Ratio (TSR)

Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

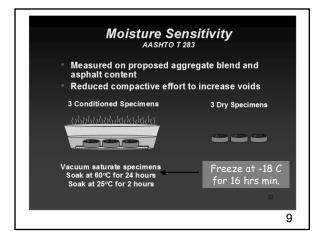

3

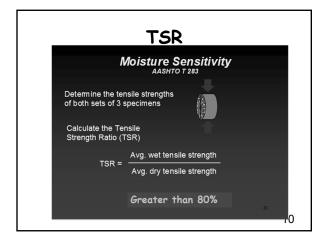
Why are we concerned with Moisture Sensitivity?

- Stripping will result if the bond is broken between the asphalt cement and aggregate.
 - Resulting in pavement:
 - Rutting
 - Shoving
 - ■Raveling
 - Cracking

4

MOISTURE DAMAGE (STRIPPING)


AASHTO TEST METHODS & SPECIFICATIONS


- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity
- R 47 HMA Sample Splitting
- D 3549 Thickness of Specimens

7

What is Tensile Strength Ratio?

- Moisture Sensitivity of Asphalt Mixtures
- Affects the structural integrity of a mixture.
- Based on the ratio of the tensile strength of a set of conditioned to a set of unconditioned specimens expressed as a %.

TYPICAL TEST RESULTS

■ Range in initial mix design: 40-95+ %

11

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

12

TSR Role

- Mix design/acceptance
- Field Verification of mix

13

DURING MIX DESIGN In Addition to Field Verification Steps (One extra day for lab mix at front end)

- Mixture prepared in lab
- After mixing, place mixture in a pan (one specimen per pan) and cool at room temperature for 2.0 ± 0.5 hrs
- Place in oven on perforated shelf (or on spacers) at 60±3° C for 16 ± 1 hrs
- Heat to compaction temperature ± 3°C for 2 hr ± 10 min.

14

Non-Moisture Sensitive

- The intent is for Superpave and Plant mix be *non-moisture-sensitive*
 - Superpave- must be proven through TSR testing
 - Plant mix- may be required to be proven through TSR testing

15

					•
UU	~ "		UU		11/00
חח	***	16.1	BP	/V\	ixes

- Engineering Policy Guide 401.2.3: Additional TSR testing is warranted if: In the field, if the PI of the fine aggregate fractions has significantly increased or the overall quality of the aggregate has changed
- If a source has a history of stripping, MoDOT may require TSR testing during design and/or production

16

MIX DESIGN ACCEPTANCE

- TSR ≥ 70% for **BB** and **BP** mixes (for aggregate fractions containing ≥ 10% minus #30 with PI >3)
- TSR > 80% for *Superpave* mixes

17

TSR Role

- Mix design/acceptance
- Field Verification of mix

18

SUPERPAVE TSR PAY ADJUSTMENT

TSR	% of Contract price
≥90	103
75-89	100
70-74	98
65-69	97
< 65	Remove

19

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

20

Sampling Field TSR QC/QA

- During production, loose mix samples will be taken and quartered as described in EPG Section 403.1.5
- QC has the option of taking loose mix samples from any point in the production process.
- QA samples should be taken from the same point as the QC, although not at the same time

21

LOOSE MIX: TSR Sample

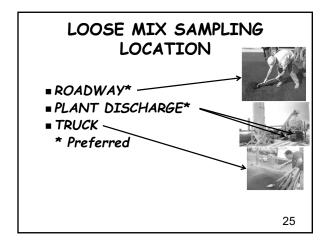
- QC: 1 per 10,000 tons
- QA: 1 per 50,000 tons or one per mix (combination of projects)

[contract with several projects with same mix, totaling < 50,000 tons]

Random locations by spec (per EPG: not enforced)

22

SAMPLING: QC


- QC gets their own TSR sample plus a retained sample for QA
- Depth: full depth of the course (if roadway sample)

23

SAMPLING: QA

QA gets their own "independent" ~250 lb sample, retain 125 lbs

24

TSR Sampling-Roadway

26

CAUTION

- Filling one bucket at a time may render different characteristics bucket-tobucket---better to place one shovelful per bucket at a time
- Should recombine and quarter

27

TSR SAMPLING Roadway

- Profilograph issues?
- Big hole to fill

28

LOOSE MIX SAMPLING LOCATION

- ROADWAY*
- PLANT DISCHARGE*
- TRUCK
 - * Preferred

29

PLANT DISCHARGE

30

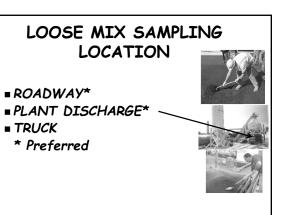
PLANT DISCHARGE (Chop Gate-Diverter Chute)

 Divert entire production stream from drum to a loader bucket

- Sample all across the loader bucket, one shovel per box, all boxes
- Repeat until boxes are full
- Cool (beware of dust)
- Close boxes

31

PLANT DISCHARGE (Chop Gate-Diverter Chute), cont'd.


- Re-heat material
- Mix all boxes
- Quarter with templates
- Remove quarters to 4 buckets
- Quarter each bucket
- Pull one puck from each quarter

32

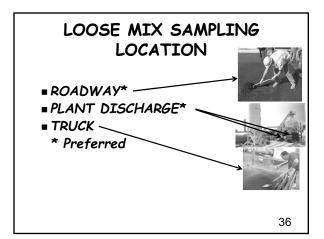
TSR SAMPLING DIVERTER CHUTE

 Contamination issues from diesel used to clean the area

33

"Mini-stockpile"

- About 2 tons sampled from silo discharge into a truck
- Dumped
- Back dragged



- Sampled into, say, 4 buckets or boxes
- Back at lab, material is combined, mixed, and quartered, combined into 2 piles
- 4 pucks sampled from each pile

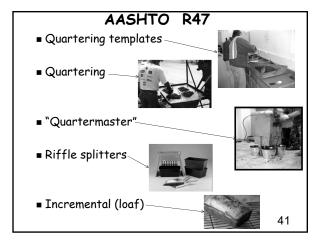
35

34

Truck Sampling

37

Truck Sampling


CAUTION

- Possible segregation in truck bed
- Sampling methods (eg. length of arms) limit the position of sampling in the truck bed → non-representative sample
- Safety issues
- Don't leave sample boxes uncovered at this location—may get contaminated with dust and overspray of release agent

39

QUARTERING THE SAMPLE

40

43

QA TSR Sample

- QA inspector will box up 125 lbs loose mix sample and ship to the Central Lab for testing
- Each box should contain as representative a sample as possible (eg. contain all fines, etc)

44

QA TSR Sample, cont'd.

- Central Lab will determine the TSR puck weight to be used from testing one of the boxes
- Central Lab will combine the remaining samples and go through the splitting procedure
- So, field tech needs to know how "Central Lab" will handle (combine) the boxes

QA TSR Sample

■ Field QA should also retain a 125 lb sample (Do not send to Central Lab unless asked for. Discard only after issues of favorable comparison between QC and QA have been determined)

46

TSR BOX INFO

- Site Manager ID number
- Mix number
- \bullet G_{mm} from sublot taken (QC or QA)
- Specimen weight QC is using

47

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

48

TSR FIELD TEST PROCEDURE

- Determine TSR puck weights
- Compact pucks, run specific gravity
- Run Rice specific gravity
- Calculate air voids
- Break dry pucks
- Condition wet pucks
- Break wet pucks
- Calculate TSR
- Inspect conditioned pucks

49

EQUIPMENT

- Gyratory compactor & 150 mm diameter molds
- Oven: room temperature up to 176 ±3 $^{\circ}C$
- Balance
- Rice specific gravity equipment

50

EQUIPMENT, cont'd.

- Water bath at 25 ± 0.5 °C
- Water bath at 60 ± 1 °C
- Plastic bags
- Cling film

51

EQUIPMENT, cont'd.

