MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department of Civil, Architectural, and Environmental Engineering

MoDOT SUPERPAVE QC/QA TRAINING/CERTIFICATION COURSE

Rev. 2-01-01; 10-10-01; 10-18-01 Rev. 9-23-03 Rev. 1-30-04: 11-19-04 Rev. 3-10-05; 3-18-05; 4-1-05; 11-1-05 Rev. 2-10-06; 11-24-06; 12-6-06; 12-28-06 Rev. 11-9-07 Rev. 1-2-09; 4-22-09; 11-18-09 Rev. 2-26-10: 11-17-10 Rev. 1-19-11; Rev. 3-2-12 Rev. 3-5-13; Rev. 12-18-13 Rev. 2-11-14; Rev. 12-29-14 Rev. 2-5-15 Rev. 4-23-15 Rev. 12-14-15 Rev. 3-2-16 Rev. 12-28-16 Rev. 3-7-18 Rev. 12-12-18 Rev. 2-20-19 Rev. 2-25-19 Rev. 3-15-19 Rev. 12-17-19 Rev. 1-30-20

COURSE OBJECTIVE

To bring together the diverse standpoints in a paving project to share in a common training program that shows not only how but why the various QC/QA procedures are performed.

WHY IS THE COURSE SET UP THE WAY IT IS?

- Q Why do we cover so many aspects of the work? QC/QA plan: hotmix plant Job mix formula hotmix plant inspection hotmix roadway inspection
- A Because attendees bring all kinds of backgrounds to the course—we have to train everybody.
- Q Why do I have to learn about other peoples work?
- A You can make better decisions if you have the whole picture.

You can have more realistic expectations if you know what the other person's constraints are.

You might change jobs (or have your job description changed for you!).

- Q Why are quarry operations mentioned in the course?
- A If the aggregate's not right, the hotmix won't be right. It is extremely important that the quarry people and the MoDOT quarry inspectors understand that what each party does really impacts the mix.

It is also important that the hotmix side understands the quarry operations that can affect their hotmix.

SUPERPAVE QC/QA TRAINING/CERTIFICATION PROGRAM TABLE OF CONTENTS

Introduction Course Schedule Evaluation Forms Why Test? Recent Changes in QC/QA & Superpave Test Procedure Changes Preliminary Module	
Introduction to Superpave	Module 1
Mix Design Overview	Module 2
Plant Operations	Module 3
QC/QA Overview and Hot Mix Quality Control Plan	Module 4
Sampling Hot Mix	Module 5
Gyratory Compactor Operations	Module 6
Maximum Specific Gravity of Hot Mix (Rice)	Module 7
Asphalt Content Testing by Ignition Oven	Module 8
Tensile Strength Ratio	Module 9
Quality Level Analysis	Module 10
Record Keeping and Exchange of Data/Test Results	Module 11
Contract Administration	Module 12
Appendix Glossary	

SUPERPAVE QC/QA CERTIFICATION RENEWAL COURSE 2019-2020 Season

Day/TimeModuleLocationTopicInstructorDay 1IntroRm. 110Intro/welcomeRichardson8:00-10:351-4Overview of ChangesRichardson10:35-11:305Rm. 110Sampling Review: Random Numbers Loose Mix Sampling CoringRichardson11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson12:00-1:00Uurch on your ownRichardsonRichardson1:00-1:5010Rm. 110Pay FactorsRichardson1:00-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compactionLusher4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compactionLusher10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:01-11:5LabHands-on practice/ proficiency testingStaff12:30-1:00-Catered LunchStaff12:30-1:00LabProficiency practice/testingStaff12:30-1:00LabProficiency practice/tes			2	019-2020 Season	
8:00-10:351-4Overview of Changes10:35-11:305Rm. 110Sampling Review: Random Numbers Loose Mix Sampling CoringRichardson11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson11:45-12:0010Rm. 110Pay FactorsRichardson1:00-1:5010Rm. 110Pay FactorsRichardson1:00-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00BreakClass observes demos: Lab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherUusherUusherTotal Rm. 110Homework/Course Review8:00-10:1510LabLabLabRichardsonRichardsonRichardsonInterviewRichardsonSign upon Contract AdministrationMoDOTLabLabReviewRichardsonContract AdministrationLab <th>Day/Time</th> <th>Module</th> <th>Location</th> <th>Торіс</th> <th>Instructor</th>	Day/Time	Module	Location	Торіс	Instructor
10:35-11:305Rm. 110Sampling Review: Random Numbers Loose Mix Sampling CoringRichardson11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson12:00-1:00Lunch on your ownLunch on your ownRichardson1:00-1:5010Rm. 110Pay FactorsRichardson2:00-2:5012Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:00-2:5012Rm. 110TSR ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00Break4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 21-12Rm. 110Homework/Course ReviewRichardson8:00-10:15LabRice Spec. Gravity DemoLusher10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:00-11:15LabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchStaff1:00-2Rm. 110Written TestRichardson3:00)Rm. 110Written TestStaff	Day 1	Intro	Rm. 110	Intro/welcome	Richardson
Random Numbers Lose Mix Sampling CoringRichardson11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson1:00-1:00Uunch on your own1:00-1:5010Rm. 110Pay FactorsRichardson1:50-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00BreakLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherbay 21-12Rm. 110Homework/Course ReviewRichardson8:00-10:15I-12Rm. 110Homework/Course ReviewRichardson10:15-10:25BreakIusherIusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchStaff1:00-2Rm. 110Written TestRichardson3:00)Catered LunchStaff	8:00-10:35	1-4		Overview of Changes	
Loose Mix Sampling CoringLoose Mix Sampling Coring11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson12:00-1:00Lunch on your own1:00-1:5010Rm. 110Pay FactorsRichardson1:00-1:5010Rm. 110Record Keeping ReviewRichardson1:00-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMobOT2:50-3:408Rm. 110TSR ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00BreakLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherUusherBreakSoborves demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherUusherIntoHomework/Course ReviewRichardsonSichardson2. Ignition ovenLusherIntoIntoHomework/Course ReviewLusherLusherIntoRen. 110Homework/Course ReviewLusherIntoIntervententententententententententententente	10:35-11:30	5	Rm. 110	Sampling Review:	Richardson
Coring11:30-11:456Rm. 110Gyratory Compactor ReviewRichardson11:45-12:007Rm. 110Rice Gravity ReviewRichardson12:00-1:00Lunch on your own1:00-1:5010Rm. 110Pay FactorsRichardson1:50-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMobOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00Break4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 2 8:00-10:1510:15-10:25Break10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Rm. 110Written TestRichardson1:00-2Rm. 110Written TestRichardson3:000Rm. 110Written TestStaff				Random Numbers	
11:30-11:45 6 Rm. 110 Gyratory Compactor Review Richardson 11:45-12:00 7 Rm. 110 Rice Gravity Review Richardson 12:00-1:00 Lunch on your own 1000000000000000000000000000000000000				Loose Mix Sampling	
11:45-12:00 7 Rm. 110 Rice Gravity Review Richardson 12:00-1:00 Lunch on your own 100-1:50 10 Rm. 110 Pay Factors Richardson 1:50-2:00 11 Rm. 110 Record Keeping Review Richardson 2:00-2:50 12 Rm. 110 Contract Administration MoDOT 2:50-3:40 8 Rm. 110 Ignition Oven Review Richardson 3:40-3:50 9 Rm. 110 TSR Review Richardson 3:50-4:00				Coring	
12:00-1:00 Lunch on your own 1:00-1:50 10 Rm. 110 Pay Factors Richardson 1:50-2:00 11 Rm. 110 Record Keeping Review Richardson 2:00-2:50 12 Rm. 110 Contract Administration MoDOT 2:50-3:40 8 Rm. 110 Ignition Oven Review Richardson 3:40-3:50 9 Rm. 110 TSR Review Richardson 3:50-4:00 5-9 Lab Lab Refresher: Class observes demos: Lusher 4:00-5:00 5-9 Lab Lab Refresher: Class observes demos: Lusher 1. Gyro verification/puck compaction Lusher Lusher 0:05-10:15 8 Rm. 110 Homework/Course Review Richardson 10:15-10:25 Break 10:25-11:00 Lab Rice Spec. Gravity Demo Lusher 11:00-11:15 Lab Lab Methods Review Lusher 11:00-11:15 Lab Hands-on practice/ proficiency testing Staff 12:30-1:00 Catered Lunch Richardson	11:30-11:45	6	Rm. 110	Gyratory Compactor Review	Richardson
1:00-1:5010Rm. 110Pay FactorsRichardson1:50-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00Break4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherLabLab Refresher: Class observes demos: 1. Gyro verification/puck 	11:45-12:00	7	Rm. 110	Rice Gravity Review	Richardson
1:50-2:0011Rm. 110Record Keeping ReviewRichardson2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00BreakLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 2 10:15-10:251-12 Rm. 110Rm. 110Homework/Course ReviewRichardsonBreakStore LabBreakLusher10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:00-11:15LabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchStaff1:00-7 (3:00)Rm. 110Written TestRichardsonBegins upon completionLabProficiency practice/testing continuesStaff	12:00-1:00		•	Lunch on your own	-
2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00	1:00-1:50	10	Rm. 110	Pay Factors	Richardson
2:00-2:5012Rm. 110Contract AdministrationMoDOT2:50-3:408Rm. 110Ignition Oven ReviewRichardson3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00	1:50-2:00	11	Rm. 110	Record Keeping Review	Richardson
3:40-3:509Rm. 110TSR ReviewRichardson3:50-4:00Break4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 21-12Rm. 110Homework/Course ReviewRichardson8:00-10:151-12Rm. 110Homework/Course ReviewRichardson10:15-10:25Break10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusherStaff11:15-12:30LabLabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchRichardsonStaff1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testing continuesStaff	2:00-2:50	12	Rm. 110		MoDOT
3:50-4:00Break4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 21-12Rm. 110Homework/Course Review BreakRichardson8:00-10:151-12Rm. 110Homework/Course Review BreakRichardson10:15-10:25Break10:25-11:00LabRice Spec. Gravity Demo proficiency testingLusher11:00-11:15LabLab Methods Review proficiency testingStaff12:30-1:00Catered LunchStaff1:00-? (3:00)Rm. 110Written Test continuesRichardson	2:50-3:40	8	Rm. 110	Ignition Oven Review	Richardson
4:00-5:005-9LabLab Refresher: Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 21-12Rm. 110Homework/Course Review BreakRichardson0:15-10:25BreakLusher10:25-11:00LabRice Spec. Gravity Demo proficiency testingLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchStaff1:00-2Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffsamLabProficiency practice/testingStaff	3:40-3:50	9	Rm. 110	TSR Review	Richardson
Class observes demos: 1. Gyro verification/puck compaction 2. Ignition ovenLusherDay 2 8:00-10:151-12 1Rm. 110Homework/Course Review BreakRichardson10:15-10:25Break10:25-11:00LabRice Spec. Gravity Demo proficiency testingLusher11:00-11:15LabLab Methods Review proficiency testingLusher12:30-1:00Catered LunchStaff1:00-? (3:00)Rm. 110Written Test continuesRichardsonBegins upon completion written examLabProficiency practice/testing continuesStaff	3:50-4:00		•	Break	
Image: Lab and	4:00-5:00	5-9	Lab	Lab Refresher:	
LusherLusherDay 2 8:00-10:151-12 10:15-10:25Rm. 110 Rm. 110Homework/Course Review BreakRichardson10:25-11:00LabRice Spec. Gravity Demo Proficiency testingLusher11:10-11:15LabLab Methods Review Proficiency testingLusher12:30-1:00Catered LunchStaff1:00-? (3:00)Rm. 110Written Test ContinuesRichardsonBegins upon completion written examLabProficiency practice/testing ContinuesStaff				Class observes demos:	
LusherLusherDay 2 8:00-10:151-12 10:15-10:25Rm. 110 Rm. 110Homework/Course Review BreakRichardson Richardson10:25-11:00LabRice Spec. Gravity Demo Proficiency testingLusher11:10-11:15LabLab Methods Review Proficiency testingLusher12:30-1:00Catered LunchStaff Proficiency practice/testingRichardson Staff1:00-? (3:00)Rm. 110Written Test ContinuesRichardson Staff				1. Gyro verification/puck	Lusher
Day 2 8:00-10:151-12 NRm. 110 NHomework/Course Review BreakRichardson10:15-10:25Break10:25-11:00LabRice Spec. Gravity Demo LusherLusher11:00-11:15LabLab Methods Review UsherLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered LunchRm. 110Written TestRichardson1:00-? (3:00)Rm. 110Written TestRichardsonBegins upon completion written examLabProficiency practice/testing continuesStaff					
8:00-10:15Break10:15-10:25Break10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-?1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffsegins upon completion writtenLabProficiency practice/testingStaff				2. Ignition oven	Lusher
8:00-10:15Break10:15-10:25Break10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-?1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffsegins upon completion writtenLabProficiency practice/testingStaff					
10:15-10:25Break10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-?1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffBegins upon examLabProficiency practice/testingStaff	Day 2	1-12	Rm. 110	Homework/Course Review	Richardson
10:25-11:00LabRice Spec. Gravity DemoLusher11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-?1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffBegins upon examLabProficiency practice/testingStaff	8:00-10:15				
11:00-11:15LabLab Methods ReviewLusher11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testingStaffBegins upon completion writtenLabProficiency practice/testing continuesStaff	10:15-10:25			Break	
11:15-12:30LabHands-on practice/ proficiency testingStaff12:30-1:00Catered Lunch1:00-? (3:00)Rm. 110Written TestRichardsonBegins upon completion written examLabProficiency practice/testing continuesStaff	10:25-11:00		Lab	Rice Spec. Gravity Demo	Lusher
12:30-1:00Catered Lunch1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testing completionStaffwrittenLabInficiency practice/testing continuesStaff	11:00-11:15		Lab	Lab Methods Review	Lusher
12:30-1:00Catered Lunch1:00-?Rm. 110Written TestRichardson(3:00)LabProficiency practice/testing completion written examStaff	11:15-12:30		Lab	Hands-on practice/	Staff
1:00-? (3:00)Rm. 110Written TestRichardsonBegins upon completion written examLabProficiency practice/testing continuesStaff				proficiency testing	
(3:00)LabProficiency practice/testing completion written examStaff	12:30-1:00			Catered Lunch	
Begins upon completion written examLabProficiency practice/testing continuesStaff	1:00-?		Rm. 110	Written Test	Richardson
completion continues exam	(3:00)				
completion continues exam	Begins upon		Lab	Proficiency practice/testing	Staff
written exam					
	•				
	exam				

Recert Schedule 3-16-17 (3-7-18) V.2 (4-25-18)(2-20-19)(4-2-19)(12-17-19).docx

SUPERPAVE QC/QA TRAINING/CERTIFICATION COURSE EVALUATION

DATE: _____ Job Description/Affiliation (Please check one) Paving Contractor ____ Quarry Operator ____ MoDOT ____ Other____

On a scale from one to five, with one being the lowest and five the highest, rate A.) the instructor and, B.) the material presented for each module. Please circle your selection.

MODULE 1 - INTRODUCTION TO SUPERPAVE	L	ЭW	' 	HIG	Н
A.) Instructor: Richardson	1	2	3	4	5
B.) Material presented	1	2	3	4	5
<u>Comments:</u>					
MODULE 2 - MIX DESIGN OVERVIEW					
A.) Instructor: Richardson	1	2	3	4	5
B.) Material presented	1	2	3	4	5
<u>Comments:</u>					
MODULE 3 - PLANT OPERATIONS					
A.) Instructor:	1	2	3	4	5
B.) Material presented	1	2	3	4	5
<u>Comments:</u>					

MODULE 4 - CONTRACTOR'S QUALITY CONTROL PLAN

	A.) Instructor:		1	2	3	4	5
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 5 - SAMPLING	HOT MIX / CORES					
	A.) Instructor:	Richardson (lecture) Lusher (lab)		2 2			
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 6 - GYRATORY	COMPACTOR OPERATIONS					
	A.) Instructor: Ric Lus	:hardson (lecture) ;her (lab)		2 2			
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 7 - MAXIMUM	SPECIFIC GRAVITY					
	A.) Instructor: Ric Lu	:hardson (lecture) sher (lab)		2 2			
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						

MODULE 8 - IGNITION OVEN

	A.) Instructor:	Richardson (lecture) Lusher (lab)				4 4	
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 9 - TENSILE S	STRENGTH RATIO					
	A.) Instructor:	Richardson (lecture)	1	2	3	4	5
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 10 - QUALITY	LEVEL ANALYSIS					
	A.) Instructor:	Richardson	1	2	3	4	5
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						
MOD	ULE 11 - RECORD K	EEPING & EXCHANGE OF DATA/TES	TR	ES	UL	ΓS	
	A.) Instructor:	Richardson	1	2	3	4	5
	B.) Material prese	nted	1	2	3	4	5
	<u>Comments:</u>						

MODULE 12 - CONTRACT ADMINISTRATION

A.) Instructor:	1	2	3	4	5
B.) Material presented	1	2	3	4	5

<u>Comments:</u>

Please circle your answer for the following questions.

Were the training facilities and materials adequate?

Yes No Other

<u>Comments:</u>

Was the time spent on training adequate?

Too long About Right Too short

Comments:

Rate overall training.

Poor Excellent

1 2 3 4 5

<u>General Comments:</u>

WHY TEST?

AGGREGATE

Gradation Provides a check to assure that we are close to the optimum aggregate skeleton that will give the maximum stability yet provide sufficient void space to avoid instability and durability problems.

- Specific Gravity Asphalt mixes are produced "by weight" but behave "by volume". Specific gravity is the link between weight and volume: if you know weight and specific gravity, you can calculate volume--and thus predict behavior. Necessary for mix design.
 - Spec: VMA calculation needs aggregate bulk specific gravity and puck specific gravity.

Consensus Tests

Fine Aggregate The more angular the particles, the more interlocking, Angularity the more stable the mix will be.

Spec: Fine Aggregate Particle Shape

CA Fractured Same as for fine aggregate angularity

Face Count

Spec: Fractured Face Count

Sand Equivalent Indicator of clay content of the aggregate. Clay can cause problems with stripping and raveling

Spec: Clay Content (Sand Equivalent)

Specs: Sieve tolerance limits Dust/asphalt ratio

Thin/Elongated Thin and elongated particles have tendency to break down during construction and service

Spec: Thin/Elongated

Source Tests

Deletereous Soft, non-durable particles tend to cause problems of durability in-service and breaking down during construction; absorptive and hold moisture

Spec: Deletereous Material

LA Abrasion General indicator of aggregate quality; indication of how well aggregate will hold up during handling, construction, and service; measure of toughness

Spec: LAA

Soundness Indicator of resistance to weathering; aggregates with lower soundness may also break down during gyratory compaction and result in low VMA

Spec: Sulfate Soundness

HOT MIX

Air Voids Excessive air voids cause problems with consolidation rutting, stripping, raveling, and freeze/thaw damage. Insufficient air voids leads to plastic rutting and bleeding

Spec: air voids

VMA	The wrong combination of air voids and effective AC content can lead to either plastic rutting or durability problems, and under certain circumstances, tender mix behavior
	Spec: VMA
AC Content	Excessive %AC can cause problems with instability; insufficient %AC leads to cohesion problems, raveling, stripping, and cracking
	Specs: % AC content Dust/asphalt ratio
Rice Specific Gravity	Necessary for calculation of air voids
Puck Specific Gravity	Necessary for calculation of VMA and air voids
Cores	Spec: pavement density
Dust/Asphalt	The dust (-#200)-to-effective asphalt ratio affects compactability and cohesion of the mix
TSR	The moisture sensitivity of the aggregate affects how prone the mix is to stripping
	Spec: TSR (Tensile Strength Ratio)

RECENT CHANGES IN QC/QA & SUPERPAVE Chronological Order

- Recognition by MoDOT of self-tests (check samples)
- TSR sampling allowed at plant discharge or from truck (as well as off roadway).
- Aggregate acceptance has shifted to the mixing facility
- More sampling off the aggregate combined cold feed or hot bins:
 - Consensus tests
 - Deleterious
- RAP allowed in Superpave
- More RAP sampling & testing
- More emphasis on SMA
- "Favorable comparison" between QA and QC is now defined.
- QA must also retain a split
- Acid Insoluble spec for Superpave mix B
- Creation of SP095 and SP095xSM
- Allowance of ignition oven sample for gradation purposes
- Dry-back procedure mandatory for mixes with any coarse aggregate with absorptions greater than 2.0%
- Adoption of AASHTO R 47 (previously designated as T 328) for hotmix sample splitting
- Adoption of AASHTO T 329 for moisture in hotmix