- Vacuum dessicator
- Vacuum pump @ up to 26" mercury
- Timer
- Damp towel

52

EQUIPMENT, cont'd.

- 10 ml graduated cylinder
- Freezer @ -18 ± 3 °C
- Load frame (2 in per min movement)
- Indirect tensile strength breaking head

53

ESTIMATE TSR PUCK MASS

- Enough to fill a cylinder 150 mm diameter and 95 mm height
- Less 7.0% air voids
- Less side dimples
- The calculation of required mass will be a starting point---experience will finetune the actual mass required

54

TSR PUCK MASS

- V_{solids} = (Mass)(sp grav)
- Vair = Vtotal Vsolids
- Mix is constantly changing (e.g. bin % changes)
- Exact %'s of each material is changing
- Each material has a different specific gravity
- So, volumes of each material are changing
- So, mix mass must change to keep 7.0% air voids constant

TSR PUCK MASS

- The following slides present one method for determining mass of puck to result in 7.0% air voids & 95 ± 5 mm tall. The method is not mandatory
- There may be equally useful methods

56

TSR PUCK MASS

- Do a weight-volume calculation to get initial mass
- Adjust via the most recent puck history (say, volumetric pucks)
- Fine-tune with experience

57

TSR PUCK MASS										
Moving target:										
150 mm										
95 mm Mass to get 7.0% air voids										
Butdimples:										
So, adjust mass according to how the mix is behaving (info from other compacted pucks) 58										

CALCULATION OF MASS REQUIRED FOR 7.0% AIR VOIDS

- lacktriangle Obtain G_{mm} for the sampled roadway mat area
- Vair = $100(G_{mm} G_{mb})$
- G_{mm}

59

CAUTION

 \blacksquare The $G_{\rm mm}$ needs to be representative- if not, the computed air voids will be wrong

60

CALCULATION OF MASS REQUIRED FOR 7.0% AIR VOIDS

■ From test data of QC or QA volumetric pucks, average several G_{mb} values appropriate for the TSR sampled mat area: $G_{mb,meas}$

61

$G_{\rm mb,est}$

- Compute the G_{mb} as if there were no side voids (dimples) = $G_{mb,est}$
- Thus, for the same mass, the volume will be larger, and $G_{\rm mb}$ should decrease
- (Same mass spread over a larger volume)
- So, $G_{mb,meas}$ will be > $G_{mb,est}$

62

Mass & Gmb of Historical Pucks (Usually Volumetric Pucks)

- Average the mass (M_{meas}) of each of the G_{mb} pucks (recent historical data)
- Average the puck height (from gyro printout) h @ N_{des} (h_x) of each of the G_{mb} pucks
- Calculate the G_{mb,est}

 $Gmb, estimated = \frac{Avg. Mmeas}{\left(\frac{\pi d^2(avg h_x)}{4}\right)}$

■ Where d= diameter of puck (15.0 cm) And h_x in cm for historical pucks (usually 11.5±0.5 cm) 63

CALCULATION of "C" Factor for Historical Pucks

■ Calculate "C "

$$C = \frac{Gmb(measured)}{Gmb(estimated)} + experience$$

- **■** *C* > 1.0
- "experience" may be adding ~10g to account for material loss

64

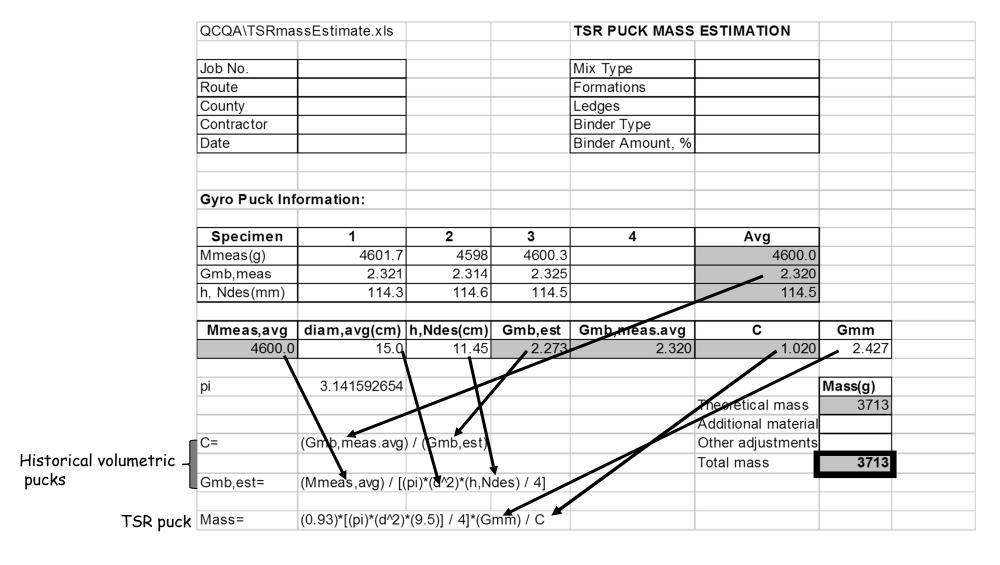
CALCULATION OF MASS REQUIRED FOR 7.0% AIR VOIDS in TSR Puck

■ Calculate the required **mass** for 7.0% air voids (mass = V x Sp Grav)

 $[(0.93)(\pi)(d^2/4)(h)](Gmm)$

■ Mass = -----

C


■ If d=15.0 cm and h= 9.5 cm:

$$Mass = \frac{1561.2 \, Gmm}{C}$$

65

			• • •	• • • •	.55		
	QCQA\TSRms	s s Es timate.xls			T SR PUCK MASS	ESTIMATION	
	Job No.		_		Mix Type		
	Route				Formations Ledges		
	County						
	Date				Binder Type Binder Amount, %		
	Date				Binder Amount, 16		
	Gyro Puck Inf	omation:					
	Specimen	1	2	3	4	Avg	
	Mmeas (g)	4801.7	4598	4600.3		4800.0	
	Gmb,meas	2.321	2.314	2.325		2.320	
	h, Ndes(mm)	114.3	114.6	114.5	<u> </u>	114.5	
	Mmeas,avg			Gmb,est	Gmb,meas.avg	С	Gmm
	4600,0	15.0	11,45	2.273	2.320	1.020	2.427
	pi	3.141592854	۷ ۷			//	Mass(g)
		1	\sim			The aretical mass	3713
		\ _	\wedge			Additional material	2110
	C=	(Gmb,meas.avg) / (Gmb,est)			Other adjustments	
istorical volumetric		1	1	1		Total mass	3713
oucks	Gmb,⇔t=	(Mmeas ,avg) / [(pi)*(d*2)*(h,N	des)/4]	//		
TSR puck	Mars =	(0.93)*[(pi)*(d^2)	*/9.8/1 / 41*/0	mm)/C			

TSR MASS

1		-			~		۱ 4	Έ		-		-	~	•	-	-	-			1
ı	•		_		1	•	W	_	u	, ,	-		•	Δ			П	,	П	N
ı		_	_	_		,	v	_	_	_		_	•	_		_	٠,	_		v

■ The following slides relate to TSR testing of field samples

67

DAILY FIELD PROCEDURE-Outline

- Day 1:
 - Sample, quarter, heat to compaction temperature ± 3°C
 - Compact pucks, store at room temperature 24±3hr
 Run Rice gravity
- Day 2:
 - lacksquare Determine G_{mb} of pucks
 - Calculate air voids
 - Group into two sets of 3
 - Saturate the Wet set
 - Put Wet set into freezer
 - Start air drying of Dry set

68

DAILY PROCEDURE Outline, cont'd.