- Shingles (RAS) allowed in Superpave
- Creation of SP095xSM(R) [Rural]
- Creation of SP125xSM(R) [Rural]
- Creation of BP-3
- New TSR bonus/deduct table
- Gradual replacement of MoDOT test methods with AASHTO methods
- Superpave QC/QA course prerequisites; Aggregate Technician + Bituminous Technician
- Creation of Engineering Policy Guide (EPG)
- Creation of Task Force "guidelines" ("FAQ")
- Gyratory compactor angle *calibration* now specified to be performed using an internal angle device, but can still use external device for *verification*.
- TSR dry pucks held an additional 24 hrs after bulk specific gravity determination.
- Re-warming of mix for ignition oven testing now to be accomplished in an oven set at 110 instead of 125 degrees Celsius.
- Manual agitation of the Rice specimen was taken out of the latest version of AASHTO T 209. The spec only refered to mechanical agitation in section 9.4 of the test method. However, MoDOT is going to reinstate the manual method.
- RAP/RAS binder content sampling/testing required for hot mix plant samples.
- Change in allowable %RAP based on *effective* binder content

- Allowance of Warm Mix
- Traffic level "C": allowable change from 100 to 80 gyrations with removal of Ninitial and Nmaximum requirements
- Change in Superpave density spec, allowing greater density (94.5±2.5%)
- SP048 (50 gyration)= old BP-3, no Ninitial or Nmax requirement
- Sand Equivalent comparison: QC to QA: ±8
- Small quantities now 4000 tons
- QA now tests its own core
- T166 specific gravity of pucks/cores: if absorption exceeds 2%, must use Corelok or paraffin
- Rice test-minor change in start of timing
- Binder availability factor removed from MoDOT's RAP worksheet
- D/B ratio is 0.9-2.0 for SP048 mix
- Standardized JMF submittal spreadsheet available
- For high absorption pucks/cores, liquid paraffin not allowed; Parafilm or Corelok required
- Inertial Profiler has replaced profilograph and is in Sect 610; smoothness pay factors based on IRI, not profile Index
- T 329 Moisture Content is defined in reference to wet weight of mix
- T 329 Moisture Content definition of constant mass is no change greater than 0.05%

- T 166 Bulk Sp Grav of Pucks surface blotting dry time has changed to ≤ 15 sec.
- T 329-15 Moisture Content is defined in reference to dry weight of mix
- T329-15 Moisture Content oven temperature "shall fall within the JMF mixing temperature range." If not supplied, use 325 ± 25 F
- QA cores not in possession of QA shall be sealed in tamper-proof chainof-custody bags
- Mix and core sampling frequency for QA: one per 4 sublots instead of one per lot
- Ground shingle shingle testing frequency added (QC: 1/10,000 tons, minimum one per project)
- Gradation and deleterious sampling frequency for QC: one per 2 sublots instead of two per lot; QA: one per 4 sublots instead of one per lot
- RAP sampling frequency for QC: one per 4 sublots; for QA: one per project
- Small quantities defined as 4000 tons
- New spreadsheets implemented for submittal of QC (CRE2O) and QA data and for calculation of Pay Factors and Favorable Comparison
- Changes in minimum mat thicknesses for: SPO48, BP-2, and leveling courses
- Introduction of an alternate binder grading system to M 320: M 332 (MSCR)
- Increased use of technology to deal with RAP/RAS total binder stiffness; increased use of binder additives and modifiers

- Emphasis on binder contract grade, purchased grade, in-line grade, and true grade
- Implementation of binder deficiency deducts
- Performance testing (Flexibility Index and Hamburg Wheel Tracker) being implemented on a trial basis
- Verification frequency changed from daily to monthly
- JSP change for performance testing (2019)-includes disincentives
- Optional lower gyrations and air voids, higher VMA and field density
- New! Test procedure changes T 209 (Rice Specific Gravity)
- New! JSP change for performance testing (2019)
- New! Ideal CT test allowed in lieu of Illinois Flexibility Index Test
- New! Brand-new AASHTO R 96: Operation of Ignition Furnaces
- New! Brand-new mix sampling spec R 97 replaces T 168

RECENT CHANGES IN QC (11-17-10;1-19-11; 3-2-12; 3-5-13; 12-18-13; 12-9-15; 3-2-16; 12-28-16; 3-7-18; 12-12-18; 2-20-19)(2-25-19)(12-17-19).doc

TEST PROCEDURE CHANGES (2003-2004 to 2019-2020 Training/Certification Seasons) Chronological Order

AASHTO T 283-14 (2018): Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage.

This test procedure, commonly referred to as the Tensile Strength Ratio (TSR) test, was added as a Level 2 Bituminous (now Superpave QC/QA) proficiency exam requirement during the 2003-2004 training season. It was implemented as part of the transition to performance specifications. The material specification of requiring non-plastic aggregates in Superpave mixes was dropped, and the TSR, a performance specification, was put in force to address stripping potential of the HMA.

NOTE: As of March 2005, the TSR test procedure is no longer part of the Superpave QC/QA Training/Certification but is handled as a separate course, and is held here at Missouri S&T.

- As of the summer of 2007, the MoDOT Central Lab stores the "dry" subset of pucks for another 24 ± 3 hours <u>after</u> determining the bulk specific gravity (G_{mb}) , and <u>before</u> bagging them and putting them in the room-temperature water bath.
- Changes during the 2014-2015 season (AASHTO T 283-14) were 1) adding T 167 (Compressive Strength of Hot Mix Asphalt) as one of the allowable specimen compaction methods, 2) adding Note 4 to section 10.3.1 which allows some tolerance in the time and/or vacuum level required to reach the specified saturation, and 3) removing ASTM D 2041 as a method to determine G_{mm}.
- 2015-2016 Season: No changes in T 283 since the 2014 version.
- 2016-2017 Season: No changes in T 283 since the 2014 version.
- 2017-2018 Season: No changes in T 283 since the 2014 version.
- 2018-2019 Season: T 283 reconfirmed; no procedural changes since the 2014 version.
- 2019-2020 Season: No changes in T 283 since the 2018 (2014 reconfirmed) version.

AASHTO T 308-18: Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method.

NOTE: Wording on this page has been updated to reflect terminology changes first introduced in the 2008 version of T 308 (T 308-08). The changes are as follows:

- The "correction factor," generally referred to as the 'aggregate correction factor,' and input into the Method A (NCAT) convection-type oven using the 'Calib. Factor' function button, is now referred to as the "asphalt binder correction factor" in T 308-10.
- 2. The "aggregate gradation correction factor," as last defined in T 308-05, is now to be presented as the "aggregate (gradation) correction factor," where the parenthesis are ours.

To address problematic dolomites:

- When setting asphalt binder correction factors with the Method A (NCAT) convection-type oven, MoDOT specifications (Section 403) require that the ignition temperature be lowered to 427°C (800°F) if the asphalt binder correction factor still exceeds 1.0% at the AASHTO T 308 required lower temperature of 482°C (900°F).
- The infrared (direct irradiation) oven is allowable in AASHTO T 308.

As of the beginning of the 2006-2007 season, MoDOT now allows the use of the burned sample for gradation purposes. If used, an aggregate (gradation) correction factor determination must be performed according to T 308.

- 2015-2016 Season: No procedural changes in T 308 since the 2010 version. However, clarification of the definition of "moisture content" within T 329-15 (now referenced to dry weight of mix) has implications in binder content calculations and they are reflected in the documents used during this training course.
- 2016-2017 Season: Some editorial revisions (e.g. dual temperature units) but no procedural changes in T 308 since the 2010 version.
- 2017-2018 Season: No changes in T 308 since the 2016 version.
- 2018-2019 Season: No procedural changes in T 308-18 since the 2016 version. Minor editorial changes, only.
- 2019-2020 Season: No changes in T 308 since the 2018 version.

AASHTO T 209-19: Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures.

- The second time period (10 \pm 1 minute) in the weigh-in-air method now begins <u>after</u> the vacuum has been released.
- The vacuum manometer must be hooked directly into the top of the vacuum vessel.
- More contractors are using the "weigh-in-water" method. The Central Lab is using it for their routine Rice testing. The 4500 ml metal pycnometer typically used by the industry is now allowed under T 209 for the weigh-in-water method.
- A major change in MoDOT's requirements within T 209 is the assurance of a dry sample (less than 0.1% moisture) before running the Rice. This is done by either 1) documenting AASHTO T329 (moisture determination) results as showing less than 0.1% moisture or 2) drying the sample at 105 ± 5°C and repeatedly weighing until mass repeats are within 0.1%.
- If any coarse aggregate fraction has absorption > 2.0%, the "dry back" procedure (outlined in Section 11 of T 209) must be performed. This could add a couple of hours to the test.
- The vacuum specification was officially cited in T 209-05 as 27.5 ± 2.5 mm Hg absolute pressure (25 30 mm Hg absolute) and remains as such today.
- NOTE: MoDOT Field Office says that if a contractor wants to use the CoreLok® device to run the Rice, they would probably allow it upon having first discussed it with the contractor. For some guidance, see AASHTO T 331-13 (or ASTM D 6752).
- 2015-2016 Season: No procedural changes in T 209 since the 2012 version.
- 2016-2017 Season: Reconfirmed for 2016 publication with minor editorial changes, but no technical changes in T 209 since the 2012 version.
- 2017-2018 Season: No changes in T 209 since the 2016 version.
- 2018-2019 Season: No changes in T 209 since the 2016 version.
- 2019-2020 Season: Considerable changes in the new 2019 version.
 - Obtaining and recording the weight of the empty pycnometer to use in calculating oven-dry specimen weight.
 - \circ Water baths used in both methods must be controlled at 25±1°C.
 - Check (daily verification/calibration) and Standardization (less frequent, but repeated measurements) of the pycnometer for mass determinations in both methods under review by MoDOT.

AASHTO T 312-19: Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor.

- Pre- 2012-2013 Season: The calibration of the internal angle of gyration should be verified in accordance with AASHTO TP 71. However, daily verification (as required by MoDOT) can still be performed using external angle determinations and then comparing them with equivalent external angles determined during calibration of the internal angle.
- 2012-2013 Season: TP 71 has been fully accepted as T 344 in the new 2012 version of T 312.
- 2013-2014 Season: No procedural changes in T 312 since the 2012 version.
- 2014-2015 Season: Added guidance in the annexes of the new 2014 version about evaluating the molds.
- 2015-2016 Season: The new 2015 version has revisions in Section 4.1.3 about ram pressure constancy.
- 2016-2017 Season: No procedural changes in T 312 since the 2015 version.
- 2017-2018 Season: No changes in T 312 since the 2015 version.
- 2018-2019 Season: No changes in T 312 since the 2015 version. However, MoDOT changed the frequency of calibration verification from daily to monthly.
- 2019-2020 Season: No significant procedural changes in T 312-19 since the 2015 version. Minor editorial changes, only.

PRELIMINARY MODULE

11-24-06 Revision 11-9-07 Revision 11-17-10 Revision 3-2-12 Revision 12-18-13 Revision 1-30-20 Revision

PRELIMINARY MODULE 11-24-06 Revision 11-9-07 Revision 11-17-10 Revision 3-2-12 Revision 12-18-13 Revision 1-30-20 Revision

Superpave QC/QA Prerequisites

Aggregate Technician

- Aggregate Sampling
- Sample Size Reduction
- Gradation
- Moisture Content
- Deleterious Material
- Flat & Elongated

All topics will be used in this course

2

Superpave QC/QA Prerequisites

Bituminous Technician

- Sampling Binder
- Sampling Mix
- Sample Size Reduction
- HMA Puck/Cores Sp Grav
- HMA Moisture Content
- (Oven)
- HMA Binder Content (nuclear)
- Air Voids
- Temperature
- All topics will be used in this
- course 3

	PAVE QC/QA TOPICS	١
Module	Topic	
1	Introduction	
2	Mix Design	
	Overview	
3	Plant Operations	
4	HMA QC Plan	
5	Sampling	
6	Gyratory	
	Compactor	
7	Rice Sp Gravity	
8	Ignition Oven	
		4

TOP	ICS, Cont'd.
Nodule	Topic
9	TSR
10	Quality Level Analysis
11	Record keeping
12	Contract Administration

CERTIFICATION REQUIREMENTS

- Full Attendance
- Lab procedure proficiency test:
- (pass all test procedures) • Written test: (280%)

6

1/30/2020

LAB TESTS

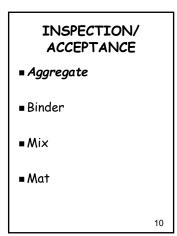
 Instructors Will Demo/Discuss:
 HMA splitting
 Consensus tests

- ■HMA moisture
- HMA aging
- TSR

LAB TESTS

7

8


9

Attendees will perform and be evaluated on:

- Gyro verificationGyro compaction
- Rice specific gravity
- Ignition oven binder content

CERTIFIED-WHO?

- Paving contractor
- MoDOT inspectors

AGGREGATE

- CA= coarse aggregate, typically plus #4
- FA= fine aggregate, typically minus #4

TESTS-Traditional

- MoDOT Initial & Annual Source Approval
- During mix design
- During HMA production

12

Initial Source Approval

 Coarse Aggregate:
 Specific gravity & absorption LA Abrasion

Annual Source Approval

- Coarse Aggregate:
 - Gradation
 - Specific gravity & absorption
 - LA Abrasion
 - Deleterious Materials

Fine Aggregate:

- Gradation
- Specific gravity
- Clay lumps & shale Lightweight pieces

14

15

13

Trial Mix Design Coarse Aggregate: Gradation Specific gravity & absorption Deleterious materials Sand equivalent Uncompacted voids PI (as required) ■ Fine Aggregate: Gradation Specific gravity

- Clay lumps & shale
- Lightweight pieces
- PI (as required)

1/30/2020

HMA Production

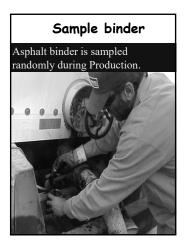
Gradation

- Deleterious
- Consensus properties

AGGREGATE TESTS Superpave Consensus

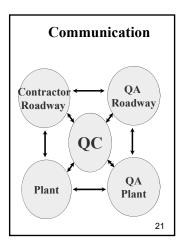
16

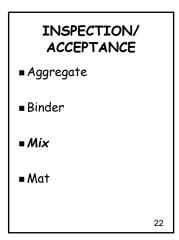
17

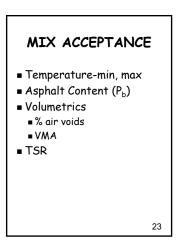

18

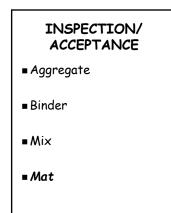
- Coarse Aggregate
 - Fractured Face Count
 Flat & Elongated
- Fine Aggregate
- Fine Aggregate particle Shape
- Sand Equivalent

INSPECTION/ ACCEPTANCE

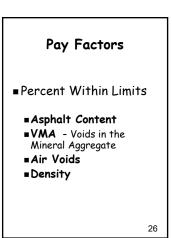

- Aggregate
- Binder
- Mix


∎ Mat




QC/QA

- Quality Control -Contractor
- Quality Assurance -Specifying Agency MoDOT Bituminous Plant Inspector MoDOT Construction
 - Inspector Roadway



Pay Adjustments

- Inertial Profiler -Smoothness
- Tensile Strength Ratio -Stripping
- Unconfined Joint Core Density
- From JSP's:
 - Intelligent Compaction: Passing/Deficient Segments
 - Infrared Thermal Profiles: Thermal Segregation Categories
 Performance Testing (Cracking)

 - Elevated Density

MODULE 1

INTRODUCTION to SUPERPAVE and QC/QA

12-15-06 Revision 1-29-07 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 3-2-16 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision

MODDULE 1 INTRODUCTION fo Supercurve and a super-Supercurve and a super-1.2-0-07 Revision 1.2-0-07 Revision 1.2-07 Rev

SUPERPAVE VS. QC/QA ■ Superpave ≠ QC/QA

- Superpave= mix design
- QC/QA= contract administration

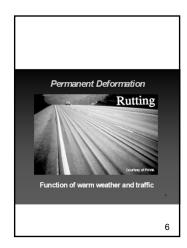
SUPERPAVE

2

- A SHRP product (1993)
- SUperior PERforming asphalt PAVEments
- New way of specifying binders and aggregates, and a new mix design method
- Tied to pavement performance

SUPERPAVE

- PG asphalt binder specifications
- Consensus properties of aggregates
- Hot mix design and analysis system (includes new test equipment, methods and criteria)

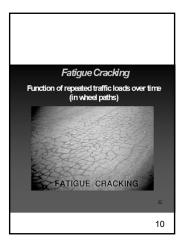

4

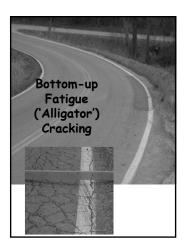
5

Computer software

PERFORMANCE BEHAVIOR-Major

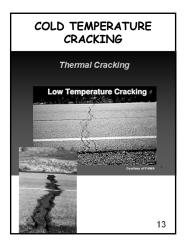
- Permanent distortion
 - Rutting
 - Shoving
 - Corrugations
- Fatigue cracking
- Cold temperature cracking
- Moisture sensitivity (stripping)



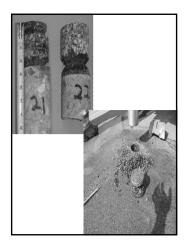


PERFORMANCE **BEHAVIOR-Major**

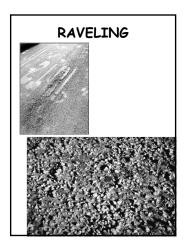
- Permanent distortion Rutting

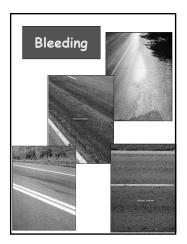

 - ShovingCorrugations
- Fatigue cracking
- Cold temperature cracking
- Moisture sensitivity (stripping)

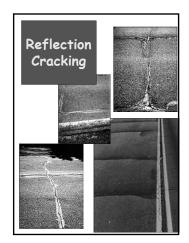

PERFORMANCE **BEHAVIOR-Major**

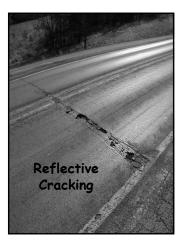

- Permanent distortion Rutting
 - Shoving
 - Corrugations
- Fatigue cracking Cold temperature
- cracking
- Moisture sensitivity (stripping)

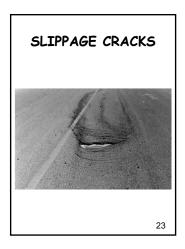
PERFORMANCE BEHAVIOR-Major

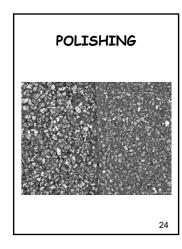

- Permanent distortion
 - Rutting
 - Shoving
 - Corrugations
- Fatigue cracking
- Cold temperature cracking
- Moisture sensitivity (stripping)

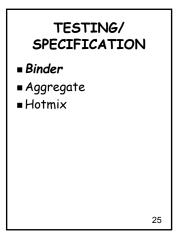


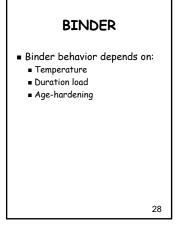

PERFORMANCE BEHAVIOR-Others

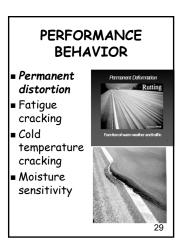

- Raveling
- Bleeding
- Reflective cracking
- Slippage cracks
- Lane cracks
- Aggregate polishing





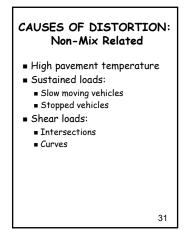


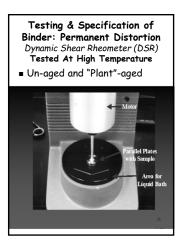

BINDER

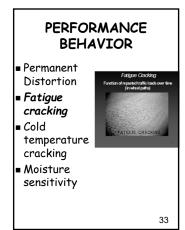

- "Asphalt cement"
- ∎ "*As*phalt"
- Black, sticky stuff

PG BINDER SYSTEM

26

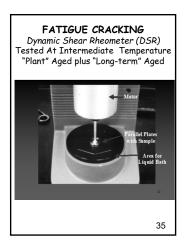

- Tests are directly related to field performance
- Criteria remain constant but tests are run at temperatures that reflect the design climate
- Tests are conducted at high, intermediate, and low temperatures
- Both short-term and longterm aging is employed
- Tests are suitable for modified binders

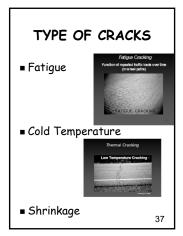




CAUSES OF DISTORTION: Mix Related

- Excessively soft binder for the climate/traffic
- Over-asphalted
- Low air voids
- Rounded/smooth aggregate
- Poor gradation





- Binder too stiff (brittle):
 Virgin grade too stiff
 - Recycle-additives/modifiersvirgin binder combo too stiff
 - Aging
- Under-asphaltedPoor air void system
- Pavement too thin

AGING

AGE-HARDENING MECHANISMS:

Oxidation= AC combining with oxygen

Volatilization= lighter molecules "evaporating" Polymerization= smaller, lighter molecules combining to form larger, heavier molecules

Age-hardening leads to brittleness, then cracking of all types plus loss of adhesion and cohesion, leading to stripping and raveling

AGING

38

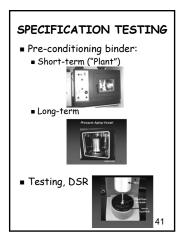
HEATING AT THE HOTMIX PLANT

TOO COOL: (AC viscosity too high)

Insufficient particle coating: leads to stripping, raveling

Mix too stiff to compact: results in high air voids which leads to consolidation rutting and durability problems (stripping, raveling)

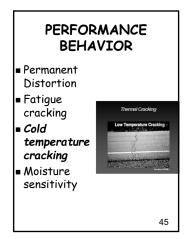
тоо нот:

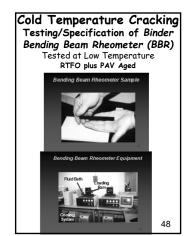

Accelerated age-hardening of AC: premature brittleness leads to fatigue, cold-weather, etc, cracking and loss of adhesion and cohesion...leading to raveling and stripping

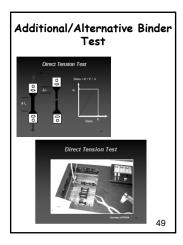
AC too "thin": mix difficult to compact because it is tender leading to high air voids leading to consolidation rutting and durability problems

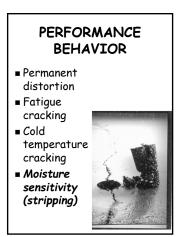
ALLOWABLE TEMPERATURES

Maximum = 350 °F


 Minimum = vibratory rollers must be operated in static mode below 225 °F (200 °F for Warm Mix)

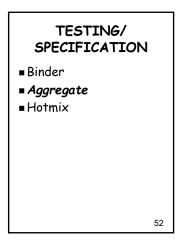



Cold Temperature Cracking Cause


 Binder not suitable for climate

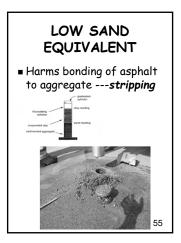
Pavement Behavior (Low Temperatures) Thermal cracks Stress generated by contraction due to dop in temperature Crack forms when thermal stresses extress through deformation Material is brittle Dependes on source of asphalt and aggregate properties

46

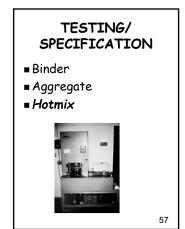


Moisture Sensitivity

51


See "Aggregate" testing

12/12/18

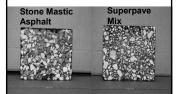


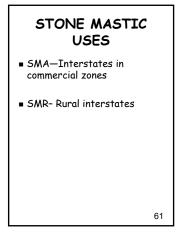
DESIGN CRITERIA

- Binder must meet specs for handling, rutting, fatigue cracking, aging, cold temperature cracking
- Aggregate must meet specs for shape and cleanliness
- \blacksquare Gradation limits
- Dust/asphalt ratio

58

SUPERPAVE MIXES IN MISSOURI


- SP048= #4 NMS surface course
- SP095= ³/₈ NMS surface course
- SP125= ¹/₂" NMS surface course
 SP190= ³/₄" NMS binder course
- SP250= 1" NMS base course
- Traffic levels: B, C, E, F
- Extensions:
- SM= stone mastic
- SM(R)= stone mastic (rural)
- NC= non-carbonate
- LP= limestone-porphyry
- LG= low gyration


59

Construction of SMA

What is SMA

- Mixture with a gap-graded aggregate skeleton that is filled with mastic
- Mastic comprised of fine aggregate, mineral filler, fibers and asphalt binder
- Minimum asphalt content of 6.0%

QC/QA What is it?

 QC...Contractor provides control of the process

 QA...Owner provides assurance that control is working

- ■Aggregate Producer
- Paving Contractor
- Quality Assurance:Owner (MoDOT)

USE OF QC/QA

64

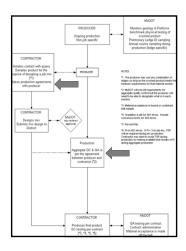
65

66

- QC/QA concept dates back over 40 years
 Most DOT's use
- QC/QA

QC/QA

- A major change in the way contracts are structured and administered
- A way to get material producers and paving contractors more involved in the entire process, which includes:
 - material selection
 - ∎ mix design
 - control of production
 - control of construction


QC/QA

- "QC" side becomes involved earlier in the process
- "QC" side becomes more knowledgeable about its product and the influence of the process on mix behavior
- "QA" side, through field verification, becomes more involved with the whole process

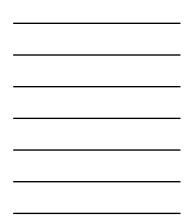
67

PROJECT FLOWCHART

- 1. Paving contractor writes Bituminous QC plan; submits QC plan to MoDOT (the mix design is often submitted at the same time)
- 2. MoDOT grants final approval of QC plan.
- 3. Paving Contractor contracts with Aggregate Producer. Samples aggregate for mix design (often, this is done earlier)

FLOWCHART, cont'd.

- 4. Paving contractor submits mix design info (Job Mix Formula=JMF) to MoDOT through the district.
 5. MoDOT Central Lab will verify the mix if QC lab not AMRL accredited. JMF approval granted (still have to sample aggregate if running nuclear gage so MoDOT can calibrate)
 6. Aggregate production begins
- 6. Aggregate production begins (actually, Superpave rock is more common now)
- 7. Hot mix production begins. See "Hotmix Production."


AGGREGATE INSPECTION

- QC and QA perform tests at the mixing facility, compare results to each other and:
 - Job Special Provisions
 - Standard specifications
 - Engineering Policy Guide (EPG) guidelines
 - Task Force (FAQ) guidelines

HOTMIX INSPECTION

- QC and QA perform tests, compare to each other and to:
 - Job Special Provisions
 - Standard Specifications
 - EPG guidelines
 - Task Force (FAQ) guidelines
- Pay factors are computed ("Best Management Practice" says at the end of each lot, now)

FUNCTION	LOCATION	FREQUENCY
Aggregate:		-
Aggregate gradation 3 sieves: 1 size smaller than NMS _{AMF} : not to exceed 22.0% #8: not to exceed 2.0% beyond master spec #200: within master spec	Drum: Combined cold feed Batch: Hot bins Optional: T308 Residue	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week
Солиялии каза FAA _{pen} -2% ОА4 _{pen} -2% Баб _{рен} -2% Каб _{рен} +2%	Drum: Combined cold feed Batch: Combined cold feed	QC: 1 per 10,000 to (min. 1 per project p mix type) QA: 1 per project QA: QC retained: 1 per project
Deleterious:	All plants: cold feed	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week
RAP: Gradation (T308 or T164 residue) Deleterious Micro-Deval (frecessary) Binder Binder		QC: 1 per day 1 per 2 sublots 1 per 2 sublots 1 per 4 sublots QA: 1 per project QA: QC retained: none
Ground Shingles: Gradation		QC: 1/10,000 tons (Min, 1 per project)

Hot Mix:		
Obin sample	Behind power	OC: 1 per subit OA: 1 per 4 subits OA: CC related 1 per day; not nocessary or days the OA independent sample is taken if tovorable comparison of relatived aging has been achieved
Quarter sample	QC lab	
Compact 2 gyro pucks at Nav.		
Run pucks specific gravity Calculate average of the two $(G_{\rm rel})$		-
Run Rice specific gravity (G _{nm}) Calculate % Air Voids (V_):		
$\label{eq:constant} \begin{split} V_n &= [G_{nm},G_{nm}] = G_{nm}] \times 100 \\ Compare to spec: 4 \pm 1.0\% \\ This is a pay factor \end{split}$		
Run sephalt content $ P_k\rangle$, either nuclear or ignition oven Compare to spec: $P_{k,MP} \neq 0.3\%$ This is a pay factor		-
Calculate % apprepaie (P ₄): P ₄ =100 - P ₆	-	-
Calculate VMA: VMA=100 - ((G _m x P _n) - G _m) G _m from JMF Compare to spec:		
VMA design minimum(-0.5 to +2.0 %) This is a pay factor		

Run TSR Compare to spec This is a pay adjustment factor	ix, cont'd.:	QC: 1 per 10,000 T QA: 1 per 50,000 T Minimum: 1 per mis (combination of projects)
Drill pavement cores	Traveled way pavement	QC: 1 sample per sublot QA: 1 sample per 4 sublots
Determine pavement core density (G_{me}) Calculate pavement density: Density= $(G_{mc}, G_{me}) \times 100$ Compare to spec: 94.5 ± 2.5% of G_{mn} This is a pay factor	Trailer	

Addition	al Testing:	
Mix Temperature		QC: 1 per sublot QA: 1 per day
Temperature base & air	Roadway	As-needed
Binder content of RAP/RAS	RAP/RAS feed	QC: 1 per 4 sublots QA: 1 per project
Calculate Voids Filled (VFA): VFA=[(VMA-V ₄) ~ VMA] x 100	QC lab	QC: 1 per sublot QA: 1 per 4 sublots
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot QA: 1 sample per 4 sublots
Drill longitudinal joint and shoulder cores	Roadway	See Module 5
Calculate pavement density: Density= (G _{mc} , G _{me}) x 100 Compare to Density Pay Adjustment Table if an unconfined joint core This is a pay adjustment factor		
		76


```
    QA: (independent & retained:
1/1500 tons
```

77

SMALL QUANTITIES

■ 403.23.7.4.1

- QLA & PWL not required (no PF's) but mix must be within spec
- Still have VMA, Va, Pb, density spec limits
- TSR still required
- Density: PF-adjustment table (see Module 5)

QC/QA FUNCTIONS AT THE HOT MIX PLANT

Engineering Policy Guide

FUNCTION	LOCATION	FREQUENCY
Aggregate:		
Aggregate gradation 3 sieves: 1 size smaller than NMS _{JMF} : not to exceed 92.0% #8: not to exceed 2.0% beyond master spec #200: within master spec	Drum: Combined cold feed Batch: Hot bins Optional: T308 Residue	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week
Consensus tests: FAA _{spec} -2% CAA _{spec} -5% SE _{spec} -5% T&E _{spec} +2%	Drum: Combined cold feed Batch: Combined cold feed	QC: 1 per 10,000 tons (min. 1 per project per mix type) QA: 1 per project QA: QC retained: 1 per project
Deleterious:	All plants: cold feed	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week
RAP: Gradation (T308 or T164 residue) Deleterious Micro-Deval (if necessary) Binder Binder		QC: 1 per day 1 per 2 sublots 1 per 1500tons 1 per 4 sublots QA: 1 per project QA: QC retained: none
Ground Shingles: Gradation		QC: 1/10,000 tons (Min. 1 per project) QA: 1 per project

Hot Mix:		
Obtain sample	Behind paver	QC: 1 per sublot QA: 1 per 4 sublots QA: QC retained 1 per day; not necessary on days the QA independent sample is taken if favorable comparison of retained splits has been achieved
Quarter sample	QC lab	u
Compact 2 gyro pucks at N _{des}	"	u
Run pucks specific gravity Calculate average of the two (G _{mb})	ű	" "
Run Rice specific gravity (G _{mm})	ű	α
Calculate % Air Voids (V _a): V_a =[(G _{mm} -G _{mb}) ÷ G _{mm}] x 100 Compare to spec: 4 ± 1.0% <i>This is a pay factor</i>	u	u
Run asphalt content (P_b), either nuclear or ignition oven Compare to spec: $P_{b,JMF} \pm 0.3\%$ <i>This is a pay factor</i>	u	ű
Calculate % aggregate (P _s): P _s =100 - P _b	ű	ű
Calculate VMA: $VMA{=}100 - [(G_{mb} \ x \ P_s) \div G_{sb}]$ $G_{sb} \ from \ JMF$	ű	u
Compare to spec: VMA design minimum[-0.5 to +2.0 %] <i>This is a pay factor</i>		

Hot Mix, cont'd.:		
Run TSR Compare to spec <i>This is a pay adjustment factor</i>		QC: 1 per 10,000 T QA: 1 per 50,000 T Minimum: 1 per mix (combination of projects)
Drill pavement cores	Traveled way pavement	QC: 1 sample per sublot QA: 1 sample per 4 sublots
Determine pavement core density (G _{mc})	Trailer	"
Calculate pavement density: Density= $(G_{mc \pm} G_{mm}) \times 100$ Compare to spec: 94.5 ± 2.5% of G_{mm}	"	"
This is a pay factor		

Addition	al Testing:	
Mix Temperature		QC: 1 per sublot QA: 1 per day
Temperature base & air	Roadway	As-needed
Binder content of RAP/RAS	RAP/RAS feed	QC: 1 per 4 sublots QA: 1 per project
Calculate Voids Filled (VFA): VFA=[(VMA-V _a) ÷ VMA] x 100	QC lab	QC: 1 per sublot QA: 1 per 4 sublots
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot QA: 1 sample per 4 sublots
Drill longitudinal joint and shoulder cores	Roadway	See Module 5
Calculate pavement density: Density= (G _{mc +} G _{mm}) x 100 Compare to Density Pay Adjustment Table if an unconfined joint core <i>This is a pay adjustment factor</i>	ű	ű

MODULE 2A

MIX DESIGN OVERVIEW: Mix Design/Pavement Structure Design

> 11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 2-8-19 Revision

MODULE 2A
MIX DESIGN OVERVIEW:
Mix Design/Pavement
Structure Design
11-24-06 Revision
11-9-07 Revision
4-22-09 Revision
11-18-09 Revision
12-29-09 Revision
11-17-10 Revision
1-19-11 Revision
3-2-12 Revision
2-26-13 Revision
12-18-13 Revision
12-29-14 Revision
2-4-15 Revision
12-28-16 Revision
2-16-18 Revision
12-12-18 Revision
2-8-19 Revision

AASHTO TEST METHODS & SPECIFICATIONS

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity

COMPONENT	% by wt
Aggregate (coarse & fine)	90
Dust (dust-of-fracture + mineral filler)	5
Binder (asphalt cement or tar)	5

Hot Mix Asphalt Concrete (HMA) Mix Design Methods

∎ Objective:

- Develop an economical blend of aggregates and asphalt that meet design requirements
- Historical mix design methods
 - Marshall
 - Hveem
- New
 - Superpave gyratory

4

5

Requirements in Common

- Sufficient asphalt to ensure a durable pavement
 Sufficient stability under
- Sufficient stability under traffic loads
 Sufficient sinusida
- Sufficient air voids
 - Upper limit to prevent consolidation rutting and excessive environmental damage
 - Lower limit to prevent plastic distortion while allowing room for initial densification due to traffic
- Sufficient workability

HOT MIX STANDARD SPECS		
Mixture	Section	
Plant Mix (Bit Base, BP-1, BP-2, BP-3)	401	
Surface Leveling	402	
Asphalt Concrete (Superpave)	403	
	6	

Interstes Superpove Major Routes >600 ADTT Superpove Major Routes <600 ADTT BP-1 Minor Routes >600 ADTT Superpove Minor Routes <600 ADTT Superpove Minor Routes ADT>3500 <600 ADTT BP-1 Minor Routes ADT<3500 <600 ADTT BP-1 or BP-2			
Major Routes +600 ADTT BP-1 Minor Routes >600 ADTT Superpave Minor Routes ADT3500 BP-1 +600 ADTT BP-1 winor Routes ADT3500 BP-1	Interstates		Superpave
Minor Routes >600 ADTT Superpave Minor Routes ADT>3500 <600 ADTT	Major Routes	>600 ADTT	Superpave
Minor Routes ADT>3500 <600 ADTT BP-1 Minor Routes ADT<3500	Major Routes	<600 ADTT	BP-1
<600 ADTT Minor Routes ADT<3500 BP-1 or BP-2	Minor Routes	>600 ADTT	Superpave
	Minor Routes		BP-1
	Minor Routes		BP-1 or BP-2
	Minor Routes		BP-1 or BP-2

SUPERPAVE TM & MoDOT MIXES				
MoDOT	NMS	Max. size		
Designation	mm (in.)	mm (in.)		
N/A	37 (1 ¹ / ₂)	50 (2)		
SP250	25 (1)	37 (1 ¹ / ₂)		
SP190	19 (3)	25 (1)		
SP125	12.5 (¹ / ₂)	19 (<u>3</u>)		
SP095	9.5 (3)	12.5 (1 /2)		
SP 048	4.75 (#4)	9.5 (3)		

MINIMUM THICKNESSES Superpave & Plant Mixes		
Mix	Minimum Thickness (in.)	
SP048, BP-3	1.0	
SP095 BP-2*	1.25 1.5	
SP125, BP-1	1.75	
SP190	2.0	
SP250, PMBB	3.0	
NJSP: If BP-2 is placed in a 1,25" lift, %Passing 0.5" is reduced to 99-100.		

Minimum Thickness for Leveling Courses		
Mi×	Thickness, in.	
SP 125, BP-1	1.5	
SP 095, BP-2	1	
SP 048, BP-3	<u>3</u> 4	
	10	

MATERIAL STANDARD SPECS		
Aggregate (403)	1002	
Aggregate (401)	1004	
PG Binder	1015	
Mineral Filler	1002	
Hydrated Lime	1002	
Fiber	1071	
Anti-Strip	1071	
Filler (RAP)	403	
RAP	403	
RAS	403 11	

MIX DESIGN STEPS

- I. Material selection (Module 2A-2D)
- II. Aggregate structure selection: (Module 2E)
- III. Design binder content selection: (Module 2F)
 IV. Evaluation of maint
- IV. Evaluation of moisture sensitivity (stripping): (Module 2G)

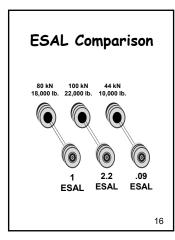
I. MATERIAL SELECTION • 1. Determine design traffic

- 2. Select aggregate sources
- 3. Select PG binder grade (in contract documents)
- 4. Select RAP (optional)
- 5. Select RAS (optional)

13

1. DESIGN TRAFFIC

- 1. Determine traffic data for the project site
- 2. Convert the traffic levels for the mix of vehicle types to ESAL's
- 3. Estimate growth over the design life
- 4. Calculate the total design ESAL's:
- Example: 12,000,000 ESAL's


14

ESAL's

- Conversion of damage from a given axle load to an equivalent number of passes of an 18,000 lb load on a single axle (equal damage)
- For instance, one pass of a 22,000 lb single axle is equivalent in damage to 2.2 passes of an 18,000 lb single axle load

15

Not linear

ESAL's

Another way...

- Conversion of a given vehicle to an equivalent number of passes of an 18,000 lb load on a single axle (equal damage)
- For instance, one pass of a certain 6-tire truck is equivalent in damage to 0.49 pass of an 18,000 lb single axle load

17

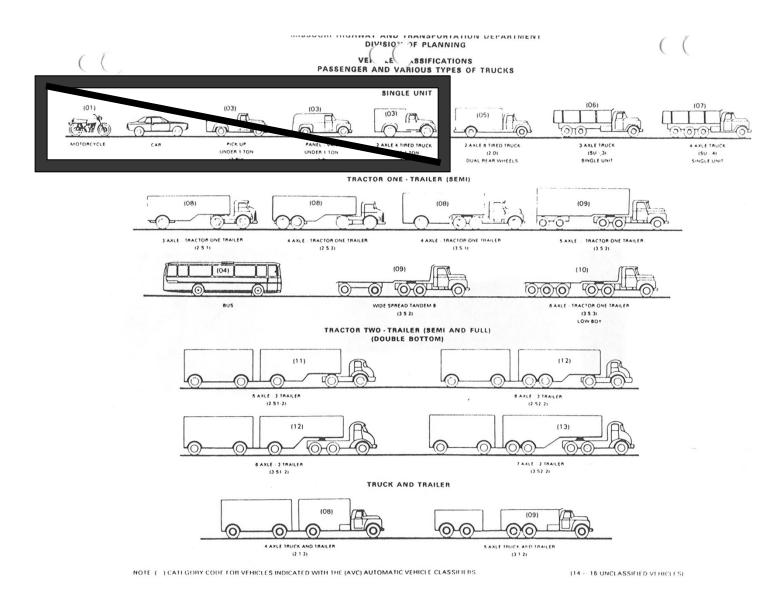
 $\mathbf{BIG TRUCK}$ $\mathbf{BIG TRUCK}$ $\mathbf{BIG TRUCK}$ $\mathbf{BIG TRUCK}$ $\mathbf{ISI KN}$ $\mathbf{ISI KN$ $\mathbf{ISI KN}$ $\mathbf{ISI KN$ $\mathbf{ISI$

13 MoDOT (AASHTO) Vehicle Classes "Trucks" = #4 - #13 6+ tires in uite uit not mon hours and alle alle and a a ta a a ta 19

MoDOT: 13 VEHICLE CATAGORIES

Examples:

- Cat 1= Motorcycles
- Cat 3= cars & 4 tire pickups
- Cat 9= 18 wheelers


USE OF ESAL'S IN MATERIAL SELECTION

- Level of aggregate quality is tied to level of traffic; for instance, the greater the design traffic, the more angular and cleaner the aggregate has to be.
- The choice of *PG binder* grade is tied to traffic *level*; for instance, the greater the design traffic, the more rut resistant the binder must be.