- Day 3:
 - Test Dry set
 - Start high temperature conditioning of Wet set
- Day 4:
 - Test Wet set
 - Calculate TSR

69

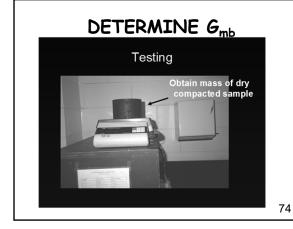
TEST PROCEDURE Day 1

- Warm the mix to soften it for quartering, quarter
- Reheat the mix to compaction temperature ± 3 °C.
- Use sufficient mix to achieve $7.0 \pm 0.5\%$ air voids in a 95 ± 5 .mm tall puck.
 - Note: SMA mixes require 6.0±0.5% air voids
- Determine Rice gravity (G_{mm}) [must be representative of TSR mix]

DAY 1

- Set gyro to "Height control" mode
- Compact 6+ pucks

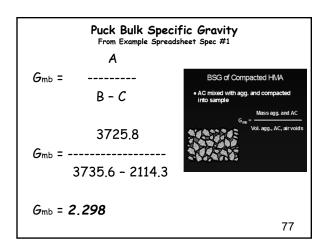
 (actually, will make 1
 or more trial pucks;
 may also wish to
 compact several extra pucks)
- Store at room temperature for 24 ± 3 hrs.


71

Conditioned pucks Rice Unconditioned pucks

DAY 2: Determine Air Voids

■ Determine G_{mb} for all 6+ pucks (follow T166—thus, pucks need to be tested at 25° C)


73

1-9-17 25

Designate # 1	Mix Number Example					Gmm -	2.476	1
Section # 1 2 3 4 5 5	Smh Worksheet		Dry Subset		·	Wiet Subset		1
Victor V		-		- 2	,		- 6	1
\$50 merch (1978 27934 27410 27935 28935 27972 27972 27978		1725.0	17/0.7					1
Registration 1								1
15								1
1982 1982								1
2019 202							9.0	
Add State								
200								
New York 1								100[G::::::-Gm 0]/G:mn
TS If C S D				100		30		-eju-0)100
September 8		J.			77.46			_
September 8								
18	TSR Worksheet		Dry Subset			Wet Subset]
Max. Local or Local Max. Ma	Specimen #	1	2	3	4	5	6	_
### THE SET OF THE PRINT TO 108 44 44 84 84.00 PO 34.00 P	Height (0.1 cm) ffl	9.5	9.5	9.5	9.7	9.5	9.5	
Test 3 Long select size to engl Vexico 1550 m 1 g/s 3502.2 3584.0 3282.0		3852	3601	3761	1564	1517	1197	
Way Mer Et Sprijfsert Wegen as ziglijk 350.24 37197 T Way Dr. 15 pulljoeks Sprij 50 100.2400 PM (2012) 31 85 94 Sid Hundrighen Sprij 100 100.2400 PM (2012) 31 86 94 Sid Hundrighen Sprij 100 320 3331 440 PM 94 And Sprij 320 320 320 320 3331 440 PM And Sprij 320 320 320 320 320 440 400 And Sprij 32 320								6.4516°2P/3.1415tD
Avg Don't Spell(601) 00 100 A8500 Hold (mfg) 81 86 9-4 Side (100 A8500 Hold (mfg) 81 86 9-4 80 9-7 Side (100 A8500 Hold (mfg) 100 100 100 300 Avg 7 to 100		m en[D]					3787.3	1
25 is the College depth	Avg. Wet ITS (psi)[Swet]				3822.4	3759.7		1
175.8 8 frace(1951) 3399 3331 444.7 Ye	Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(om*)[J]	81	86		5'-A
AT 000 E 50 PL Se (Target 1950) 3910 3546 A-0 319 PL Se (Target 1950) 3910 3546 A-0 319 PL SE (Target 1950) 3910 SE (Target 1950) 39	TSR (%)(100Swet/Sdn/1		Dry volume of all	r(cm²)[Va]	110	108		1
NY YORK (5)			70% Sat. (Target)	VSSD)	3899	3835		A+0.7Va
07 Solet MAT		AVG	80% Sat. (Target)	VSSD)	3910	3846		A+0.8V8
Time storm S	Air Volds (%)		% Saturation		73	80		100J7Va
Septiment Sept	Dry Subset %Air	6.9		n. Hg	22	23	23	Ī
Septiment Sept	Wet Subset %Air		i	Time (min)	8	8	8	1
Time a 100 C 100 S	Saturation (%)		i					1
Dr. \$-1084 25 C water out			2			1		1
Time in 25 C usate routh			Dry Subset					-
(2 ms = 10 min) Wet Subset Time in Preezer 190 444m 190 16m 180 54m (Minimum 16 ns)	Time in 25 C waterbath	1h 50m		2h	1			
NOTE: Shaded cells indicate Time in Preezer 19h 44m 19h 16m 18h 54m cells needing input values (Minimum 16 hrs)	(2 hrs ± 10 min)				•			
cells needing input values (Minimum 16 hrs)	NOTE: Shaded cells indicate		Time in Freez	ner.	19h 44m		18h 54m	T
								-
					23h 30m	23h 30m	23h 30m	T
(24 ± 1 hrs)					2000	2200	2200	-
	Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	1
Test Time 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003								

AIR VOIDS

$$G_{mm} - G_{mb}$$

$$P_{a} = \cdots \times 100$$

$$G_{mm}$$

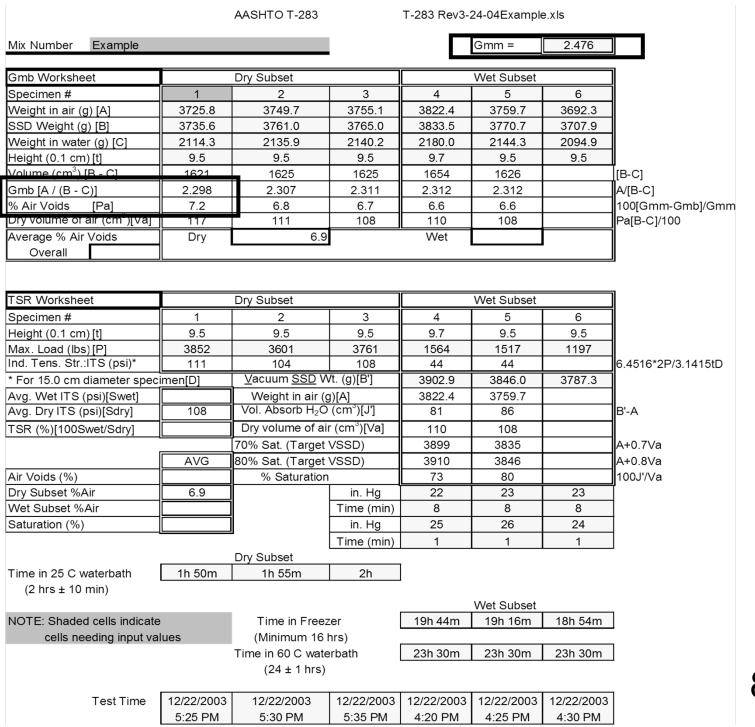
- Pa = % air voids
- G_{mm}=maximum specific gravity of the voidless mix (Rice sp gravity)
- G_{mb} = sp. gravity of the compacted mix $_{78}$

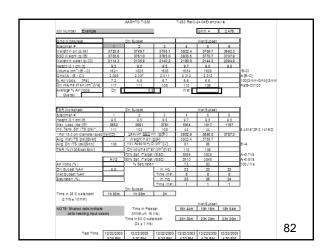
	24-04Example	e.xls					
Mix Number Example					Gmm =	2.476	1
THE TAINING						2.110	ı
Gmb Worksheet		Dry Subset			Wet Subset		
Specimen #	1	2	3	4	5	6	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm)[t]	9.5	9.5	9.5	9.7	9.5	9.5	
Volume (cm ³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmm
Dry volume of air (cm ³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids	Dry	6.9		Wet			
Overall							
							1
TSR Worksheet		Dry Subset			Wet Subset		
Specimen #	1	2	3	4	5	6	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs) [P]	3852	3601	3761	1564	1517	1197	
Ind. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter spec	imen[D]	<u>V</u> acuum <u>SSD</u> W	(0)1	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g	g)[A]	3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O (cm ³)[J']		81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of air	. ,, .	110	108		
		70% Sat. (Target		3899	3835		A+0.7Va
	AVG	80% Sat. (Target '		3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	
Wet Subset %Air			Time (min)	8	8	8	
Saturation (%)			in. Hg	25	26	24	
			Time (min)	1	1	1	
		Dry Subset		r			
Time in 25 C waterbath	1h 50m	1h 55m	2h				
(2 hrs ± 10 min)							
					Wet Subset		1
NOTE: Shaded cells indicate		Time in Freez		19h 44m	19h 16m	18h 54m	
cells needing input va	lues	(Minimum 16 l	, i				1
		Time in 60 C water	erbath	23h 30m	23h 30m	23h 30m	
		$(24 \pm 1 \text{ hrs})$					
							1
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	

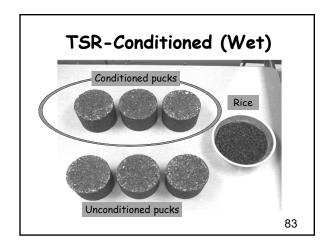
DETERMINE %AIR VOIDS

From Example Spreadsheet Spec #1

■ Having tested Rice, calculate air voids of each puck:


		AASHTO T-283			24-04Example		
Mix Number Example					Gmm -	2.476	\Box
							_
Gmb Worksheet		Dry Subset			Wet Subset		ļ
Specimen #	1	2	3	- 4	5	- 6	
Weight in air (q) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	1
SSD Weight (q) [8]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	1
Height (0.1 gm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	ļ
(a) ma (am ³) (B - C)	1521	1625	1625	1654	1626		18-C1
Gmb [A / (8 - C)]	2.298	2.307	2.311	2.312	2.312		A/[8-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100(Gmm-Gmb)/Gmi
pry volume or air (on)[va]		111	108	110	108		Pa(B-C)/100
Average % Air Volds Overall	Dry	6.9	9	Wet	$\overline{}$		I
TSR Work sheet		Dry Subset			Wet Subset]
Specimen #	- 1	2	3	4	5	- 6]
Height (0.1 cm) [1]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (bs) [P]	3852	3601	3761	1554	1517	1197	1
ind. Tens. Str.:iTS (psl)*	111	104	108	44	44		6.4516"2P/3.1415tD
* For 15.0 cm diameter spec	imen(D)	∑acuum <u>SSD</u> W		3902.9	3846.0	3787.3	1
Avg. Wet iTS (psi)[Swet]		Weight in air (3822.4	3759.7 86		B'-A
Avg. Dry ITS (pst[Sdry]	108			81			5-A
TSR (% § 100Swet/Sdry)		Dry volume of a		110	108		
	AVG	70% Sat (Target 80% Sat (Target		3899 3910	3835 3846		A+0.7Va A+0.8Va
Air Voids (%)	7/2	% Saturation		73	80		100J/Va
Ar voice (%) Dry Subset %Air	6.0	16 381018101	In Ha	22	23	23	1000778
Wet Subset % Air			Time (min)	8	8	8	1
Saturation (%)			In Ha	25	26	24	1
200-00-00-00-00-00-00-00-00-00-00-00-00-		3	Time (min)	1	1	1	1
		Dry Subset	1 2114 (11121)				,
Time in 25 C waterbath	1h 50m	1h 55m	2h	1			
(2 hrs ± 10 min)							
NOTE: Shaded cells indicate		Time in Free:	***	19h 44m	Wet Subset	12h 5/m	1
cells needing input va		(Minimum 16			1911 10111	1011 04111	,
and the state of the state of		Time in 60 C wat		23h 30m	23h 30m	23h 30m	1
		(24 ± 1 hrs.)				2200	•


AIR VOIDS 2 SIMILAR GROUPS "Wet" and "Dry"


■ Group the pucks into 2 groups such that average air voids of each group is about equal

Testing pucks at extreme end of allowable voids may lead to poor QC/QA comparison 81

79

Day 2, Cont'd. Wet Pucks Overview: Vacuum saturate the 3 other pucks that are to be "conditioned".

		AASHTO T-283		T-283 Rev3-	24-04Exampl	e.xIs	
Mix Number Example					Gmm =	2.476	
Gmb Worksheet	1	Dry Subset		·	Wet Subset		- 1
Specimen #	1	2	3	4	5	6	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3749.7	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Volume (cm ³) [B - C]	1621	1625	1625	1654	1626	3.0	[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		
Dry volume of air (cm ³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids	Dry	6.9		Wet	100		4[B-0]/100
Overall		0.0		****			
TSR Worksheet		Dry Subset			Wet Subset]
Specimen #	1	2	3	4	5	6	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs) [P]	3852	3601	3761	1564	1517	1197	
Ind. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter spec	imen[D]	<u>V</u> acuum <u>SSD</u> W	Vt. (g)[B']	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g)[A]		3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(cm [°])[J']	81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of ai	r (cm³)[Va]	110	108		
71		70% Sat. (Target		3899	3835		A+0.7Va
	AVG	80% Sat. (Target		3910	3846		A+0.8Va
Air Voids (%)		% Saturation	,	73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	
Wet Subset %Air		i	Time (min)	8	8	8	
Saturation (%)		i	in. Hg	25	26	24	
		1	Time (min)	1	1	1	
		Dry Subset					J
Time in 25 C waterbath	1h 50m	1h 55m	2h	I			
(2 hrs ± 10 min)				ı			
(= =)					Wet Subset		
NOTE: Shaded cells indicate	•	Time in Freez	zer	19h 44m	19h 16m	18h 54m	
cells needing input va	lues	(Minimum 16					•
		Time in 60 C wate	•	23h 30m	23h 30m	23h 30m	
		(24 ± 1 hrs)					•
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	

VACUUM SATURATION Wet Pucks

- Permissible range: 70-80%
- Pre-calculate partially saturated puck weights at 70 and 80%
- By iteration, progressively vacuum & weigh at intervals until puck weight is in the permissible weight range

85

Day 2: Wet Pucks

■ Determine the surface dry weight.

86

Apply Vacuum

87

VACUUM SATURATION, cont'd.

- Place puck in vacuum chamber and submerge in water (≥ 1" cover and ≥ 1" above chamber bottom)
- Apply 10-26" (suggested 23") mercury vacuum for 5-10 (suggested 8) minutes
- If use high/fast vacuum, may get uneven saturation—poor QC/QA comparison
- Slowly remove vacuum
- Let puck set in water for 5-10 minutes
- Remove puck, quickly surface dry with a damp towel

88

Day 2, Cont'd. Wet Pucks

 Determine the saturated surface dry weight (T 166).

If in the 70 -80% saturation weight range, wrap in cling film, place in plastic bag, add 10 \pm 0.5 ml water, seal.