21

13 MoDOT (AASHTO) Vehicle Classes "Trucks" = #4 - #13

6+ tires

MoDOT Traffic Levels		
Design Levels	Design Traffic (ESALS)	
F	< 300,000	
E	300,000 to < 3,000,000	
С	3,000,000 to < 30,000,000	
В	≥ 30,000,000	
	22	

Traffic Level	CAA	FAA	SE	F&E*
F	55/none		40	10
E	75/none	40	40	10
С	95/90	45	45	10
В	100/100	45	50	10

MODULE 2B

MIX DESIGN OVERVIEW: Aggregate Quality

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 2-8-19 Revision

MODULE 2B
MIX DESIGN OVERVIEW: Aggregate Quality
11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 11-7-10 Revision 1-19-11 Revision 3-2-12 Revision 12-8-13 Revision 12-8-16 Revision 12-28-16 Revision 12-28-16 Revision 12-28-16 Revision 2-4-19 Revision 2-4-19 Revision

SELECTION OF AGGREGATE SOURCES

- The individual aggregate sources must meet agency (MoDOT) criteria:
 - ■Coarse Aggregate:
 - Deleterious materialLA abrasion
 - Absorption
 - ■Gradation
 - (Acid insoluble residue)
 - Fine Aggregate:
 Deleterious material

Gradation

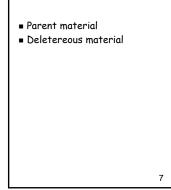
2

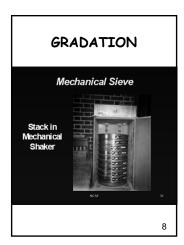
MoDOT 1002 SPECIFICATIONS Coarse Aggregate or Combined • LAA: \$ 50% • Deletereous Material (CA): • Deletereous Rock \$8.0 % • Shale \$1.0 % • Other Foreign Material. \$0.5 % • Absorption: \$Crushed stone \$4.0 % • Gravel \$5.5 % • Acid Insoluble \$85 %

MoDOT SPECIFICATIONS Fine Aggregate

- Clay Lumps & Shale...... ≤1.0 %
 Total Lightweight........≤0.5 %

4

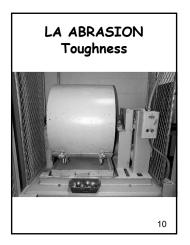

SMA • LAA...... ≤ 40% • Absorption...... ≤ 3.5%

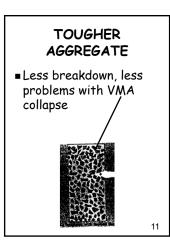

AGGREGATE CHARACTERISTICS

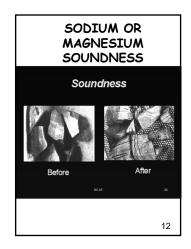
 Gradation, parent material quality, and contamination affect:

- Constructability
- Strength
- Durability

AGGREGATE

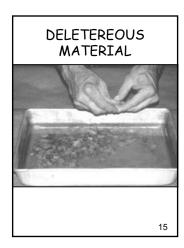



SOURCE PROPERTIES


- Toughness= ability to resist breakdown from handling, processing, compaction
- Soundness= ability to resist breakdown from weathering

9

Skid Resistance

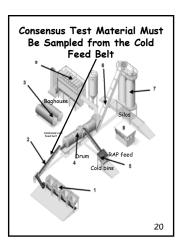


SKID RESISTANCE				
 For "B" surface mixes and all SP095 and SP048NC containing limestone Must contain some (see table) hard non-carbonate materials (traprock, most gravels, steel slag, flint chat, with AIR ≥ 85%), or Limestone must have AIR ≥ 30% (see TM76) 				
Coarse Aggregate (+#4)	Minimum Non- carbonate By Volume			
Limestone, LA≤30	30% Plus #4			
Limestone, LA>30	20% Minus #4*			
Dolomite	No requirement			
13				

CONTAMINATION FROM:

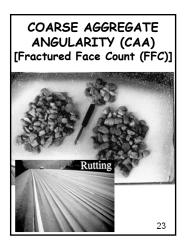
- Inclusion of non-durable material during quarrying (e.g., shale, soft rock, etc.)
- Poor stockpile management techniques (e.g., mud, dust, etc.)
 - Quarry
 - Hot Mix Plant
- During delivery (e.g., contaminated truck beds)

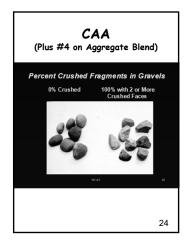
SHALE


- Inter-bedded with limestone
- Will break down easier than harder rock
- Much will end up in fines

MoDOT Traffic Levels				
Design Levels	Design Traffic (ESALS)			
F	< 300,000			
E	300,000 to < 3,000,000			
С	3,000,000 to < 30,000,000			
В	≥ 30,000,000			
	18			

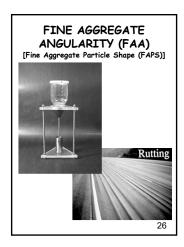
	CONSENSUS REQUIREMENTS on blended aggregate					
Traffic Level	CAA	FAA	SE	F&E*		
F	55/none		40	10		
E	75/none	40	40	10		
С	95/90	45	45	10		
В	100/100	45	50	10		
*SMA ≤ 20% @ 3:1 and ≤ 5% @ 5:1						
				19		



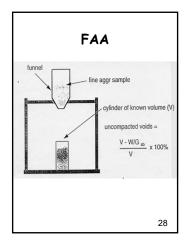


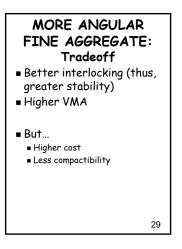
CONSENSUS TESTS

- Coarse Aggregate Angularity
- Fine Aggregate Angularity


- Sand Equivalent
- Flat & Elongated



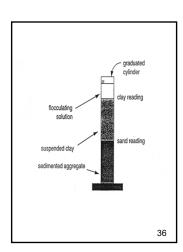


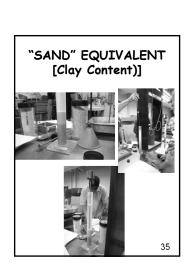

CONSENSUS TESTS

- Coarse Aggregate Angularity
- Fine Aggregate Angularity
- Sand Equivalent
- Flat & Elongated

CONSENSUS TESTS

- Coarse Aggregate Angularity
- Fine Aggregate Angularity
- Sand Equivalent
- Flat & Elongated





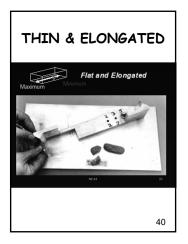

"SAND" EQUIVALENT [Clay Content)]

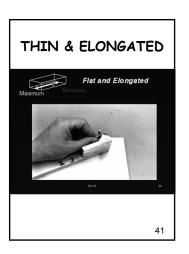
Shaking methods hierarchy:
 Mechanical: not mandated
 Manual: most common

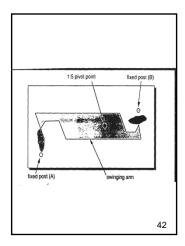
Manual: mos
 Hand

Coarse Aggregate Angularity

37


- Fine Aggregate Angularity
- Sand Equivalent
- Flat & Elongated

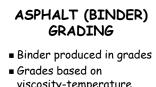

FLAT (THIN) & ELONGATED (Plus #4 on Aggregate Blend) • ASTM D4791 • Flat • Elongated • Total flat and elongated • Superpave • Flat and Elongated • Maximum to minimum dimension • 5:1 • 3:1 • 2:1


PROBLEMS WITH FLAT & ELONGATED

Increased breakage-

- Finer gradation
- Creates fines
- Uncoated broken surfaces \rightarrow stripping
- Compacts flat-lower VMA
- Increased problems with placing & compacting

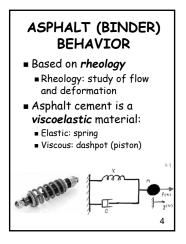
MODULE 2C

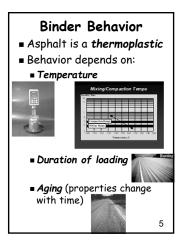

MIX DESIGN OVERVIEW: Binder RAP & Shingles

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 12-17-19 Revision 1-30-20 Revision

MODULE 2C				
MIX DESIGN OVERVIEW:				
Binder				
RAP & Shingles				
11-24-05 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-130 Revision 1-19-11 Revision 2-26-113 Revision 12-29-14 Revision 2-4-15				
1-30-20 Revision				

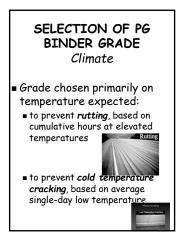
OUTLINE

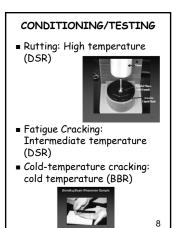

- Binder grading & selection
- M 332 grades
- Testing & evaluation
- RAP & shingles
- Mixing & compaction temperatures

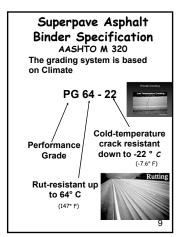


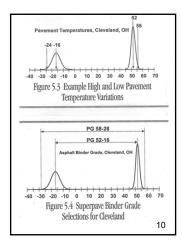
2

- viscosity-temperature behavior
- Choice of grade depends primarily on climate

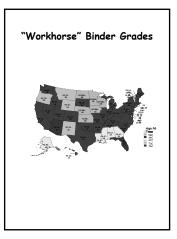

SELECTION OF PG BINDER GRADE


Based on:


- ∎*Clim*ate
- Depth in pavement
- Volume of traffic
- Vehicle speed
- Desired level of
- reliability
- RAS (shingle) content


6

■RAP content



Choosing a PG Grade for a Climate

- Cleveland: say, get 30 years of weather data
- Convert air temperatures to pavement temperatures
- average high pavement temperature is 52 ° C
- Average low pavement temperature is -16 ° C
- A PG 52-16 will cover 50% of the data, thus will have a 50% Reliability
- A PG 58-22 will cover ~98% of the data, thus will have a ~98% Reliability
 - ~98% Reliability

AASHTO M320 PG GRADING SYSTEM				
■ 6 degree increments				
Table 3.1 Supergave Binder Grades				
High Temperature Grades (Degrees C)	Low Temperature Grades (Degrees C)			
PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 PG 82	$\begin{array}{c} -34, -40, -46\\ -10, -16, -22, -28, -34, -40, -46\\ -16, -22, -28, -34, -40\\ -10, -16, -22, -28, -34, -40\\ -10, -16, -22, -28, -34, -40\\ -10, -16, -22, -28, -34\\ -10, -16, -22, -28, -34\\ \end{array}$			
	12			


Rule-of-90 (or 92)

- If temperature range (absolute value high to low is less than 90° (or 92°), the binder is probably non-modified ("neat" asphalt)
 If range is > 90°, probably is
- If range is ≥ 90°, probably is modified
- Examples:
- PG 64-22, range = 86° non-modified
- PG 70-22, range = 92°, modified
- PG 76-22, range = 98°, modified

14

TO MODIFY Optional Materials

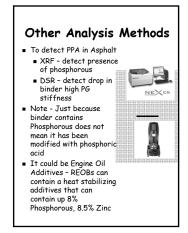
- Polymer (eg. elastomeric polymer)
- Polyphosphoric acid (PPA)
- REOB = Re-refined engine oil bottoms
- Air-blown asphalt
- Others

Elastic Recovery (%)
Elastic Recovery Measurements:
Primary shape of briquete After pulling apart 20 cm Sever at the middle after 5 minutes (20-X) cm
Elastic Recovery % = $\frac{(20-X)}{20}$ *100
17

Section 1015.10.3								
Grade	ER, min. %							
PG 64-22, 58-22, 58-28								
PG 70-22	55							
PG 76-22	65							
	18							

POLYPHOSPHORIC ACID (PPA)

- Can increase binder high-temp PG & performance without degrading low temp grade & performance
- Typically dosed at 0.25% to 1.5% by weight of asphalt

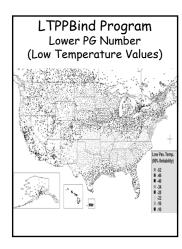

PPA Possible Issues

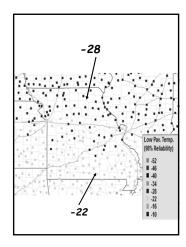
- May make mix more prone to moisture sensitivity
- PPA may react with amine-based Liquid Anti Strips (LAS) & Warm Mix Additives (WMA) which will lead to a partial decrease in hightemp PG improvement
- Chemically compatible LAS and WMA function should not be inhibited. Performance testing such as AASHTO T283 (TSR) or T324 (HWT) are highly recommended
- LAS and WMA suppliers make PPA-compatible materials 21

PPA Possible Issues, cont'd. • Good communication with contractor regarding potential use of amine-based LAS • Ensure compatibility with WMA & LAS

22

Simple Test to Detect PPA in Asphalt



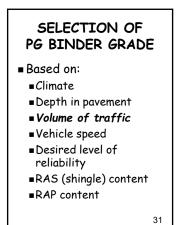

SELECTION OF PG BINDER GRADE Climate

- Specify a higher upper number-grade to prevent rutting eg. 58→ 64
- Specify a lower numbergrade to prevent cold temperature cracking, eg. -28 → -34

25

<section-header><section-header><section-header><section-header>

SELECTION OF PG BINDER GRADE

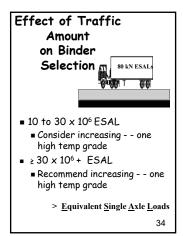

■ Based on:

- ∎Climate
- $\blacksquare Depth$ in pavement
- ■Volume of traffic
- Vehicle speed
- Desired level of reliability
- RAS (shingle) content
- ■RAP content

29

SELECTION OF PG BINDER GRADE Depth in Pavement

 Place better binder ("modified" binder) in surface mix and first underlying layer (top 4")


Binder Grading Specs

 The following slides refer to traditional M 320 binder grades (not M 332 "MSCR") unless noted

SELECTION OF A BINDER GRADE

 Can "bump" up a grade (increase the high temperature number) for high traffic levels (greater than 30 million ESAL's)
 Ex.: PG 64-22 →PG 70-22

33

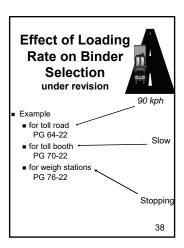
SELECTION OF PG BINDER GRADE

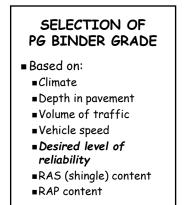
Based on:

- ∎Climate
- Depth in pavement
- •Volume of traffic
- ■Vehicle speed
- Desired level of reliability
- RAS (shingle) content
- ■RAP content

35

Vehicle Speed


- Slower → increased rutting
- Stopped → worst case for rutting


Why?

Longer duration of load

Effect of Loading Rate (Vehicle Speed) on Binder Selection

- Can bump up a grade (increase high temperature number) for slow moving (less than 35 mph) traffic [MoDOT uses 12-45 mph]
- MoDOT bumps 2 grades for <12 mph
- Grade bumps apply to the surface mix and the top lift of the underlying mixture
- Grade bumping: no effect on low temp grade 37

SELECTION OF PG BINDER GRADE Reliability

- Can increase reliability for a given climate & depth by increasing the high and/or low temperature values (this may lead to a modified binder)
- PG grades chosen to match average high & low temperatures will give ~ 50% reliability
- 98% reliability is typically chosen for more critical situations
- Some DOT's choose 98%
- reliability for all binder grades

40

SELECTION OF PG BINDER GRADE

- Based on:
 - ■Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - RAS (shingle) content
 - ■RAP content

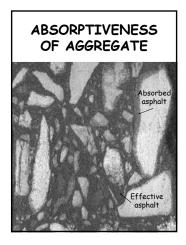
41

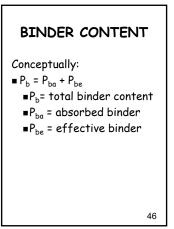
RAP/RAS Binders

- RAP has aged- stiffer than virgin binder
- RAS- roofing binder is much stiffer
- *Combined* virgin & recycled binder → stiffer

May be too hard

Solutions

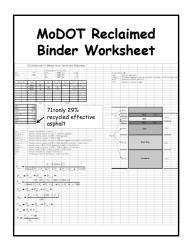

- Limit the % of recycled effective binder (eg. 30% max)
- Use a softer virgin grade binder (eg. PG 58-28)
- Add a rejuvenator/viscosity modifier (eg. 3% Hydrogreen)
- Combinations of the above

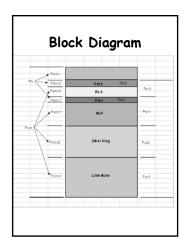

43

44

"Effective Binder"

 When dealing with recycled materials, interested in "effective binder", not total binder

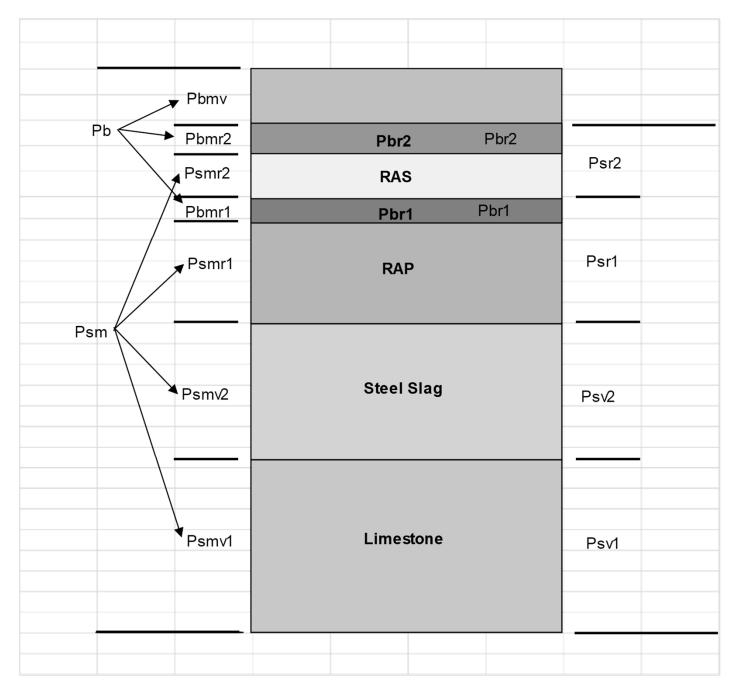

RAP & SHINGLES (RAS)

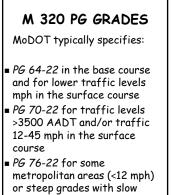

- If effective virgin binder is less than 70% (more than 30% replacement by RAP+RAS), more binder testing (use of "blending charts") is required to assure that the combined binder meets the JMF specified binder grade
- So, typically contractors are limiting the effective recycle binder content of their mixes to <u>s</u>30%

47

SHINGLES (RAS)

- Shingles only allowed for contract specified grade of PG64-22 (if PG 70 and greater, shingles not allowed)
- If effective virgin binder is 60-70% (RAP+RAS = 30 to 40%), must use PG 52-28 or 58-28 (no binder testing required)

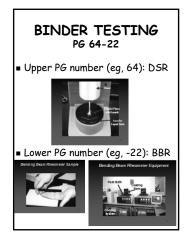

MoDOT Binder Grade PG 64-22


- Climate= whole state
- Position in pavement=
 - surface layer and first underlying layer (lower traffic)
- Lower lifts (~all traffic)
- Traffic speed > 45 mph
- Traffic volume < 30 million ESALS
- Reliability= ~98%
- Upper number (64) is bumped up for increased traffic and/or slower speeds in top layer/top underlying lift

MoDOT Reclaimed Binder Worksheet

	Contrib	ution o	f Bind	er from	Recyc	cled Mat	erials					
				Binder Comp								
'b	5.70		Gmm	2.434		2.653		Type of S	Stockpile			
bmv	4.50	(Gb	1.030	Pba	1.52		virgin	- Quarried agg			
		(Gsb	2.547	Pbe	4.18		reclaim		ggregate such as cond	rete, steel slag,	wet bottom slag, o
		-			-	_	-	RAP		sphalt pavement		
Stockpile	Туре	Ps	Pbr	P _{srx} P _{br}	Psmv	P _{smr}	Pbmr	 RAS	- Reclaimed a	sphalt shingles		
1	virgin	80	25	0.50	76.41	1.42	0.47					
2	RAS RAP	2 18	25 4.3	0.50		1.43 16.45	0.47					
4	10 4	10	4.0	0.11		10.40	0.70					
5												
6												
7 8												
0		100			94.29	9						
be	4.18	100			01.20	-						
be bev	2.98		71		1	200/						
smv	76.41		1/1	l=on	IV a	29%)		🖌 Pbmv			
sn x P _{br}			• -					Pb <	Dhan 2		Dh-2	
sr^ or Smr	17.88		ro	r	lod	0++	fort		▶ Pbmr2	Pbr2	Pbr2	Psr2
smr D bmr	1.20	/	10	~yc	-Cu	eft			√ ^{Psmr2}	RAS		F 312
2	71	K	~	mha	.1+				Pbmr1	Pbr1	Pbr1	
			us	prid								
				•				/	Psmr1			Psr1
b	- Percent to	tal bindar i	n mixturo							RAP		
Pb Psv(1,2,)	- Pecent sto				med addre	nate						
sr(1,2,)	- Pecent sto					guio		Psm K				
Pbr(1,2,)	- Percent bi	nder by fra	ction in R	AP or RAS								
Psmv(1,2,)									Psmv2	Steel Sla	a	
Psmr(1,2,) Psmr	- Pecent sto								PSINZ		5	Psv2
	- Percent bi											
Pbmr	- Percent bi											
Pbmv	- Pecent ne							1				
2	- Percentag	e of new bi	nder (Pbe	ev) to total bi	nder (Pbe))						
									Psmv1	Limeston	•	D-1
									FSIIVI	Lineston		Psv1
				(100								
ת	$100 - ((P_{s}, P_{s}))$		$P_{sv1} \times$	(100-1	P_b)							
$P_{smvl} = -$	00 ((D	V D	- D		DV		(100)					
1	$100 - ((P_s))$	$1 \times P_{br1}$	$+P_{sr2}$	$\times \Gamma_{br2} +$	$\Gamma_{sr3} \times .$	$\Gamma_{br3} +,$	j/100j					
D	D	D	D									
$P_{smv} =$	$P_{smv1} + $	P_{smv2} -	$+P_{sm}$, +								
	$\frac{P_{sr1}}{00 - ((P_{sr1}))}$	-P	$\times P_{\rm e}$	$(100) \times (1)$	00 - P)						
$P_{mn1} = -$	(1	srl ¹ srl	- br1 /	100)^(1	50 I)/		 				
1($00 - ((P_{m1}))$	$\times P_{hr1} + $	$P_{a,2} \times I$	$P_{hr2} + P_{mr3}$	$\times P_{hr^2}$	+)/100))					
					. 015							
$P_{smr} = I$	$P_{smr1} + P_s$	$m_{r_2} + I$	smr 3 +	• • • • •								
D	$P_{sr1} \times I$	$br_{br1} \times$	(100 -	(P_b)								
$I_{bmr1} =$	$P_{sr1} \times I$	100	2									
	P + P	+ <i>I</i>	P. +									
		mr 2 ' 1	hmr 3									
	bmr 1 ' I b	-	onu o									
$P_{bmr} = l$			ona o									
$P_{bnnr} = I$ $P_{bnnv} =$	$P_b - P_{bn}$	11.	0114 5									
$P_{bmr} = I$ $P_{bmv} =$	$P_b - P_{bn}$	11.	0111 0									
$P_{bmr} = I$ $P_{bmv} =$	$P_b - P_{bn}$	11.	0111 0									
$P_{bmr} = I$ $P_{bmv} =$		11.	0111 0									

Block Diagram


speeds

52

MoDOT Binder Selection- Depth, Traffic Volume, Vehicle Speed										
Corridor	Layer	Binder Grade								
Interstates	Surface= SP125 or SMA & 1 st underlying lift Remaining lifts	PG76-22 PG64-22								
Major Routes Heavy Volume	Surface= SP125 & 1 st underlying lift Remaining lifts	PG70-22 PG64-22								
Major Routes Medium or Low Volume	Surface= SP125 or BP-1 Underlying lifts	PG64-22 PG64-22								
Minor Routes	All (generally BP-1 surface)	PG64-22 53								

MODIFIED PG BINDERS

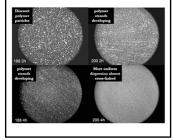
- How a material handles, compacts, etc., may be greatly affected if the binder is modified, eg. with a polymer.
- The supplier of the binder should be contacted to determine if the binder has been modified and what effects this modification might have on the mixture (eg. special handling requirements)

OUTLINE

- Binder grading & selection
- M 332 grades
- Testing & evaluation
- RAP & shingles
- Mixing & compaction temperatures

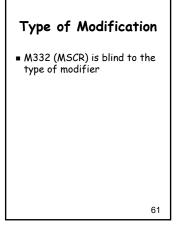
ALTERNATE GRADING SYSTEMS

56


- Original: M 320
- ~New (MSCR): M 332

AASHTO M 320 Issues and the M 332 Solution

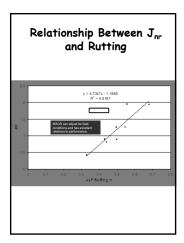
- M 320 was developed based on neat asphalts and does not do PMAs justice
- Therefore some Agencies have added "Plus Tests", such as % Elastic Recovery (% ER).
- However empirical tests such as % ER only show the presence of, but not the effectiveness of polymermodification.


Polymer Modification

- Same polymer, same amount polymer
- Not well characterized with M320 and PG+ tests

AASHTO M 320 Issues and the M 332 Solution

- The MSCR specification M332 corrects the M320 deficiencies by testing at the project climate temperatures and at the stress level commensurate with the expected traffic. > M332 uses the non
 - recoverable compliance % (Jnr) and % Recovery to better qualify the type of modification.



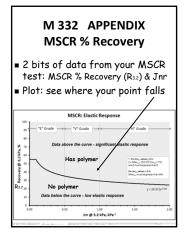
M 332 Binder Grades Section 1015.10.3.1							
 Introduces "traffic grades" increasing S → H → V→ E Before M332, to bump a grade for more traffic, raise upper PG number (eg, PG 64 → PG 70) 							
New: Stay in a (PG 64-22 for bump up by tr	Missouri), but						
M 320	M 332						
64-22	64-22 Grade S						
70-22							
76-22	64-22 Grade V						

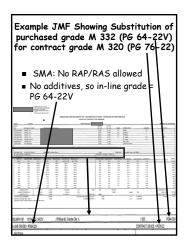
 To do that, must add more modifier

M 332 Grades							
Grade	Traffic/ Speed	MoDOT Class					
S (Standard)	<10 million ESALS AND > 44 mph	F, E, some C					
H (Heavy)	10-30 million ESAL <i>s O</i> R 12 - 44 mph	Some C					
V (Very Heavy)	>30 million ESALS OR < 12 mph ("standing")	В					
E (Extra Heavy)	>30 million ESALS AND "standing"	В					
		66					

OUTLINE

- Binder grading & selection
- M 332 grades
- Testing & evaluation
- RAP & shingles
- Mixing & compaction temperatures


67

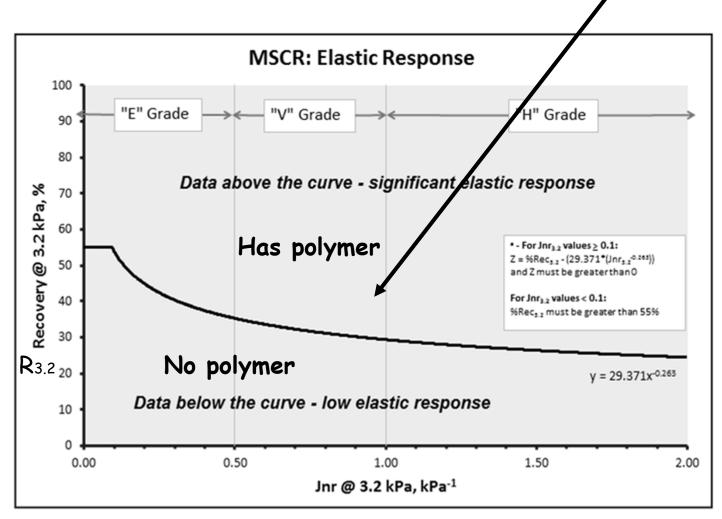

M 332 Spec DSR Tested at 64° C							
Traffic Level	Ma×. Allowable Jnr, kPa-1						
S	4.5						
Н	2.0						
V	1.0						
E	0.5						
E 0.5 Note: decreasing max. allowable Jnr for more severe traffic conditions							

Binder Grade System Transition: M 320 → M 332

- Contracts & EPG: still M 320 grades
- Many suppliers now supply M 332
- M 332 grades are cheaper than corresponding M 320 grades (less polymer), so contractors prefer
- [MoDOT did not adopt the Appendix in M 332]

69

What's My Grade? Different Example


 "Contract Grade" = the PG grade in the contract, eg. PG 70-22
 "Purchased Grade" = what

- "Purchased Grade" = what contractor buys from supplier (terminal), eg. PG 58-28 (if RAP/RAS will be used)
- "In-line Grade" = Purchased grade + additive (warm mix, anti-strip, etc.)
 eg. PG 58-28

"In-line Grade" = Purchased grade + modifier (rejuvenator) eg. PG 52-28

M 332 APPENDIX MSCR % Recovery

- 2 bits of data from your MSCR test: MSCR % Recovery (R3.2) & Jnr
- Plot: see where your point falls

Example JMF Showing Substitution of purchased grade M 332 (PG 64-22V) for contract grade M 320 (PG 76-22)

SMA: No RAP/RAS allowed

No additives, so in-line grade PG 64-22V

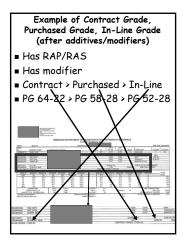
IISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS

ATE =	03/24/16					CO	NTRACTOR =			and the second se				SP 61	6-13 (Corre
ENT.		125-1				1.5.5.5.6		BULK	APPAR						
0	PRODUCT CODE		PRODUCER	OCATION	_			SP. GR.	SP. GR.	%ABS	FORMATION	_	LEDGES	ACCURATE AND ADDRESS OF ADDRESS O	ERT
SLMRH066	100205 LD1							2.625	2.718	1.3	Plattin	5 m	7-2	0.	
SEMA0031	100205 PY2							2.644	2.685	0.6	Porphyry		1		
SEMA0032	100204 PY1							2.627	2.682	0.8	Porphyry		1		
SLMRH058	100204 LD1						(1) () ()	2.641	2.717	1.1	St. Louis	0.000	3-9	0.1	0
SLMRH059	1002MS.MSLD							2.644	2.712	- 122-1	St. Louis	2007	3-9		2.2
SEMA0011	1002MFMF							2,700	2.700		Min. Filler	127		100	
SMFO0007	1071APSMCF							1.000	1.000		Cellulose Fibers				
											_				
SLMRH108	1015ACPG .6422	v	Phill 66, Gra	nite City, IL				1.035		PG64-22V	o Mold Temp	. 290-300*F			
-LINE GRADE	States in the second							CONTRACT GR	RADE = PG76-						
MATERIAL				1 1				1	-	the second s					
IDENT #	16SLMRH066	6SEMA0031	16: MA0032	16SLMRH058	16SLMRH059 1	6SEMA0011		16SLMRH066	16SEMA0031	16SEMA0032	16SLMRH058	16SLMRH059	16SEMA0011		C
16013	1/2"	1/2"	3/8"	3/8"	MAN SAND	Min, Filler		10.0	32.0	10.0	25.0	12.0	11.0		
1 1/2"	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		
1*	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		3
3/4"	100.0	100.0	100.0	100.0	100.0	100 0		10.0	32.0	10.0	25.0	12.0	11.0		8
1/2"	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		
3/8"	50.0	95.0	97.0	100.0	100.0	100.0		5.0	30,4	9.7	25.0	12.0	11.0		
#4	3.0	12.0	32.0	56.0	99.0	100.0		0.3	3.8	3.2	14.0	11.9	11.0		
#8	2.0	2.0	6.0	13.0	93.0	100.0		0.2	0.6	0.6	3.3	11.2	11.0		
#16	2.0	1.0	2.0	5.0	56.0	100.0		0.2	0.3	0.2	1.3	6.7	11.0		
#30	2.0	1.0	1.0	4.0	30.0	100.0		0.2	0.3	0.1	1.0	3.6	11.0		
#50	2.0	1.0	1.0	3.0	16.0	99.0		0.2	0.3	0.1	0.8	1.9	10.9		
#100	2.0	1.0	1.0	3.0	6.0	95.0		0.2	0.3	0.1	0.8	0.7	10.5		
#200	2.0	0.2	0.2	3.0	5.0	75.0		0.2	0.1		0.8	0.6	8.3		
LABOR	1000 A C	9 hm =	2.419		% VOIDS =	4.0	TSR =	86		SR WL				X COMPOS	122
CHARACT	Sector and the sector	mb =	2.323		V.M.A. =	17.5				3630	Ndes	= 100		MIN.	2357
AASHT	and the second	Gsb =	2.646		% FILLED =	77	Gyro Wt. =	A REAL PROPERTY AND ADDRESS OF						A PHALT CON	and the second sec
ALIBRATION N			16016			MASTER					A1 =			FI	BER
ASTER GAUG	E SER. NO. = Properties Based on 0	Contrac & Mix Desig	2502				SAMPL WEIGHT =	7200			A2 =	3.342288	6		
LMRH108	101540	G.6422V		/ Phill	ips 66, Gran	ite City, IL						1	035		PG64
-	and a	1.00.00.0			pe 00, 0101	10 011,10		-		ACCORD NO.			- All		1001
INE GRAD	DE = PG64-	22V							_		_	CONT	RACT GRAD	E = PG76-22	
other the Party name	and the second second					N 10 1			_	- 30E				and the second se	The Party New York, New Yo

What's My Grade, cont'd.

- "True Grade" = shows at what temperatures the binder actually met the required specs, eg., PG 59.2-29.7
- "Mixture Grade" = what the grade is after mixed with recycled binder in RAP/RAS

73

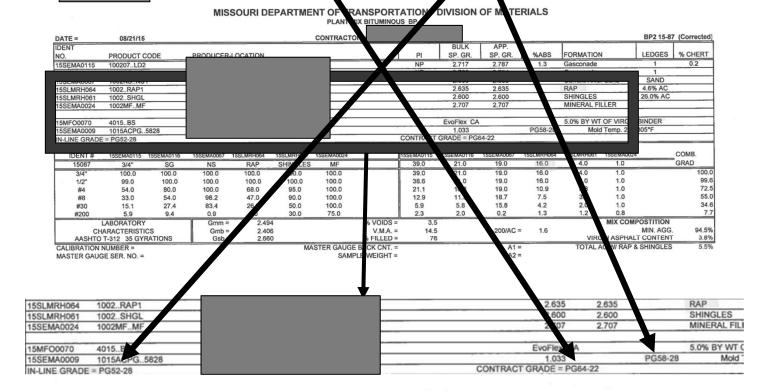

How Recycle Affects Binder Grade Strategy

- Contract Grade is what MoDOT wants for performance (eg. PG 64-22)
- RAP/RAS binder is stiff
- To meet *Contract Grade*, contractor may need to start with a softer *Purchased Grade* (eg. PG 58-28)
- RAP/RAS will provide additional stiffness
- Mixture grade, hopefully, will be close to the Contract Grade 74

ADDITIVES vs MODIFIERS

Additives:

- Compactibility
- Warm mi×
- ∎ Anti-strip
- Usually a low amount (0.25-
- 1.75% of binder)
- Doesn't affect PG grade (Purchased grade and In-line grade ~ same)
- Modifiers:
 - Rejuvenators, viscosity modifiers, etc.
- Changes the PG base asphalt
- Usually a greater amount: 2-5
- % of binder) 75


What is Sampled & Tested for Acceptance?

- Purchased (Terminal) Grade or
- In-line Grade (HMA plant)
- The results of the testing determine whether the sample passes; if rejected, penalties are assessed per Section 460.3.13 EPG:
 - If M 320 binder, the high temperature *True Grade* will be determined
 - If M 332 binder, penalties will be assessed based on the Jnr (except Grade S-test as if M320) 77

M 320 Binder Tested On Non-Aged ("Original") Condition Example: PG 64									
Spec	DSR Testing	Penalty							
DSR ≥ 1.00 kPa	DSR > 0.90 kPa	No penalty							
	If sample fails:								
Spec temp	Hi-Temp True Grade Temp	Penalty							
64°	< 2º low	No penalty							
64º	> 2° & < 4° low	3% of mix unit price							
64°	> 4º & < 6º low	10% of mix unit price							
64°	> 6° low	16% of mix unit pri 28							

Example of Contract Grade, Purchased Grade, In-Line Grade (after additives/modifiers)

- Has RAP/RAS
- Has modifier
- Contract > Purchased > In-Line
- PG 64-82 > PG 58 28 > PG 52-28

M332 Binder Tested On RTFO-Aged Conditior For Grade H										
Spec	Jnr Tested	Penalty								
Jnr ≤ 2.0 kPa-1	≤ 2.2 kPa-1	No penalty								
Jnr ≤ 2.0 kPa-1	> 2.1 & < 2.7	3% of mix unit price								
Jnr ≤ 2.0 kPa-1	> 2.7 & < 4.0	10% of mix unit price								
Jnr ≤ 2.0 kPa-1	> 4.0	16% of mix unit price								
		79								

M332 Binder Tested On RTFO-aged Condition For Grade V									
Spec	Jnr Tested	Penalty							
Jnr ≤ 1.0 kPa-1	≤ 1.1 kPa-1	No penalty							
Jnr ≤ 1.0 kPa-1	> 1.1 & < 1.3	3% of mix unit price							
Jnr ≤ 1.0 kPa-1	> 1.3 & < 2.0	10% of mix unit price							
Jnr ≤ 1.0 kPa-1	» 2.0	16% of mix unit price							
		80							

What is Sampled & Tested for Acceptance, cont'd.

- Mixture Grade not normally tested for acceptance (technically, it has been aged in the drum, so would be difficult to compare to the specification [some criteria require that the binder not be aged at all])
- Hopefully, the Mixture
 Grade is close to the
 Contract Grade
- More likely to be true if the % recycle is kept below 30% 81

TYPICAL TRENDS

- Most mixes are designed at less than 30% effective binder replacement
- Most products added are additives, not modifiers
- Small majority substitute M 332 for M 320
- Mixes with more than ~20% binder replacement use a softer Purchased Grade than Contract Grade; mixes with less than 20% replacement stay with Contract Grade
- Most softer Purchased Grades drop both upper & lower numbers

OUTLINE

- Binder grading & selection
- M 332 grades
- Testing & evaluation
- RAP & shingles
- Mixing & compaction temperatures

83

RAP Considerations

- OK in all mixes except SMA
- Can use a maximum of 30% virgin effective binder replacement without changing the binder grade
- >30% effective binder replacement can be from RAP+RAS if binder testing (use of blending charts) shows that the combined binder meets the contract specified grade
- Aggregate must meet deleterious spec 1002 (1004 if a 401 mix)
- Aggregate must pass Micro-Deval test spec (waived if RAP is from a MoDOT project)
 84

RECYCLED ASPHALT SHINGLES (RAS)

- May be used in any mix that has a specified contract grade of PG 64-22
- If virgin effective binder < 70% of blended total binder: drop virgin grade to PG 58-28 or PG 52-28
- Other restrictions

86

Re-Calculation of RAP/RAS Binder

- The % effective virgin binder replacement content P_{bv} must be re-calculated when:
 - Change in % RAP or RAS from a field mix adjustment
 - Change in % binder content in the RAP (tested 1 per 4 sublots via T164 or T308)

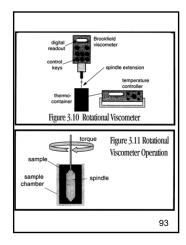
OUTLINE

- Binder grading & selection
- M 332 grades
- Testing & evaluation
- RAP & shingles
- Mixing & compaction temperatures

<text><text><image><image>

88

TEMPERATURE -VISCOSITY


- As temperature increases, binder viscosity decreases (it gets thinner)
- This can be plotted.
- Viscosity is important to:
 pumping
 - spraying
 - aggregate coating in mixing
 - absorption by aggregate

- laydown and compaction
- rutting

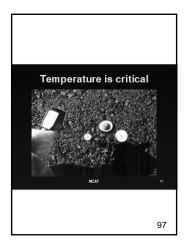
TEMPERATURE-VISCOSITY, cont'd.

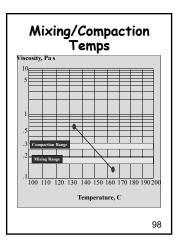
- Establish the curve by running viscosity tests at 2 different temperatures Old method: capillary tubes
- New method: Brookfield rotational viscometer
- The curve is used to establish mixing and compaction temperatures necessary to achieve the required viscosity for these operations. 91

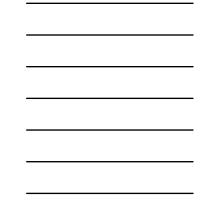
TEMPERATURE-VISCOSITY, cont'd.

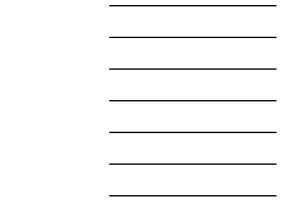
- The steepness of the curve is called "temperature sensitivity"--that is, how sensitive is a particular binder to a change in viscosity resulting from a change in temperature.
- We don't like change--so we don't like a sensitive material-we want a relatively flat curve. Modifiers help get the viscosity change under control.