■ Calculate % saturation

89

Day 2 Calculation of % Saturation

From Example Spreadsheet Spec. #4

E (puck volume) = B - C

B = puck SSD weight

C = puck weight in water

["B" & "C" from $G_{\rm mb}$ testing]:

Ε

E = 3833.5 - 2180.0 = **1654** cm³

90

DETERMINE %AIR VOIDS

Specimen #4

■ Calculate air voids of each puck:

Open Voids
Specimen #4

$$Va(volume\ of\ air\ voids) = \frac{Pa\ E}{100}\ V_a$$

$$V_a = 110 \text{ cm}^3$$

92

91

% Saturation Specimen #4

$$%Saturation = \frac{100 \, J'}{Va} \quad Va \left\{ \mathbf{J} \cdot \mathbf{f} \right\}$$

J' (volume of absorbed water) = B' - A

B' = SSD weight after saturation

A = puck dry weight in air ["A" from G_{mb} testing]

 $J' = 3902.9 - 3822.4 = 81 \text{ cm}^3$

% Saturation = ----- = **73%**

110

		AASHTO T-283		T-283 Rev3-	24-04Examp1	e x ls		
Mx Number Example					Gmm -	2.476]	
Gmb Worksheet		Dry Subset			Wet Subset]	
Specimen #	1	2	3	4	5	6		
Weight in air (q) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3		
SSD Weight (g) [8]	3735.6	3761.0	3765.0	3.833.5	3770.7	3707.9		
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9		
Helant (0.1 am) (t)	9.5	9.5	9.5	9.7	9.5	9.5		
Volume (pm²) [B -C]	1621	1625	1625	1654	1626		r8-c1	
Gmb[A/(8-C)]	2.298	2.307	2311	2.312	2.312		A/[8-C]	
% Air Voids (Pa)	7.2	6.8	6.7	6.6	6.6		100(Gmm-Gmb)/Gm	m
Dry volume of air (om*)[Va]	117	111	108	110	108		Pa(B-C)100	
Average % Air Volds	Dry	6.9		Wet				
Overall								
TSR Worksheet	,	Dry Subset		Ε.	Wet Subset		1	
Specimen#		2		4		- 6	-	
Height (0.1 gm) [1] Max. Load (los) [P]	9.5 3852	9.5 3601	9.5 3761	9.7	9.5	9.5	-	
ind. Tens. Str. (TS (ps))*	111	104	108	1564	1517	119/	6.4516"2P3.14180	
* For 15.0 cm diameterspec		Yacuum SSD V		3902.9	3846.0	3787.3	6.4516-2H3.14180J	
Avg. Wet ITS (osli\$5wet)	merco	Weight in air (3822.4	3759.7	3/0/.3	- 1	
Avg. Dry ITS (ps)(ISdn1	108	Vol. Apsorb HuC		81	3/36.7	_	8'-A	
TSR (%\$100SwetSdn1	100	Dry volume of a		110	108		· ~	
TSPE (%)100SWe1SON	$\overline{}$	70% Sat. (Target		3899	3.835	_	A+0.7Va	
	AVG	30% Sat. (Target	VEST)	3910	3846	_	A+0.5Va	
Air Volds (%)	~/3	% Saturation		73	80		100J/Va	
Dry Subset NAir	6.9	A 2901910	In Ho	22	23	23	1	
Wet Subset %Air		i	Time (min)	8	8	8	i I	
Saturation (%)	$\overline{}$	1	In Ho	25	26	24	1	
			Time (min)	1	1	1	1	
	•	Dry Subset						
Time in 25 C waterbath	1h 50m	1h 55m	2h	1				
2 hrs ± 10 min)								
(2)					Wet Subset			
NOTE: Shaded de la Indicate		Time in Free	201	19h 44 m	19h 16m	18h 54m	I	
cells needing input va	ues	(Minimum 16						
		Time in 60 C was	erbath	23 h 30 m	23h 30m	23h 30m]	
		(24 ± 1 h/s)					-	
		(
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	1	

Pre-Determined Weights

Specimen #4

- At 70% saturation:
 - $M_{70} = A + 0.7 (V_a)$
 - M₇₀ = 3822.4 + 0.7 (110) = **3899** g
- At 80% saturation:
 - $M_{80} = A + 0.8 (V_a)$
 - M₈₀ = 3822.4 + 0.8 (110) = **3910** g

95

% SATURATION, Cont.

- If the saturation is less than 70%, re-vacuum at 26" mercury vacuum for 1 minute. Slowly remove vacuum. Let puck set in water for 5-10 minutes (if this is omitted, QA & QC may not compare)
- Check saturation
- Repeat as necessary
- If the saturation is greater than 80%, puck is considered destroyed and must be discarded.

96

		AASHTO T-283		T-283 Rev3-	24-04Example	e.xls	
Mix Number Example					Gmm =	2.476]
Gmb Worksheet		Dry Subset			Wet Subset		1
Specimen#	1	2	3	4	5	6	1
Veight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	1
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	1
Veight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	1
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	1
/olume (cm ³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmr
Ory volume of air (cm³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids	Dry	6.9		Wet			1
Overall			•	<u>'</u>		•	
							_
SR Worksheet		Dry Subset			Wet Subset]
Specimen #	1	2	3	4	5	6]
leight (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	1
Max. Load (lbs) [P]	3852	3601	3761	1564	1517	1197	1
nd. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
For 15.0 cm diameter spec	imen[D]	<u>V</u> acuum <u>SSD</u> W	/t. (g)[B']	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g		3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(cm ³)[J']	81	86		B'-A
SR (%)[100Swet/Sdry]		Dry volume of air	r (cm³)[Va]	110	108		1 1
		70% Sat. (Target	VSSD)	3899	3835		A+0.7Va
	AVG	80% Sat. (Target	VSSD)	3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Ory Subset %Air	6.9		in. Hg	22	23	23	Ĭ
Vet Subset %Air			Time (min)	8	8	8	
Saturation (%)		Ī	in. Hg	25	26	24	1 I
		2	Time (min)	1	1	1	
		Dry Subset					
Time in 25 C waterbath	1h 50m	1h 55m	2h				
(2 hrs ± 10 min)							
NOTE: Shaded cells indicate		Time in Freez	er er	19h 44m	Wet Subset 19h 16m	18h 54m	1
cells needing input va		(Minimum 16		. •			1
Jone Hooding Input va	30	Time in 60 C water		23h 30m	23h 30m	23h 30m	1
		(24 ± 1 hrs)		2011 00111	2011 00111	2011 00111	1
Task Time -	10/00/0000	40/00/0000	10/00/0000	10/00/0000	10/00/0000	10/00/0000	Т
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	

DAY 2, Cont'd. Wet Pucks

- When saturation is 70-80%, wrap the pucks in cling film, place in bag with 10cc water, seal, and place in freezer at -18±3°C for at least 16 hrs. Verify temperature throughout the freezer.
- Do not allow specimens to drain after saturation but prior to freezing

97

TSR-Unconditioned (Dry Pucks) Conditioned pucks Rice Unconditioned pucks 98

DAY 2 Dry Pucks

- Let the 3 unconditioned pucks air dry at room temperature for 24 ± 3 hrs until Day 3
- CAUTION: If tested damp, this may change indirect tensile strength (and TSR)

99

DAY 3 Dry Pucks

 Bag the 3 unconditioned pucks, place in water bath at 25 ± 0.5 C for 2 hrs ± 10 min. Indirect tensile strength is very sensitive to temperature

100

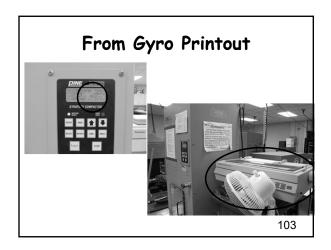
BAGGING/STANDARD TEMPERATURE PROCEDURE

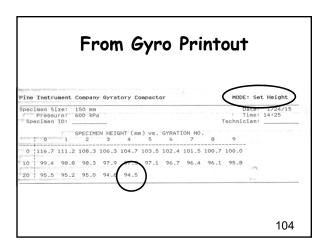
- Place each "dry" puck into a heavy-duty leak-proof plastic bag
- Submerge in the water bath; pucks covered by at least 1 in. of water.
 Creation of an air bath within the water bath may not give equivalent results
- Remove pucks from water, determine puck thickness (†)

101

DETERMINE THICKNESS (†) ASTM D3549

AO 1 M 000 17


- Use a calipers: dry or wet pucks
 - average of 4 points around the perimeter
 - Caliper method is more accurate than printout method if puck swells



Or

- Use puck height from gyro printout
- (dry pucks only)

102

DAY 3, Cont'd. Dry Pucks

- Test for indirect tensile strength (S₁):
- Apply load at 2" travel per minute.
- Record maximum load.

106

CALCULATIONS: DRY TENSILE STRENGTH

■ Calculate dry indirect tensile strength, S₁ (psi):

S₁=-----

ΠtD

P= load (lbs)

t=dry puck thickness (in.)