94


LAB MIXING & COMPACTION TEMPERATURES


- For non-modified binders:
 - Mixing temperature range = what it takes to get a viscosity of 0.17 ± 0.02 Pa·s
 Compaction temperature
 - range= what it takes to get a viscosity of 0.28 ± 0.03 Pa·s
- For modified binders: follow manufacturer's recommendations.


95


Plant Mixing & Roadway Compaction Temperatures

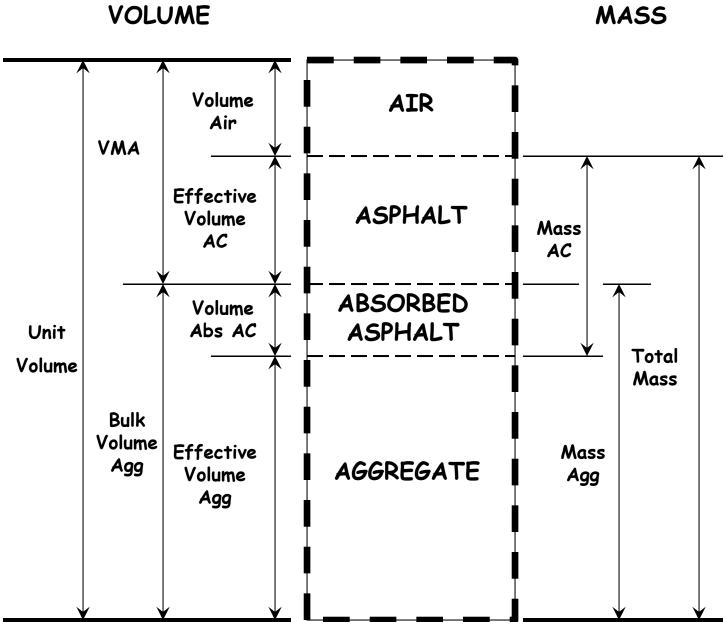
- May be different than lab temperatures
- Determine compaction temperature using test strips-- typically 275-310F
- Set plant mixing temperature somewhat higher, say 300-330F
- Maximum recommended temperature is 338F, should avoid exceeding 350F.

MODULE 2D MIX DESIGN OVERVIEW: Volumetrics

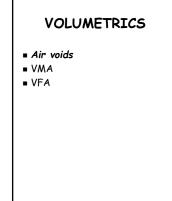
11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 2-8-19 Revision 12-17-19 Revision

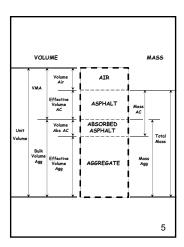
<section-header><section-header><section-header><section-header>

OUTLINE


Volumetrics

- Gradation
- ∎ Dust
- Particle shape
- Aggregate absorption
- Aggregate specific gravity
- Maintaining VMA
- Mix bulk specific gravity
- Mix maximum specific gravity
- Calculation of volumetrics


2


VOLUMETRICS

- "Volumetrics" involves the space (volume) between the aggregate particles
- During mix design, several gradations are tried and volumetrics are calculated until proper VMA, VFA, and air voids are obtained.
- Space is dependent on aggregate gradation, particle shape, aggregate toughness, and aggregate absorption. 3

MASS

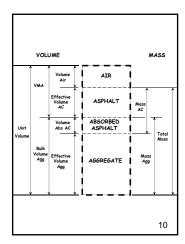
Air Voids

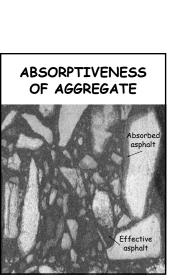
Proper % air voids content "V_a" (4.0 ± 1.0%)

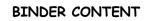
AIR VOIDS

- Low % air voids (<3%)</p>
 - Plastic rutting
 - Bleeding
- High air voids (>5%)
 - Consolidation rutting
 - Durability problems (mat is more permeable)

VOLUMETRICS

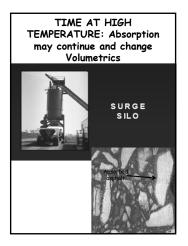

Air voids


■ VMA


■ VFA

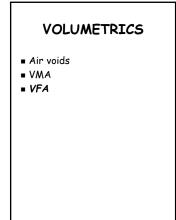
VMA

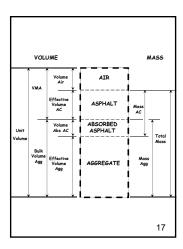
- The total void content is called "VMA"= Voids in the Mineral Aggregate
- VMA=air voids +effective asphalt

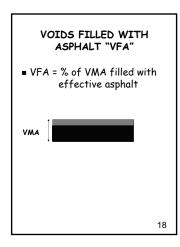


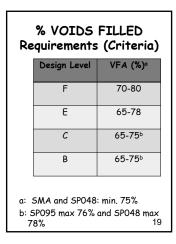
Conceptually:

- $P_b = P_{ba} + P_{be}$ • P_b = total binder content
 - P_b- Total binder content
 P_{ba} = absorbed binder
 - ■P_{be} = effective binder

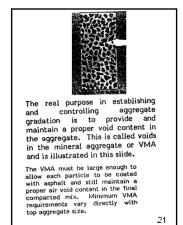

AGGREGATE STRUCTURE


- Insufficient VMA means:
 Under-asphalted mix thus nondurable, or
 - Low air void content (less than 3%) which may result in "plastic rutting"


14


 VMA is one of the most difficult parameters to hit

VMA Design Requirements (Criteria)		
MIX	Minimum % VMA	
SP 250	12.0	
SP 190	13.0	
SP 125	14.0	
SP 095	15.0	
SP 048	16.0	
SP095×SM(R) SP125×SM(R)	17.0	
		15



OUTLINE

Volumetrics

- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

20

AGGREGATE STRUCTURE SELECTION

- Aggregate structure=gradation
- The design gradation will be a blend of up to 8 different aggregate fractions plus mineral filler such as hydrated lime
 Vary the percentages of each
- Vary the percentages of each fraction to make the total gradation blend
- The *blend* must meet the aggregate consensus test criteria

22

SUPERPAVE & MoDOT MIXES		
MoDOT	NMS	Max. size
Designation	mm (in.)	mm (in.)
N/A	37 (1 ½)	50 (2)
SP250	25 (1)	37 (1 ¹ / ₂)
SP190	19 (<u>3</u>)	25 (1)
SP125	12.5 (¹ / ₂)	19 (<u>3</u> 4)
SP095	9.5 (3)	12.5 (¹ / ₂)
SP 048	4.75 (#4)	9.5 (³ / ₈)

Gradation Considerations

Larger max size:

- Improves skid resistance
- Improves rut resistanceIncreases problem with
- segregation of particles
- Increases chance of
- aggregate fracture during compaction

2:

Gradation

Considerations ■ NMS < 1/3 AC lift thickness (<¹/₄ would be better)

NMS vs Lift Thickness:

Want ratio NMS/Lift thickness <0.333

Mix	NMS (in.)	Min. Lift Thickness (in.)	Ratio	OK?
SP048	0,187	1.0	0.19	OK
SP095	0.375	1.5	0.25	OK
SP125	0.50	1,75	0.29	OK
SP190	0.75	2.0	0.38	No
SP250	1.0	3.0	0.33	OK
				25

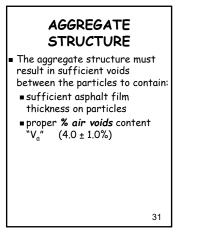
Gradations Considerations

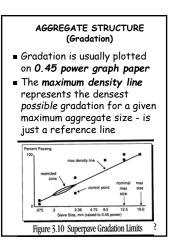
- Smaller max size:
 - Reduces segregation
 - Reduces road noise
 - Decreases tire wear
 - Increases sweepability
 - Decreases possibility of aggregate breakage during compaction and possible stripping
 - More likely to be available than NMS of 1" and greater
 - MoDOT allows changing from SP250 to SP190

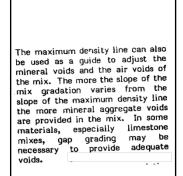
26

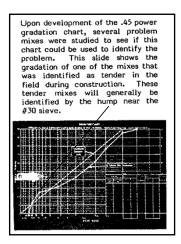
Some of the effects of aggregate gradation on the mixture have been determined by experience as follows:

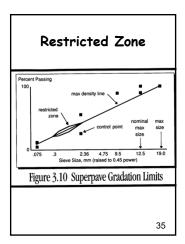
- a. Too much coarse aggregate produces a harsh mix which tends to segregate easily.
- b. Too much sand produces a soft mix which becomes too tender to properly compact.
- c. Too much filler produces a harsh stiff mix.
- d. Too little filler produces a mix with low cohesion.
- e. Crushed aggregate produces a mix with high interparticle friction.
- f. Smooth aggregate produces a mix with lower interparticle friction.

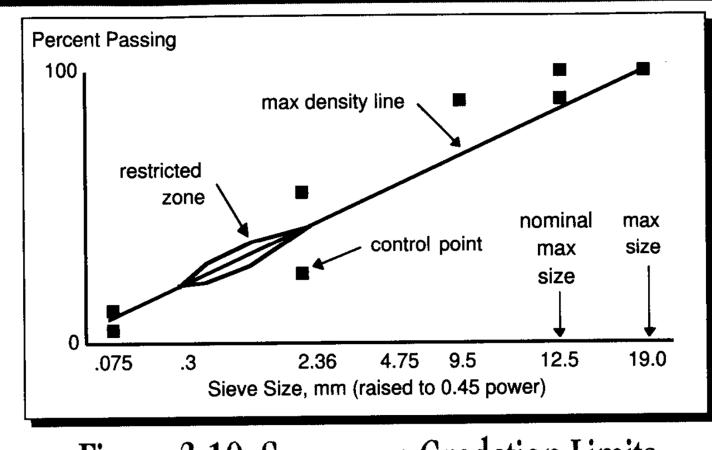

SP	SPECIFIED GRADATIONS				
Sieve Size	SP250	SP190	SP125	SP095	SP048
1 1/2 "	100				
1	90-100	100			
<u>n</u> 4	90 max	90-100	100		
1/2		90 max	90-100	100	
3/8			90 max	90-100	100
#4				90 max	90-100
#8	19-45	23-49	28-58	32-67	
#16					30-60
#30					
#50					
#100					
#200	1-7	2-8	2-10	2-10	7-12
					28

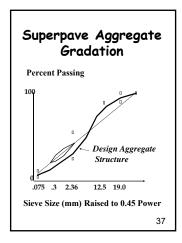

403 SPECIFIED GRADATIONS		
Sieve	SP125×SM(R)	SP095×SM(R)
1.5		
1		
3 4	100	
1 2	90-100	100
3/8	50-80	70-95
#4	20-35	30-50
#8	16-24	20-30
#16		21 max
#30		18 max
#50		15 max
#100		
#200	8.0-11.0	8.0-12.0 ₂₉

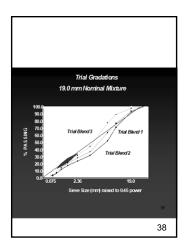

 Ground to minus 3/8 in
--


Gradation from solvent extraction, or assumed from table:


% Passing
100
95
85
70
50
45
35
25




RESTRICTED ZONE


- The *restricted zone* is an area that the gradation line must not enter to avoid tender mix problems (especially if the aggregate contains rounded natural sand).
- This was a requirement of Job Special Provision MSP-95-03Z. This requirement has been removed in the 2004 and later versions of the Standard Specifications, Section 403.

Restricted Zone

Figure 3.10 Superpave Gradation Limits

AGGREGATE STRUCTURE

 Gradations above the MDL and the restricted zone are "fine" and those below are "coarse". Most Missouri mixes are coarse.

OUTLINE

- Volumetrics
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

40

DUST (Minus #200)

Types:

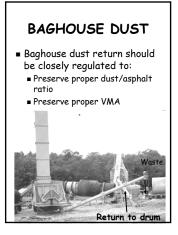
- Mineral Filler (MF)Dust from aggregate:
- Surface dust
 - Breakdown dust

DUST / BINDER RATIO

- Ratio of % minus #200 to % effective asphalt content
- $\blacksquare D/P_{be}$
- Window: 0.8-1.6 (0.9-2.0 for SP048)
- Below 0.8: insufficient dust in relation to binder---loss of cohesion
- Above 1.6: excessive dust:
 gummy, hard to compact

42

■ loss of VMA


DUST

 Softer aggregates will break down during compaction and VMA "collapses" (fills in)

43

BREAKDOWN DUST

- Must account for in mix design:
 - Show bag house fines % on the Standardized JMF Submittal spreadsheet and indicate which aggregate fraction to add the % dust during production
 - Could run aggregate through drum to estimate amount of breakdown dust generated

OUTLINE

- Volumetrics
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

46

Particle Shape

 Angularity of fine aggregate
 Flat & elongated coarse aggregate particles

TO INCREASE VMA: Use a More Angular Sand

- More angular aggregate will provide more voids for a given gradation
- Replace some natural sand with manufactured sand

48

TO INCREASE VMA: Reduce the Effect of the F&E Fraction

- Reduce the % of the aggregate fraction that has a higher % F&E
- Add an intermediate size that is more cubical
- Adjust the crushing operation (feed rate, cone settings, type of crusher)

49

OUTLINE

- Volumetrics
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

50

TO INCREASE VMA: Use a Lower Absorption Fraction

 Replace a more absorptive material with a less absorptive one (at the same total binder content, the effective binder will increase, thus increasing VMA)

OUTLINE

- Volumetrics
- Gradation
- ∎ Dust
- Particle shape
- Aggregate absorption
- Aggregate specific gravity
- Maintaining VMA
- Mix bulk specific gravity
- Mix maximum specific gravity
- Calculation of volumetrics

52

53

VMA Production

 Want to keep VMA close to design value during production

TO INCREASE VMA

- Change gradation
- Use a more angular sand
- Reduce minus #200
- Reduce effect of flat & elongated
- Use a lower absorption fraction

TO INCREASE VMA: **Change Gradation**

- Gap-grade (increase a coarse sieve, decrease next 2 smaller sieves
- Replace some of the most coarse-graded fraction with a higher % (or introduction of) a finer coarse aggregate
- Move gradation away from the MDL (maximum density line)

55

TO INCREASE VMA: Lower Minus #200 Reduce mineral filler content Reduce fines from aggregate: Waste more dust from baghouse

TO INCREASE VMA: Lower Minus #200, cont'd.

- Reduce the % of the material that is the source of fines Replace some dusty screenings with a clean mfg. sand
 - Replace some dusty screenings with a natural sand

 - Replace some graded aggregate with a clean coarse fraction (eg. replace some ¹/₂" minus material with a clean %" chip)
 - Replace some screenings with a less dusty graded fraction

TO INCREASE VMA: Lower Minus #200, cont'd.

- Replace some of the source material that is breaking down with a harder aggregate
- Wash the source material that is the source of fines

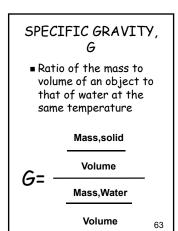
58

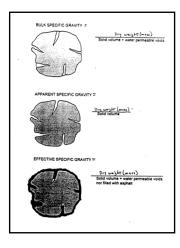
OUTLINE

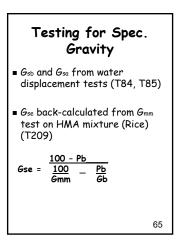
Volumetrics

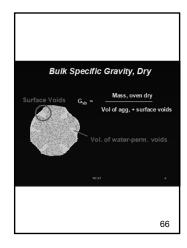
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

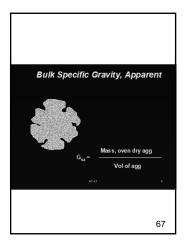
59

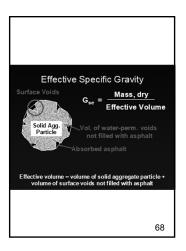

SPECIFIC GRAVITIES

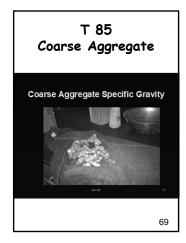

- Necessary for calculation of volumes from weights
- For mix design and QC

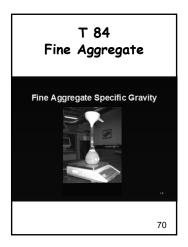

Example: VMA	
Voids in Mineral Aggregate	
$VMA = 100 - \frac{G_{mb} P_s}{G_{sb}}$	
VMA is an indication of film thickness of the aggregate	'n
$G_{sb, blend} = \frac{P_1 + P_2 + P_3}{\frac{P_1}{G_{sb1}} + \frac{P_2}{G_{sb2}} + \frac{P_3}{G_{sb3}}}$	
P _s =% aggregate P _s =100 - P _b P _b =% binder G _{sh} = bulk sp. gravity of the aggregat	
blend 6	1

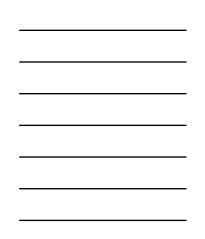

AGGREGATE SPECIFIC GRAVITY

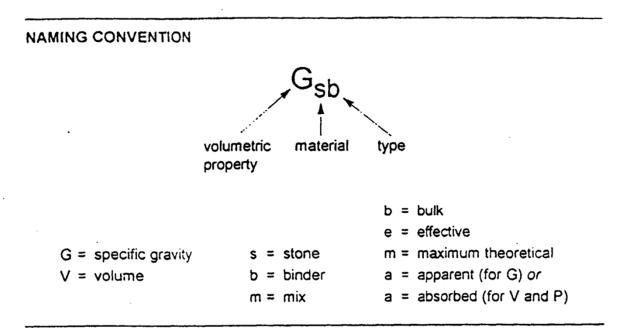

- For each aggregate, there are three types of specific gravity:
 Bulk sp gravity (G_{sb})
 - Apparent sp gravity (G_{sa})
 - Effective sp gravity (G_{se})











SUMMARY OF DEFINITIONS AND CONVENTIONS			
NAMING CONVENTION			
	~		
	,G _{sb}		
	_ / † '		
	Aumetric material	type	
pr	operty		
		b = bulk	
		e z efective	
G = specific gravity	s = stone	m * maximum theoretical	
V = volume	b = binder	a = apparent (for G) or	
	m = mix	a = absorbed (for V and P)	
DEFINITIONS			
Va volume of air voids			
V _{ba} = volume of binder absorb V _{ba} = volume of effective binds			
V _{De} = volume of effective binds G _b = specific gravity of binder			
Gab + bulk specific gravity of st			
G ₁₀ = effective specific gravity			
Gaa apparent specific gravity			
Gmp + bulk specific gravity of #	tix .		
Gmm - maximum theoretical so Gmm - Lufk specific great	ecific gravity of mix ty of the core		
P. percent stone (100 - P.	2		
Pb + percent binder			
Pba + percent binder absorbed			
Pbe + percent effective binder			
Ws = weight of stone			
VMA · Voids in Mineral Apprep	ate		
VFA + Voids Filled with Asphall			

Blended Aggregate Specific Gravities

 Once the percentages of the stockpiles/bins have been established, the combined aggregate specific gravities can also be calculated

SUMMARY OF DEFINITIONS AND CONVENTIONS

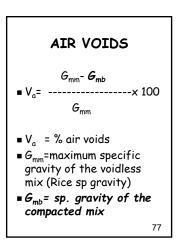
DEFINITIONS

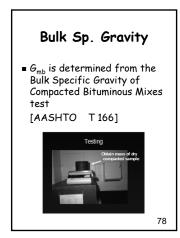
V, = volume of air voids V_{ba} = volume of binder absorbed = volume of effective binder V_{be} Gb = specific gravity of binder G_{sh} = bulk specific gravity of stone G_{se} = effective specific gravity of stone Gsa = apparent specific gravity of stone Gmb = bulk specific gravity of mix Gmm = maximum theoretical specific gravity of mix = bulk specific gravity of the core = percent air Gme Va P_s = percent stone $(100 - P_b)$ Pb = percent binder = percent binder absorbed Pba Pbe = percent effective binder Ws = weight of stone VMA = Voids in Mineral Aggregate VFA = Voids Filled with Asphalt

Cor	nbine	d G _{sb}	
$P_1 + P_2 + P_3$		P3	
Gsb, blend =	P1	P2	P3
	Gsb1	Gsb2	Gsb3
■ P= % of e ■ G _{sb} = Bulk each agg	specifi	-	ate of
			73

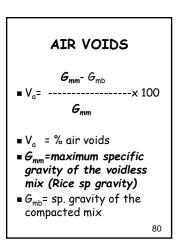
Mix Design	SUMMARY OF VOLUMETRIC EQUATIONS Bulk Specific Gravity of Aggregate Blend
	$G_{wh} = G_{wh} \text{ (combined)} = \frac{100}{\frac{P_{w1}}{G_{w1}} + \frac{P_{w2}}{G_{w2}} + \frac{P_{w3}}{G_{w3}}} - \dots$
Mix Design	Effective Specific Gravity of Aggregate Blend
	$G_{\text{sec}} = \frac{100 - P_b}{100} - \frac{P_b}{G_b}$
Mix Design	Absorbed Asphalt Content
	$P_{\text{tre}} = 100 \times \left(\frac{G_{\text{tre}} - G_{\text{tre}}}{G_{\text{tre}} \times G_{\text{tre}}} \right) \times G_0$
Mix Design	Effective Asphalt Content
	$P_{bs} = P_{b} - \left(\frac{P_{bs} \times P_{s}}{100}\right)$
Mix Design	Ratio of Dust to Effective Asphalt (Sometimes called Dust Proportion)
	$\frac{P_{\text{bess}}}{P_{\text{bes}}} = \frac{\%\text{minus#200}}{P_{\text{bes}}}$
Mix Design and Field	Air Void Content
Verification	$V_{\rm m} = \frac{G_{\rm HM} - G_{\rm HM}}{G_{\rm HM}} \times 100$
Mix Design and Field	Voids in Mineral Aggregate
Verification	$VMA = 100 - \frac{G_{mix} \times P_x}{G_{mix}}$
Mix Design and Field	Voids Filled with Asphalt
Verification	VFA = $\frac{VMA - V_*}{VMA} \times 100$

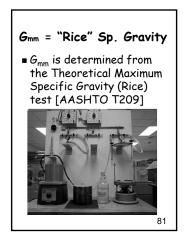
Gsb, blend

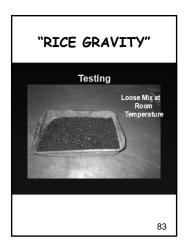

- Calculate during mix design

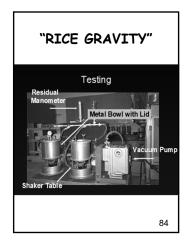

- Calculate during mix design
 Re-calculate during production if fraction %'s change
 Example: Field Adjustment
 G_{sb} affects VMA and the porphyry: non-carbonate ratio

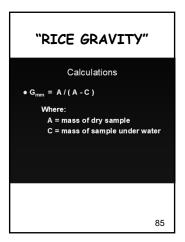
Mix Design	SUMMARY OF VOLUMETRIC EQUATIONS Bulk Specific Gravity of Aggregate Blend
Mix Design	
	$G_{sb} = G_{sb} \text{ (combined)} = \frac{100}{\frac{P_{s1}}{G_{sb1}} + \frac{P_{s2}}{G_{sb2}} + \frac{P_{s3}}{G_{sb3}} + \dots}$
	$O_{sb} = O_{sb} (combined) = \frac{P_{s1}}{P_{s1}} + \frac{P_{s2}}{P_{s3}} + \frac{P_{s3}}{P_{s3}} + \frac{P_{s3}}{P_{s3$
	Gsb1 Gsb2 Gsb3
Mix Design	Effective Specific Gravity of Aggregate Blend
Mix Doolgi	
	$G_{se} = \frac{100 - P_{b}}{100 P_{b}}$
	Gmm Gb
Mix Design	Absorbed Asphalt Content
-	
	$P_{ba} = 100 \times \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}}\right) \times G_{b}$
	$(G_{sb} \times G_{se})$
Mix Design	Effective Asphalt Content
	$P_{be} = P_{b} - \left(\frac{P_{ba} \times P_{s}}{100}\right)$
	(100)
Mix Design	Ratio of Dust to Effective Asphalt (Sometimes called Dust Proportion)
	Beers % minus # 200
	$\frac{P_{0.075}}{P_{bo}} = \frac{\% \text{minus} \# 200}{P_{bo}}$
	i be i be
Mix Design	Air Void Content
and Field Verification	C C
Vernication	$V_{a} = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$
	Chim
Mix Design	Voids in Mineral Aggregate
and Field Verification	
venncation	$VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$
Mix Design	Voids Filled with Asphalt
and Field	
Verification	$VFA = \frac{VMA - V_a}{VMA} \times 100$


- Volumetrics
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics






- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics



Determine Max. Sp. Gravity (Rice), G _{mm}			
Maximum Specific Gravity			
 Loose (uncompacted) mixture 			
G _{eren} =	Mass agg. and AC		
	82		

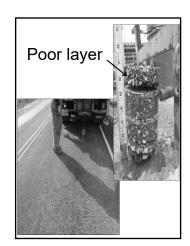
Why is Aggregate Specific Gravity Important?

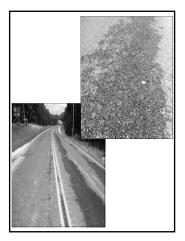
- For a given asphalt mixture to obtain the proper mix properties, a certain amount (weight or volume) of asphalt binder is required
- Aggregate specific gravity affects this amount and how it is calculated
- Can have dramatic effects on mix properties and performance

Why specific gravity changes

- Ledge to ledge changes:
 Changes in absorption
 - Changes in mineralogy
- Different proportions of each ledge
- Subtle changes in crushing operation
- Increased proportions of low specific gravity aggregate (screenings, natural sand, etc)

Importance of Aggregate Specific Gravity, cont'd.


- If specific gravity of aggregate decreases, and aggregate weight is not changed, then aggregate bulk volume increases.
- Typically as specific gravity goes down, absorption increases
- Effective binder content will decrease due to absorption


88

Effects on asphalt mixture

Mix appears dry (absorption increases, %effective binder content decreases)
Presence of "brown rock" or uncoated particles
Difficult to work
Surface appearance typically looks poor, dull,

ragged, inconsistent

Compaction

•Mix is difficult to compactget low density & high air voids

•Can be compounded by recycle content

•Asphalt cement acts as the lubrication agent between aggregate particles to allow for densification

•Under-asphalted mixtures have high amount of friction •Increasing rolling intensity will typically fracture

particles

Pavement Performance

- Can result in drastic decrease in pavement service life
- Rather than having a flexible homogenous surface, a brittle non-durable surface results
- Increased variability in final mat, i.e. more prone to segregation and associated distresses
- Service life of 7 years for thin overlay might be decreased to 3 years or less

Compounding effects....

- Drastic decreases can be observed due to compounding effects
- Raveling and rapid oxidation from the surface
- Stripping and water damage from the bottom
- Sealing the surface only fixes part of the problem
- Revolves around film thickness

Film thickness purpose

As stated previously film thickness or effective binder around particles, between particles, etc. serves as lubrication.....think soil or aggregate base
It "sticks" everything together
It "protects" the mat from water and oxidation

Essential to durability

Recycle

•Take a mix that has aggregate specific gravity off, i.e. gravity too high

-So you start with a mix that is already under asphalted or with low film thickness -Mix is already harsh and difficult to compact

•Recycle pushed to the max could further compound the situation

Real world example...

•Assume a MoDOT 402 mixture

•Aggregate specific gravity and absorption are the only thing that changes •Modest difference in gravity

(0.050), modest difference in absorption (0.50%) •Estimated required total AC

increase of 0.4%

•Low volume road failure typically attributed to durability, not plastic rutting

Conclusions

 Performance properties can be affected when specific gravities are off, especially if low specific gravity materials (low quality) are substituted for high specific gravity materials

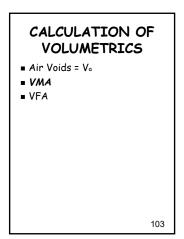
•Durability and film thickness are especially affected when specific gravities decrease

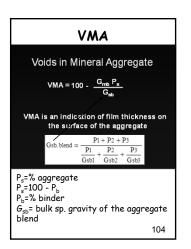
•Modest changes can have significant effects on required asphalt binder content

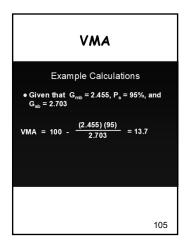
- Volumetrics
- Gradation
- Dust
- Particle shape
- Aggregate absorption
- Maintaining VMA
- Aggregate specific gravity
- Mix bulk specific gravity
- Mix max. specific gravity
- Calculation of volumetrics

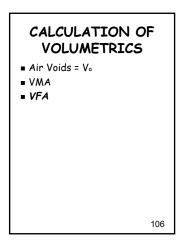
100

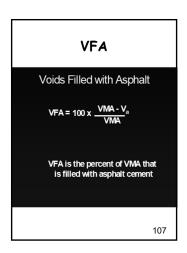
101

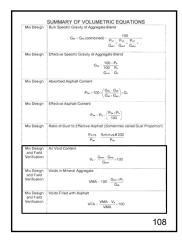

CALCULATION OF VOLUMETRICS • Air Voids = Va

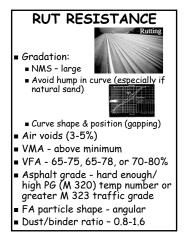

■ VMA


■ VFA


AIR VOIDS $G_{mm} - G_{mb}$ $V_a = \frac{G_{mm} - G_{mb}}{G_{mm}}$ $V_a = \% \text{ air voids}$ $G_{mm} = \% \text{ air voids}$ $G_{mm} = \max \text{ maximum specific}$ gravity of the voidless mix (Rice sp gravity)


■ G_{mb}= sp. gravity of the compacted mix





FATIGUE RESISTANCE

- Sufficient binder
- Low enough % air voids
- Binder viscosity:
 Proper grade
 - Not overheated
 - Adjusted for RAP/RAS hardness

MIX DESIGN OVERVIEW: Mix Design Phase 1

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 12-17-19 Revision

MODULE 2E
OVERVIEW:
Mix Design Phase 1
11-24-06 Revision
11-9-07 Revision
4-22-09 Revision
11-18-09 Revision
12-29-09 Revision
11-17-10 Revision
1-19-11 Revision
3-2-12 Revision
2-26-13 Revision
12-18-13 Revision
12-29-14 Revision
2-4-15 Revision
12-28-16 Revision
2-16-18 Revision
12-12-18 Revision
12-17-19 Revision

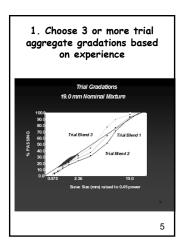
AASHTO TEST METHODS & SPECIFICATIONS

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)

2

3

9 Steps to find Aggregate Structure Structure 1. Choose 3 or more trial aggregate gradations based on experience. 2. Estimate the required "initial" binder content based on experience or standard procedure.

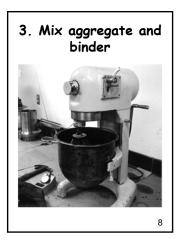

- a. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.

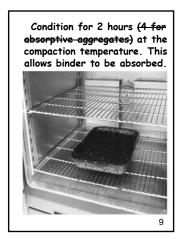
- a) The compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
 b) Uning design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.
 c) S. Measure compacted puck specific gravity
 c) Run Rice maximum specific gravity (duplicates)
 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.
 8. At N_{det} adjust (calculate) % binder to achieve V₂=4.0%. Calculate what WAA, VFA, and dust/effective asphalt would be.
 9. Compare to criteria. Choose blend that best meets criteria, economy, and chance of success.

FINAL AGGREGATE STRUCTURE SELECTION

- 1. Choose 3 or more trial aggregate gradations based on experience.
- 2. Estimate the required "initial" binder content based on experience or standard procedure.
- 3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.

4


FINAL AGGREGATE STRUCTURE SELECTION


- 1. Choose 3 or more trial aggregate gradations based on experience.
- 2. Estimate the required "initial" binder content based on experience or standard procedure.
- 3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.

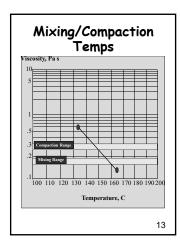
6

12/17/19

MIX CONDITIONING

- Hot mix ages at high temperatures: in plant, truck, and MTV. Called short-term aging.
- Aging means the binder gets more brittle due to oxidation and volatilization.
- Embrittlement leads to premature cracking and raveling.

10

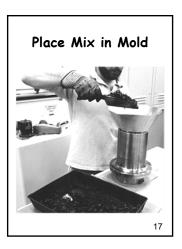

MIX CONDITIONING, cont'd.

- The binder will also be absorbed by the aggregate
- More absorption, less effective binder left between the particles to function: less compactible, lower durability.
- Long-term aging is the aging that occurs during the service life of the pavement.

11

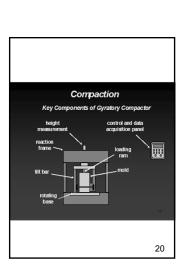
LAB CONDITIONING

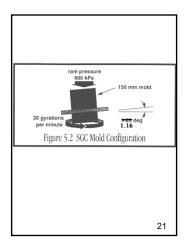
- During mix design, must simulate the absorption and aging that occurs prior to compaction.
- Procedure:
 - Determine mixing and compaction temperatures
 - Mix the material at mixing
 - temperature
 - Age the mix at the compaction temperature for 2hrs ± 5min. (stir at the 60 min interval)


- Steps to find Aggregate Structure
 1. Choose 3 or more trial aggregate gradations based on experience.
 2. Estimate the required "initial" binder content based on experience or standard procedure.
 3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.
 4. Compact duplicate mini-
- at the compaction reinperture, this along builded in the compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
 During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.
 5. Measure compacted puck specific gravity
 6. Run Rice maximum specific gravity (duplicates)
 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.
 8. At N_{det} adjust (calculate) % binder to achieve V₃=4.0%. Calculate what VMA, VFA, and dust /effective asphalt would be.
 9. Compare to criteria. Choose blend that best meets criteria, economy, and chance of success.

14

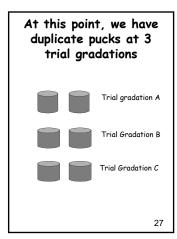
AGGREGATE STRUCTURE, cont'd.


- 4. Compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
- During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.



9 Steps to find Aggregate

- JIEPS TO TIND Aggregate Structure
 1. Choose 3 or more trial aggregate gradations based on experience.
 2. Estimate the required "initial" binder content based on experience or standard procedure.
 3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.
 4. Compact double
- to be absorbed.
 4. Compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
 During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.
 5. Measure compacted puck specific gravity
 6. Run Rice maximum specific gravity (duplicates)
 7. Coloride under understand UMA UEA cin puich

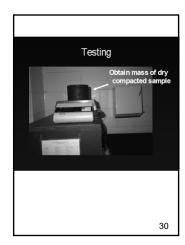

- Run Rice maximum specific gravity (duplicates 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.
 8. At N_{ster} adjust (calculate) % binder to achieve V_a=4.0%. Calculate what VMA, VFA, and dust/teffective asphalt would be.
 9. Compare to criteria. Choose blend that best meets criteria, economy, and chance of success.

25

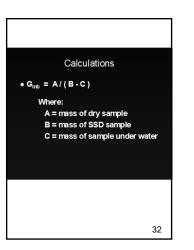
26

AGGREGATE STRUCTURE, cont'd.

- 5. Measure compacted puck specific gravity
- 6. Run Rice maximum specific gravity (duplicates)
- 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.



DETERMINE PUCK SPECIFIC GRAVITIES

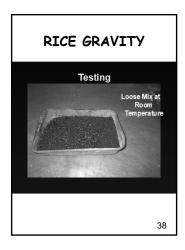

 So we can calculate volumetrics (air voids, VMA, VFA)

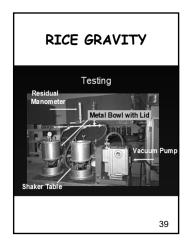
28

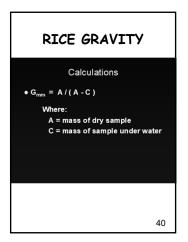
BSG of Compacted HMA • AC mixed with agg. and compacted into sample $G_{rec} = \frac{Mass agg. and AC}{Vol. agg., AC, air voids}$

% Gmm

- G_{mb} = puck sp. gravity at any gyration level
- More compaction, Gmb increases
- % compaction = % G_{mm}
- % Gmm = (Gmb/Gmm)* 100 at any gyration level

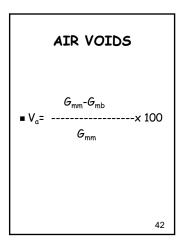


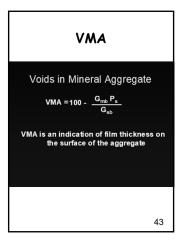

GY	RATI	on lev	ELS
Design	N _{initial}	N_{design}	N _{ma×imum}
F		50	
E	7	75	115
С	8	80 or 100	160
В	9	125	205
N _{initia} = SMA = N _{de}	_I or N _{ma} : _{sign} = 100	0 gyrations: _× requireme uirement	no nts 35

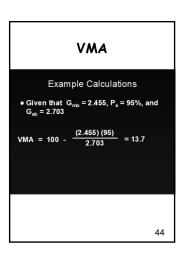

AGGREGATE STRUCTURE, cont'd.

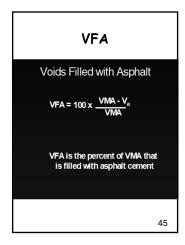
- 5. Measure compacted puck specific gravity
- 6. Run Rice maximum specific gravity (duplicates)
- 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.

6. Determine Gravity (Ric	
Maximum Spec	,
• Loose (uncompa	Mass agg. and AC Vol. agg. and AC

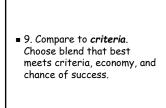


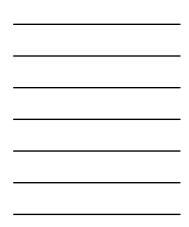





AGGREGATE STRUCTURE, cont'd.

- 5. Measure compacted puck specific gravity
- 6. Run Rice maximum specific gravity (duplicates)
- 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.




9 Steps to find Aggregate Structure

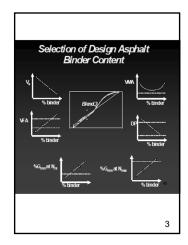
- Structure 1. Choose 3 or more trial aggregate gradations based on experience. 2. Estimate the required "initial" binder content based on experience or standard procedure. 3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.
- Compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
- the gyratory compactor.
 During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.
 Measure compacted puck specific gravity
 R an Rice maximum specific gravity (duplicates)
 7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.
 8. At M. adjust Calculate 2 for the specific of the specific specific

- each trial blend. 8. At N_{det} adjust (calculate) % binder to achieve Vr=4.0%. Calculate what VMA, VFA, and dust/effective asphalt would be. 9. Compare to criteria. Choose blend that best meets criteria, economy, and chance of success.
- 46
- AGGREGATE STRUCTURE, cont'd. 8. At N_{des} adjust (calculate) % binder to achieve V_a = 4.0%. Calculate what VMA, VFA, and dust/effective asphalt would be. Mix Design and Field VMA - 100 Gas - Pa Mix Design Voids Filted with Aspha and Field 47 100 VEA - 100 VEA - 100

Factor	Criteria	Reason
Air voids,	4.0%	Stability
N _{des}		Durability
VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
VFA	70-80 %	Stability
	65-78%	Durability
	65-75%	
%G _{mm} @	≤ 91.5%	Tenderness
N _{ini}	≤ 90.5%	
	≤ 89.0%	
%G _{mm} @	≤ 98.0%	Stability
N _{max}		
Dust/binder	0.8-1.6	Compaction
	0.9-2.0	Handling

COMPA CRIT	ERIA
Number of Gyrations	% G _{mm}
N _{initial}	F: ≤ 91.5 E: ≤ 90.5 C: ≤ 89.0 B: ≤ 89.0
N _{design}	96.0
N _{maximum}	≤ 98.0
	50

MODULE 2F


MIX DESIGN OVERVIEW: Mix Design Phase II

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 12-17-19 Revision

MODULE 2F
MIX DESIGN OVERVIEW: Mix Design Phase II
11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 3-212 Revision 2-26-13 Revision 12-18-13 Revision 12-18-14 Revision 12-28-14 Revision 12-28-14 Revision 12-28-14 Revision 12-28-14 Revision 12-18 Revision

MIX DESIGN STEPS

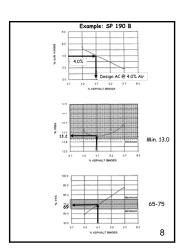
- I. Material selection
- II. Aggregate structure selection
- III. Design binder content selection
- IV. Evaluation of moisture sensitivity (stripping)

Binder Content Selection Steps

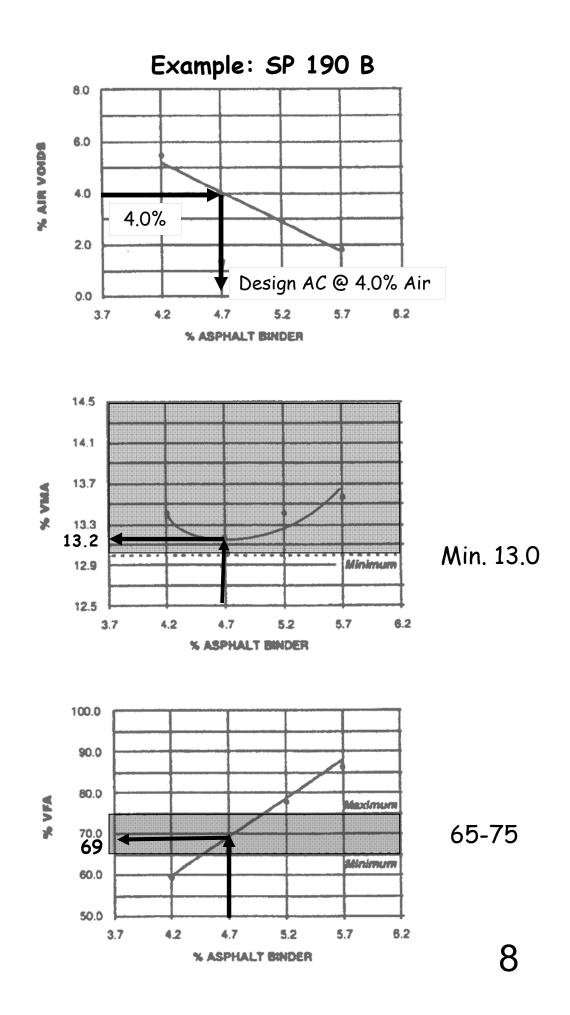
- 1. Using the winning blend, compact more specimens in duplicate to N_{des} , this time varying binder content. Use, say, 4 different %'s of binder: -0.5, +0.5, +1.0, and right on the initial %.
- 2. Again calculate volumetrics. Plot % binder vs. % air voids. Choose the design % binder that produces 4% air voids.
- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
- 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max} check criteria.