D= puck diameter (6 in.)

107

OR

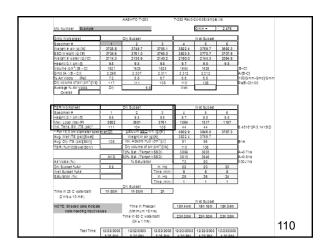
Using metric puck measurements:

Indirect Tensile Strength "Dry", S. (psi)

$$S_1 = \frac{2P}{\pi t D} \times 6.4516$$

P = load (lbs)

t = puck thickness (cm)


D = puck diameter (15.0 cm)

108

Specimen #1

- \blacksquare S = 2(3852 lbs)(6.4516)
- π (9.5 cm)(15.0 cm)
- S = 111 psi

109

DAY 3, cont. (Wet Pucks)

- Remove the pucks from bag and place pucks in a water bath at 60 ± 1 C for 24 ± 1 hr. Minimum 1 in. water cover above specimens.
- Unwrap cling film as soon as the film thaws.

111

		AASHTO T-283		T-283 Rev3-2	24-04Example	e.xls	
Mix Number Example					Gmm =	2.476]
Gmb Worksheet		Dry Subset			Wet Subset		1
Specimen #	1	2	3	4	5	6	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Volume (cm³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmm
Dry volume of air (cm³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids Overall	Dry	6.9		Wet			
	И						Ц
TSR Worksheet		Dry Subset			Wet Subset		1
Specimen #	1	2	3	4	5	6	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs)[P]	3852	3601	3761	1564	1517	1197	
Ind. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter spec	imen[D]	Į <u>V</u> acuum <u>SSD</u> W	/t. (g)[B']	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g		3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(cm ³)[J']	81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of air	r (cm³)[Va]	110	108		
		70% Sat. (Target	VSSD)	3899	3835		A+0.7Va
	AVG	80% Sat. (Target	VSSD)	3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	
Wet Subset %Air			Time (min)	8	8	8	
Saturation (%)			in. Hg	25	26	24	
			Time (min)	1	1	1	
There is 05 O	41. 50	Dry Subset	61	I			
Time in 25 C waterbath	1h 50m	1h 55m	2h	I			
(2 hrs ± 10 min)					Wet Subset		
NOTE: Shaded cells indicate)	Time in Freez	er	19h 44m	19h 16m	18h 54m	
cells needing input va		(Minimum 16					ı
		Time in 60 C water	•	23h 30m	23h 30m	23h 30m	
		(24 ± 1 hrs)					1
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5.05 DM	5:20 DM	5.25 DM	4:00 DM	4.05 DM	4:00 DM	1

5:25 PM

5:30 PM

5:35 PM

4:20 PM

4:25 PM

4:30 PM

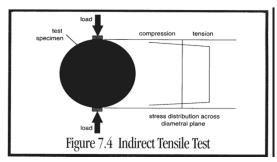
DAY 4: Wet Pucks

Place pucks in water bath at $25 \pm 0.5^{\circ}$ C for 2 hrs \pm 10 min. Minimum 1 in. water cover above specimens. Bath must be at 25° C no later than 15 min. after placing hot pucks. Use ice to help achieve this.

112

Wet Pucks

113


DAY 4, Cont'd. (Wet Pucks)

- Measure puck thickness (t')- after soaking, with calipers
- Test for indirect tensile strength (S₂)

114

Indirect Tensile Testing

115

CALCULATIONS WET TENSILE STRENGTH

■ Calculate wet indirect tensile strength, S₂ (psi):

Πt'D

P= load (lbs)

t'=wet puck thickness (in.)

D= puck diameter (6 in.)

116

OR

Using metric puck measurements:

measurements:

• Wet indirect tensile strength, S_2 (psi)

$$S_2 = \frac{2P}{\pi t' D} \times 6.4516$$

P = load (lbs)

t' = puck thickness (cm)

D = puck diameter (15.0 cm)

117

Specimen #4

- \blacksquare S = 2(1564 lbs)(6.4516)
- π (9.7 cm)(15.0 cm)
- S = 44 psi

118

		AASHTO T-283		1-200 11610	24-04 Exampl	6.19	
Mx Number Example					Gmm -	2.476	1
Gmb Worksheet		Dry Subset			Wet Subset		1
Specimen #	1	2	3	4	5	6	1
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [6]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	1
Weight in water (d) (C)	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	1
Height (0.1 om) [5]	9.5	9.5	9.5	9.7	9.5	9.5	1
Volume (cm*) [8 - C]	1621	1625	1625	1654	1626		[8-C]
Gmb (A / (B + C))	2.298	2.307	2311	2.312	2.312	_	A[8-C]
% Air Voltis [Pa]	7.2	6.8	6.7	6.6	6.6		100(Gmm-Gmb)/Gm
Dry volume of air (cm*(fVa)	117	111	108	110	108		Pa(B-C)/100
Average % Air Volds	Dry	6.9		Wet		1	I
Oversil							J
TSR Worksheet	_	Dry Subset			Wat Subset		1
Specimen #	-	2		4		- 6	1
Height (0.1 cm) ft)	9.5	9.5	9.5	9.7	9.5	9.5	1
Max. Load (lbs) [P]	3852	3601	3761	1564	1517	1197	1
ind Tens Str.:TS (psi)*	111	104	108	44	44	11.97	5.4516*2P/3.1415tD
* For 15.0 cm diameter soed		Vacuum S.S.D.W		3902.9	3846.0	3787.3	
Avg. Wet ITS (psl)[Swet]		Weight in air (3822.4	3759.7	0.0	1
Aug. Dry ITS (psi[Sdry]	108	Vol. Absorb H ₂ O	(om*)(J1	81	86		RI-A
TSR (%)(100Swet/Sdr/1	— <u> </u>	Dry volume of all		110	108		1
Carried States of the States o		70% Sat. (Taipet)		3899	3835		A+0.7Va
	AVG	80% Sat. (Target)		3910	3846		A+0.8Va
Air Volds (%)		% Saturation		73	80		100J7Va
Dry Subset %Air	6.9		In. Ha	22	23	23	1
Wet Subset %Air		1	Time (min)	8	8	- 8	1
Saturation (%)		1	In. Hg	25	26	24	1
		-	Time (min)	1	1	1	
		Dry Subset					-
Time in 25 C waterbath	1h 50m	1h 55 m	2h				
(2 hrs ± 10 mln)							
					Wet Subset		_
NOTE: Shaded cells indicate		Time in Freez		19 h 4 4 m	19h 16m	18h 54 m	
ce its needing input va	lues	(Minimum 16					
		Time in 60 C water	rbath	23h 30m	23h 30m	23h 30m	J
		(24 ± 1 hrs)					
							,
Test Time	12/22/2003				12/22/2003		
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	1

CALCULATIONS: TSR

■ Calculate TSR:

S₂

■ TSR=----×100

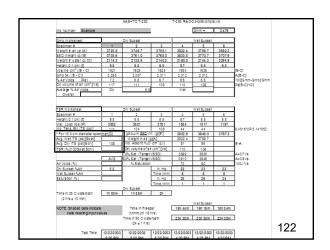
 S_1

- S_2 =average of conditioned (wet) pucks tensile strength
- S₁=average of unconditioned (dry) pucks tensile strength

120

		AASHTO T-283		T-283 Rev3-2	24-04Example	e.xls	
Mix Number Example					Gmm =	2.476	1
				l			Ц
Gmb Worksheet		Dry Subset			Wet Subset		
Specimen#	1	2	3	4	5	6	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Volume (cm ³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmm
Dry volume of air (cm ³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids	Dry	6.9		Wet			
Overall							
TSR Worksheet		Dry Subset			Wet Subset		1
Specimen#	1	2	3	4	5	6	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs) [P]	3852	3601	3761	1564	1517	1197	
Ind. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter spec	imen[D]	<u>V</u> acuum <u>SSD</u> W	't. (g)[B']	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g		3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(cm ³)[J']	81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of air	r (cm³)[Va]	110	108		
		70% Sat. (Target	VSSD)	3899	3835		A+0.7Va
	AVG	80% Sat. (Target	VSSD)	3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	Ī
Wet Subset %Air			Time (min)	8	8	8	
Saturation (%)			in. Hg	25	26	24	
		•	Time (min)	1	1	1	
		Dry Subset		_			
Time in 25 C waterbath	1h 50m	1h 55m	2h				
(2 hrs ± 10 min)							
NOTE: Shaded cells indicate		Time in Franc			Wet Subset	18h 54m	1
cells needing input va		Time in Freez (Minimum 16 I		19h 44m	19h 16m	1011 04111	J
cells fleeding input va	iues	Time in 60 C wate	•	23h 30m	23h 30m	23h 30m	1
		(24 ± 1 hrs)	inalli	2311 30111	231130111	2311 30111	J
		(24 I IIIS)					
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003]
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	
							-

CALCULATIONS: TSR

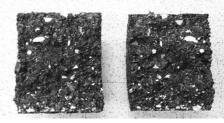

■ Specimen #6 ITS is 35 psi, so the average (#4, #5, #6) wet $S_2 = 41 \text{ psi}$

41

■ TSR=----×100 108

TSR = 38

121


SUSPECTED STRENGTH **OUTLIER**

- If attributable to an air void content different from other 2 pucks, leave in the set
- If a mystery, calculate if statistically is an outlier (ASTM E178)-if so, pitch and do one of the following:
 - Substitute another puck if compacted extra pucks
 - Test a new set of 3
 - Go with 2 pucks in the set
 - Prepare and test a substitute puck---must be assured that the material is the same as what was used for the other pucks

Mix Number Example					Gmm =	2.476]
Gmb Worksheet		Dry Subset			Wet Subset		- 1
Specimen #	1	2	3	4	5	6	1
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	1
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	1
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	1
Height (0.1 cm)[t]	9.5	9.5	9.5	9.7	9.5	9.5	1
Volume (cm ³) [B - C]	1621	1625	1625	1654	1626	0.0	# [B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmm
Dry volume of air (cm³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids	Dry	6.9		Wet			1
Overall	,		•				
•							4
TSR Worksheet		Dry Subset			Wet Subset		1
Specimen #	1	2	3	4	5	6	1
Height (0.1 cm)[t]	9.5	9.5	9.5	9.7	9.5	9.5	1
Max. Load (lbs)[P]	3852	3601	3761	1564	1517	1197	1
nd. Tens. Str.:ITS (psi)*	111	104	108	44	44	1107	6.4516*2P/3.1415tD
* For 15.0 cm diameter spec		<u>V</u> acuum <u>SSD</u> W		3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g		3822.4	3759.7		1
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O		81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of ai	r (cm³)[Va]	110	108		1
(///[70% Sat. (Target		3899	3835		A+0.7Va
	AVG	80% Sat. (Target		3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	<u>.</u>
Wet Subset %Air			Time (min)	8	8	8	1
Saturation (%)			in. Hg	25	26	24	1
. ,	<u> </u>	ח	Time (min)	1	1	1	1
		Dry Subset	()				_
Time in 25 C waterbath	1h 50m	1h 55m	2h				
(2 hrs ± 10 min)				•			
					Wet Subset		
NOTE: Shaded cells indicate		Time in Freez	zer	19h 44m	19h 16m	18h 54m	1
cells needing input va	lues	(Minimum 16					_
		Time in 60 C wate	· ·	23h 30m	23h 30m	23h 30m]
		$(24 \pm 1 \text{ hrs})$	'				_
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	1

T	N	S	D	F	C	ſ
_	v	_	Г		_	

Rate the degree of moisture damage on a scale of 0 to 5, with 5 being the greatest amount of stripping

124

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

125

REPORTING

■ Report TSR to the nearest whole %

126

1-9-17 42

COMPARISON: QC TO QA

TSR -favorable comparison is when QA and QC results are within 10% of each other.

If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.

If difference is >10%, initiate dispute resolution

QC and QA retained samples may have to be kept for extended periods

127

COMMON ERRORS/ Unfavorable Comparison

- Shaking saturated puck to "adjust" saturated mass
- Using pucks out of the acceptable air void range (7.0±0.5 or 6.0±0.5%)
- Proper water tank temperature not maintained (25 and 60° C)
- Using puck that has been over or under saturated instead of discarding or applying additional vacuum

128

COMMON ERRORS / Unfavorable Comparison

- Using incorrect maximum specific gravity to calculate voids and % saturation.
- Specimen in water bath for the incorrect amount of time.
- Not cleaning breaking apparatus when dirty.
- Not annually verifying breaking machine.

129

1-9-17	43
_ / _ /	10

COMMON ERRORS / Unfavorable Comparison

- Not molding specimens at correct temperature (if cool, may break aggregate)
- Not aging lab specimens the correct time & temperature (lab-mixed only)
- Not adding 10 ml of water prior to freezing
- Allowing specimens to drain after saturation but prior to freezing.

130

COMMON ERRORS / Unfavorable Comparison

- Using vacuum out of allowable range (10-26 in. Hg)
- Not allowing specimen to "rest" 5-10 minutes after vacuum period.
- Exceeding time of vacuum
- Not air-drying bulked unconditioned pucks for 24 hrs prior to breaking
- Sample contaminated with dust, release agent overspray, etc.

131

COMMON ERRORS / Unfavorable Comparison

- Improper filling of sample into boxes
- Improper mixing and splitting procedures
- One or more mixture re-warmings
- Testing pucks at extreme ends of allowable range of voids [6.5, 7.5] may result in poor QC/QA comparison
- QC and QA not sampling at the same location-type (roadway vs plant) TSR 132 and Rice gravity

APPENDIX

Splitting

APPENDIX

Splitting

133

TSR Sample Quartering

- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each pile. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

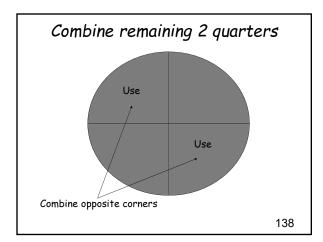
134

Opposing 2 quarters are removed and combined for the retained split.

Retained

Retained

1-9-17 45


■ Note-you will need about 175 lbs if you do this step—if not, 75 lbs will work

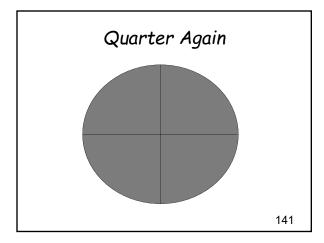
136

TSR Sample Quartering

- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each pile. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

137

SAMPLE SIZE

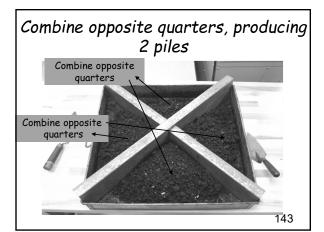

- Need ~ 175 lbs to follow this whole procedure
- Need ~ 75 lbs if you skip the first 3 steps

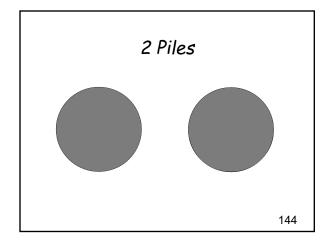
139

TSR Sample Quartering

- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each pile. Now have 8 splits.
- Pull 6+ pucks.
- Pull Rice if necessary.

140

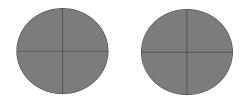



1-9-17 47

TSR Sample Quartering

- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each pile. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

142

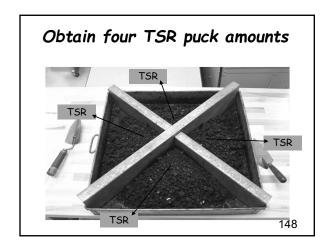


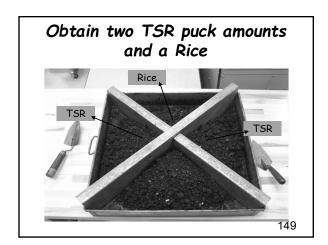
TSR Sample Quartering

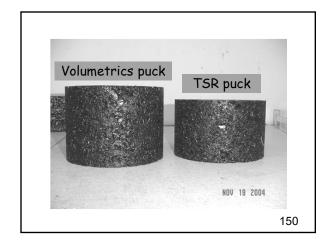
- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each pile. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

145

Quarter each pile. Now have 8 splits.




146


TSR Sample Quartering

- Sample for TSR is quartered per AASHTO R 47
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters
- Quarter again
- Combine opposite quarters, producing 2 piles
- Quarter each half again. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

147

1-9-17 50

Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage: Tensile Strength Ratio (TSR): Field-Mixed, Laboratory-Compacted Specimens (AASHTO T 283-14)

- 1. Per specified sampling frequency, obtain a loose mix field sample to produce a Rice specific gravity test sample (AASHTO T 209) and at least 6 TSR pucks that will be 150 mm (6") in diameter and 95 \pm 5 mm thick after compaction. For QC, approximately 75 pounds of mix will be required for the field sample. QC should obtain an additional 100 pounds to be retained for QA testing. For QA, a 125 lb sample should be sent to MoDOT Central Lab, and an additional 125 lb sample should be retained.
- 2. Reduce the field sample (AASHTO T 328) into previously determined test sample sizes based on the specific mix.
- 3. Place each TSR loose mix sample in an oven until it reaches the required compaction temperature \pm 3°C (\pm 5°F).
- 4. Compact the TSR specimens to 7.0 ± 0.5 % air voids (6.0 ± 0.5 % for SMA).
- 5. Store at room temperature for 24 \pm 3 hours.
- 6. For each puck, obtain the thickness, t, (ASTM D 3549 or from gyro printout) and G_{mb} (AASHTO T 166).

$$G_{mb} = \frac{A}{B - C}$$

A = Dry mass of specimen in air (g)

B = Saturated, surface-dry (SSD) mass of specimen (g)

C = Mass of specimen in water (g)

7. Having obtained G_{mm} for the associated Rice specific gravity test sample, calculate the percent air voids, P_a , for each puck.

$$P_a = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$$

- 8. Group the 6 pucks into 2 groups of 3 pucks each such that the average P_a of each group is approximately equal. Designate one group as "dry" or non-conditioned and the other group as "wet" or conditioned.
- 9. "DRY" GROUP TSR TESTING:
 - 9.1. After determining G_{mb} , store the pucks (at room temp) for 24 \pm 3 hours.
 - 9.2. Place each designated dry (non-conditioned) puck in a heavy-duty, leak-proof plastic bag. Place each bagged puck in a water bath set at 25 \pm 0.5°C (77 \pm

- 1°F) for 2 hours \pm 10 minutes, being sure that the pucks are covered by at least 1" of water.
- 9.3. Remove the puck(s) from the 25 ± 0.5 °C bath, determine thickness, t, and immediately test for indirect tensile strength. [See item #11 below].

10. "WET" GROUP TSR TESTING:

- 10.1. Place each designated wet (conditioned) puck in a vacuum container (e.g. dessicator) supported at least 1" from the bottom by a perforated plate. Using potable water, fill the container until the puck is covered by at least 1" of water.
- 10.2. Apply a vacuum of 10" 26" (suggested 23") of mercury (Hg) partial (gauge) pressure for approximately 5 10 (suggested 8) minutes.
- 10.3. During this vacuuming period, prepare for saturation determination by placing a sheet of cling film on a balance and then zeroing the balance.
- 10.4. At the end of the 5 10 minute vacuum period, gradually remove the vacuum and let the puck set submerged in the water for approximately 5 10 minutes. NOTE: The time required for some specimens to achieve the correct degree of saturation may be less than 5 minutes. Additionally, some specimens may require more than 26" of mercury partial pressure or less than 10" of mercury partial pressure.
- 10.5. Remove the puck from the vacuum container, quickly surface-dry with a damp cloth, and place the puck on the cling film. Record the saturated, surface-dry (SSD) weight of the puck and calculate the degree of saturation based on the volume of absorbed water as a percentage of the volume of air voids.

$$F = B - C$$

E = Volume of specimen (cm³) [Note: B & C are obtained during G_{mb} determination]

$$V_a = \frac{P_a E}{100}$$

 V_a = Volume of air voids (cm³) P_a = Percent air voids (%)

$$J' = B' - A$$

J' = Volume of absorbed water (cm³) B' = SSD mass of specimen after vacuum saturation (g) [Note: A is obtained during G_{mb} determination]

$$%Sat = \frac{100 \text{ J}'}{V_a}$$

10.6. If the degree of saturation is 70-80%, wrap the puck in the cling film (preserving any moisture that had drained from the puck) and place it in a plastic bag containing 10 ± 0.5 ml of water, and seal the bag. If the saturation level is less than 70%, return the puck to the vacuum container, increase the vacuum to 26" Hg partial pressure and run at 1-minute intervals (always letting the puck set in the water 5-10 minutes after removal of vacuum) until the saturation requirement is satisfied.

NOTE: When returning the puck to the vacuum chamber, inversion of the puck from the original orientation may facilitate additional air removal and is not disallowed by T 283.

If saturation is greater than 80%, the test is invalid and the puck must be discarded.

- 10.7. As soon as possible, place the plastic bag containing the puck in a freezer at 18 ± 3 °C (0 ± 5 °F) for a minimum of 16 hours.
- 10.8. Upon removing the pucks from the freezer, immediately place them in a water bath set at $60 \pm 1^{\circ}$ C ($140 \pm 2^{\circ}$ F) for 24 ± 1 hour. As soon as possible, remove the cling film from around the puck. There should always be at least 1" of water over the pucks.
- 10.9. Remove the pucks from the $60 \pm 1^{\circ}\text{C}$ bath and place in a $25 \pm 0.5^{\circ}\text{C}$ for 2 hours \pm 10 minutes, again assuring at least 1" of water over the pucks. It may be necessary to use ice to moderate the bath water temperature. No more than 15 minutes should be required to bring the bath water temperature to 25 \pm 0.5°C.
- 10.10. Upon removal of each puck, determine thickness, t', and immediately test for indirect tensile strength. [See item #11 below].

11. INDIRECT TENSILE TESTING:

- 11.1. Place the puck between the steel loading strips of the breaking head taking care that the loading strips are diametrically opposed to one another; i.e. the load is applied along the diameter of the puck.
- 11.2. Place the breaking head into the testing machine.
- 11.3. Apply the load to the breaking head such that a constant rate of movement equal to 50 mm (2") per minute is achieved. This is the same load rate as in Marshall testing.
- 11.4. Record the maximum load and continue loading until a crack is formed along the diameter of the puck.
- 11.5. Pull the puck apart and visually inspect the interior surface. Check for cracked or broken aggregate and rate the general degree of moisture damage on a scale from 0 to 5, with 5 being the greatest amount of stripping. Record your observations.

12. CALCULATIONS:

12.1. Calculate the tensile strength as follows:

$$S = \frac{2P}{\pi t D}$$

S = Tensile strength (psi)

P = Maximum load (lbs)

t = Puck thickness for "dry" specimen (in.)

t' = Puck thickness for "wet" specimen (in.)

D = Puck diameter (in.)

12.2. Calculate the tensile strength ratio, TSR, to 2 decimal places as follows:

$$TSR = \frac{S_{(\text{conditioned})}}{S_{(\text{dry})}}$$

 $S_{(conditioned)}$ = Average tensile strength of conditioned subset $S_{(dry)}$ = Average tensile strength of dry subset Because MoDOT specs are in terms of percent, express TSR as a percentage to the nearest whole number