4

5


Binder Content Selection Steps

- I. Using the winning blend, compact more specimens in duplicate to N_{des}, this time varying binder content. Use, say, 4 different %'s of binder: -0.5, +0.5, +1.0, and right on the initial %.
- 2. Again calculate volumetrics. Plot % binder vs. % air voids. Choose the design % binder that produces 4% air voids.
- 3. Check all other volumetric criteria.
- 4. Check dist/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
 6. Comparison of the design
- 6. Compact more pucks at the design binder content to N_{max} ; check criteria.


Compact 4 sets of pucks at varying asphalt contents using the gradation of choice Initial P_b - 0.5% Initial P_b Initial P_b + 0.5% Initial P_b + 1.0% 6

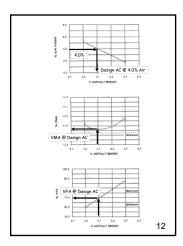
III. DESIGN BINDER CONTENT

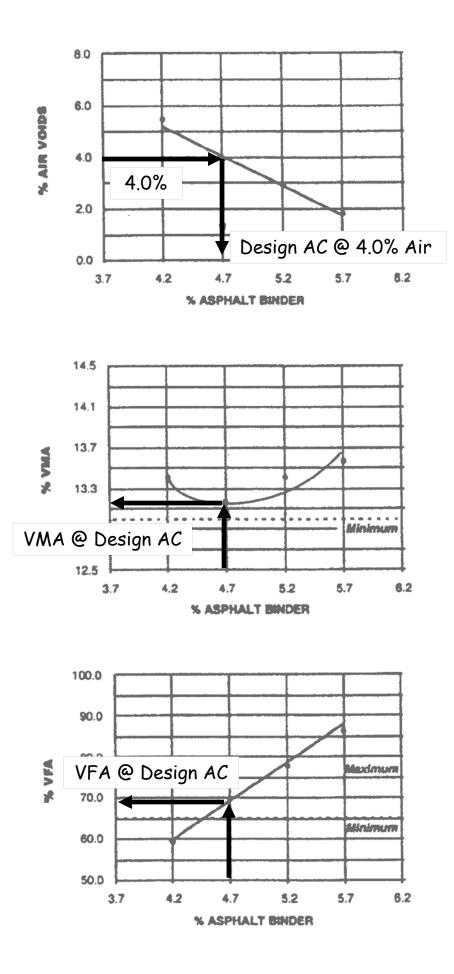
- 1. Using the winning blend, compact more specimens in duplicate to N_{des}, this time varying binder content. Use, say, 4 different %'s of binder: -0.5, +0.5, +1.0, and right on the initial %.
- 2. Again calculate
 volumetrics. Plot % binder vs.
 % air voids. Choose the
 design % binder that
 produces 4% air voids.

Criteria	Reason
4.0%	Stability Durability
≥ 12, 13, 14, 15, 16, 17%	Durability
70-80 % 65-78% 65-75%	Stability Durability
≤ 91.5% ≤ 90.5% ≤ 89.0%	Tenderness
≤ 98.0%	Stability
0.8-1.6 0.9-2.0	Compaction Handling
	4.0% 2 12, 13, 14, 15, 16, 17% 70-80 % 65-78% 65-75% 4 91.5% 4 90.5% 4 89.0% 4 89.0% 0.8-1.6

Binder Content Selection

- Steps 1. Using the winning blend, compact more specimens in duplicate to N_{des}. this time varying binder content. Use, say, 4 different %'s of binder: -0.5, +0.5, +1.0, and right on the initial %.
- Again calculate volumetrics. Plot % binder vs. % air voids. Choose the design % binder that produces 4% air voids.
- 3. Check all other volumetric criteria.

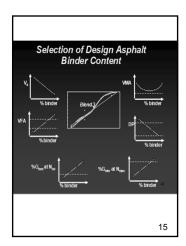

- criteria. 4. Check $\&G_{mm} @ N_{ini}$ 5. Check dust/effective asphalt ratio, where "dust"= &minus #200sieve material in the blend: 0.8-1.6 6. Compact more pucks at the design binder content to N_{max} ; check criteria.


10

11

DESIGN BINDER CONTENT

- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
- 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max}; check criteria.

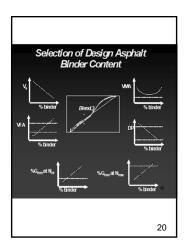


Factor	Criteria	Reason
Air voids,	4.0%	Stability
N _{des}		Durability
VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
VFA	70-80 %	Stability
	65-78%	Durability
	65-75%	
%G _{mm} @	≤ 91.5%	Tenderness
N _{ini}	≤ 90.5%	
	≤ 89.0%	
%G _{mm} @	≤ 98.0%	Stability
N _{max}		
Dust/binder	0.8-1.6	Compaction
	0.9-2.0	Handling

DESIGN BINDER CONTENT

- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max}; check criteria.

Factor	Criteria	Reason
Air voids,	4.0%	Stability
N _{des}		Durability
VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
VFA	70-80 %	Stability
	65-78%	Durability
	65-75%	
%G _{mm} @	≤ 91.5%	Tenderness
N _{ini}	≤ 90.5%	
	≤ 89.0%	
%G _{mm} @	<u>≺</u> 98.0%	Stability
N _{max}		
Dust/binder	0.8-1.6	Compaction
	0.9-2.0	Handling
		_


DESIGN BINDER CONTENT

- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max}; check criteria.

Factor	Criteria	Reason
Air voids,	4.0%	Stability
N _{des}		Durability
VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
VFA	70-80 %	Stability
	65-78%	Durability
	65-75%	
%G _{mm} @	≤ 91.5%	Tenderness
N _{ini}	≤ 90.5%	
	≤ 89.0%	
%G _{mm} @	≤ 98.0%	Stability
N _{max}		
Dust/binder	0.8-1.6	Compaction
	0.9-2.0	Handling

DESIGN BINDER CONTENT

- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
- 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max}; check criteria.

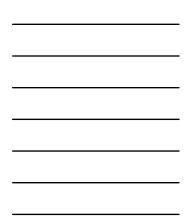
Factor	Criteria	Reason
Air voids,	4.0%	Stability
N _{des}		Durability
VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
VFA	70-80 %	Stability
	65-78%	Durability
	65-75%	
%G _{mm} @	≤ 91.5%	Tenderness
N _{ini}	≤ 90.5%	
	≤ 89.0%	
%G _{mm} @	≤ 98.0%	Stability
N _{max}		
Dust/binder	0.8-1.6	Compaction
	0.9-2.0	Handling

MODULE 2G MIX DESIGN OVERVIEW: TSR JMF & Field Verification Miscellaneous

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 12-17-19 Revision

MODULE 2G MIX DESIGN OVERVIEW: TSR
JMF & Field Verification
Miscellaneous
11-24-05 Revision 11-9-07 Revision 4-22-09 Revision 10-26 09 Revision
2. 5 40 Activities 11.17.10 Revision 3.4.22 Revision 2.4-31 Revision 22.4-33 Revision 22.8-33 Revision 22.8-34 Revision 2.4-45 Revision
12-28-16 Revision 2-16-18 Revision 12-12-18 Revision 12-17-19 Revision

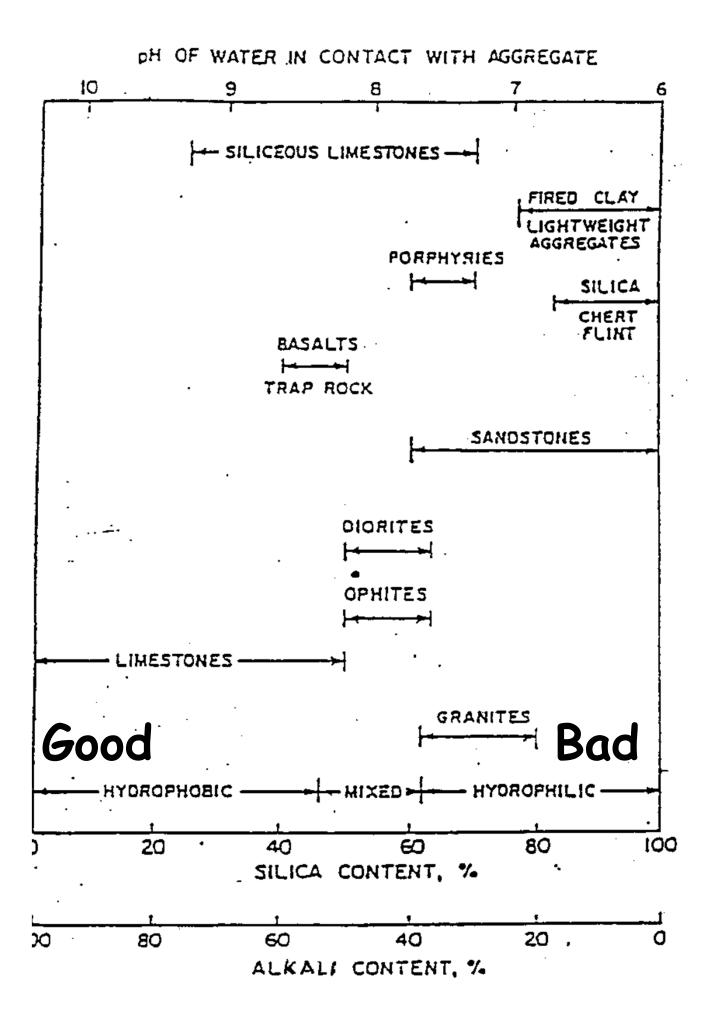
Outline

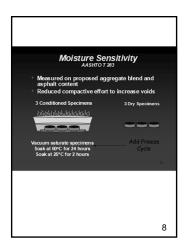

- ∎ TSR JMF and Field Verification
- Miscellaneous

Loss of Strength in a Wet Condition

2

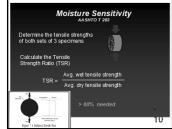
- Synonyms:
 - Moisture sensitivity
 - Moisture susceptibility
 - Stripping
- Main issue is the aggregate
- Loss of bond between aggregate surface and the binder


MATERIAL	PROPERTY	TEST/ CALCULATION
Aggregate	Cleanliness	Sand Equivalent; PI; minus#200; deletereous materials
Aggregate	Texture	Fract. Face Count; FA part. Shape
Aggregate	Absorption	Absorption
Aggregate	Affinity for AC	TSR
Mix	permeability	Air voids


oH OF WATER	R IN CONTACT V	WITH AGGREGATE
10 . 9	8	7 6
· · · · · · · · · · · · · · · · · · ·		1.1
- si∟ic	EOUS LIMESTONES	s-+ · · ·
		HIRED CLAY LIGHTWEIGHT AGGREGATES HYRIES SILICA CHERT FLINT
n in the second se		SANDSTONES
LIMESTONES	ہ۔۔۔۔ہا ۱	GRANITES Bad
	40 60	80 100
	50 40 LKALI CONTEN	20 . 0

MOISTURE SENSITIVITY

 Run T 283, the Tensile Strength Ratio test using the final aggregate structure and at the design binder content.


TSR METHOD

 Test the 3 unconditioned pucks and the 3 conditioned pucks using the indirect tensile strength test.

TSR Method

 Calculate the ratio of the average of the conditioned pucks tensile strength to the average of the control pucks tensile strength.

Outline

- TSR
 JMF and Field Verification
- Miscellaneous

MoDOT VERIFICATION

- 1. When sampling aggregates for use in the mix design stage, contractor should obtain duplicate material and save for MoDOT.
- 2. Upon completion of the design, the duplicate aggregate and binder may need to be sent to MoDOT for mix verification.

MIX DESIGN: FINAL PRODUCT

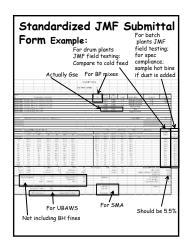
 The "Job Mix Formula" (JMF) is the final product of the mix design process

13

"Standardized" JMF Submittal Form

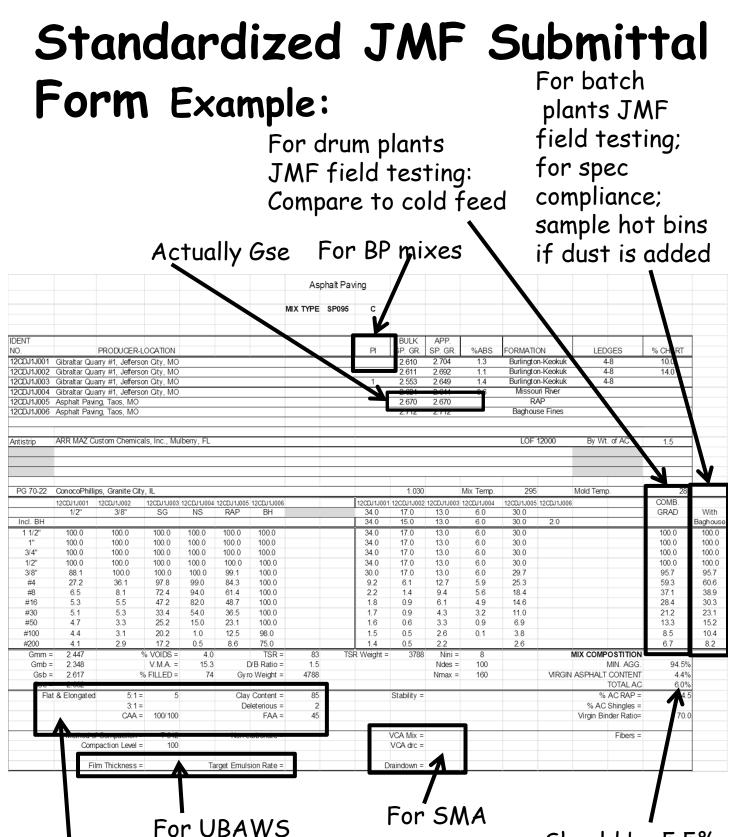
- Looks like a JMF-it isn't
 For submission of mix design data by contractor to MoDOT
- All-purpose—for many mix types: SP, SM, BP, PMBB, UBAWS

BAGHOUSE FINES Standardized Form

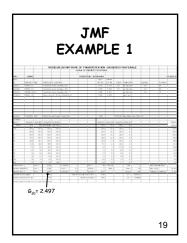

• Drum Plant: Baghouse fines are generated after the drum mix cold feed sample is taken (no return dust on cold feed as it goes into the drum), so the JMF target gradation for drum plants reflects this (doesn't have extra dust added into the total gradation to be checked against in the field)

15

BAGHOUSE FINES Standardized Form, cont'd.


• Batch Plant: Baghouse fines are generated before the hot bin samples are taken (dust is returned to hot elevator), so the JMF target gradation for batch plants reflects this (the target gradation should have dust included, usually placed in one fraction)

16


JOB MIX FORMULA

- Upon final approval of the mix design, a final Job Mix Formula (JMF) is issued by MoDOT
- Used for setting up the plant process and controlling the process during production

Not including BH fines

Should be 5.5%

SUPERPAVE MIXTURE NAMES

- ■"SPnnnyzz"
- SP= superpave
- nnn=nominal max size
 048= 4.75 mm (#4)
 - ■095= 9.5 mm (3/8 in)
 - ∎125=12.5 mm (1/2 in)
 - ∎190=19.0 mm (3/4 in)
 - ■250=25.0 mm (1 in)

20

21

SUPERPAVE MIXTURE NAMES • y = mixture design (millions of ESAL's) • F= <0.3 • E= 0.3 to <3 • C= 3 to <30 • B= 230 • ZZ = Special designations • LP= Limestone Porphyry • SM= Stone Mastic Asphalt • SMR= SM Rural • NC= Non Carbonate • LG= Low Gyration

JMF EXAMPLE 1

			MI	SSOUR	IDEPAR	IMENI	OF TRA	NSPOR	TATION	- DIVISI	ONOF	MATERI	ALS				
						AS	SPHALTIC C	ONCRETE T	YPE SP125	HB							
DA TE =	10/29/03						CONTRAC	TOR = MY E	BUSINESS							s	P125 03-1
IDENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R. LOCATI	NC				SP. GR.	SP. GR.	%ABS	FORMATIO	N	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dia	Deep. M.O.				2.515	2.713	2.9	Jet City Dol	0.	5-8		25	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dol		5-8		25	
35JSJ003	1002MSM		/ Hard Rock	, 0	17				2.480	2.761		Jet City Dol		5-8		10	
30CAJ016	1002HLHL				e. General, M	10			2.303	2.303		Hyd. Lime					
	TOOLITIC		/ milooy cim	0 00: #2, 0					2.000	2.000		nya. Emo					
2001 1040	10154080	7000		half Davidson	- D 14				4.000		DO 70 00	Ourse Mariad	000 0	40%5			
36DLJ016	1015ACPG.	. 7022	/ віаск Азр	nait Product	s, Decoy, MC)			1.023		PG70-22	Gyro Mold	emp. 300-3	510°F			
MATERIAL	0.5 10 1004	05 10 1000	0.5 10 1000						05 10 1004	05101000	05 10 1000	30CAJ016					00115
03016	35JSJ001 3/4"		35JSJ003 MAN SAND						35JSJ001 60.0	35JSJ002 12.0							COM E GRAI
1 1/2"	100.0	100.0		100.0					60.0	12.0							100.
1"	100.0	100.0	100.0	100.0					60.0	12.0	26.0						100
3/4"	100.0	100.0	100.0	100.0					60.0	12.0	26.0						100.
1/2"	97.6	100.0	100.0	100.0					58.6	12.0	26.0						98.
3/8"	83.8	96.1	100.0	100.0					50.3	12.0							89.
#4	31.8	35.0		100.0					19.1	4.2							51.
#8	7.0	8.0		100.0					4.2	1.0							28.
#16	2.6	3.5		100.0					1.6	0.4	10.6						14.
#30	1.6	2.6		100.0					1.0	0.3	6.9						10.
#50	1.6	2.1	13.5	100.0					1.0	0.3	3.5						6
#100	1.5	1.9	5.4	100.0					0.9	0.2	1.4						4.
#200	1.5	1.8		99.0					0.9	0.2	1.1						4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		TSR =	95	TSR Wt.		Nini =	g	9	MIX COMPO	SITION	
CHARACTERIS		Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.		93.89
AASHTO T312		Gsb =	2,629		% FILLED =	72		Gyro Wt. =	4610			Nmax =	205		ASPHALT C	ONTENT	6.29
		-	97004				R GAUGE BA	,	2196			A1 =	-5.234741				
	GE SER. NO.	_	770				1	WEIGHT =	7200			A2 =	3.436895				

G_{sb}= 2.497

SUPERPAVE "NOMINAL MAXIMUM SIZE"

- 1. Look at the combined gradation of the hotmix. Identify the largest sieve that accumulatively retains 10% or more.
- 2. Move up one sieve larger--that is the "nominal maximum size" (NMS).
- 3. The "maximum size" is one size larger than the NMS. 22

MIXTURE SUBSTUTUTION

- ■QC may substitute a smaller NMS mixture for a larger one.
- QC may substitute a higher traffic level mix for a lower one.

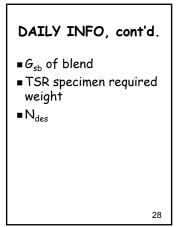
INFO FROM THE JMF SHEET

Aggregate "fractions" (materials) and sources

- For each material, lists: producer, location
 - formation and ledge
 - number ■ gradation

 - proportion in the mix bulk & apparent specific gravities
 - absorption
 - ■% chert

- TSR result
- N_{des}=number of gyrations to use in field verification 25

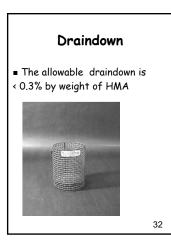

JMF INFO, cont'd.

- ■Gyro specimen weight nuclear binder content
- specimen weight ■gyro molding
- temperature
- ∎aggregate blend combined bulk specific gravity (G_{sb})
- ■nuclear binder gage information
- ■TSR specimen weight

INFO REQUIRED DAILY

- Gyro specimen required weight
- Gyro compaction temperature range
- Nuclear specimen required weight and other information
- Absorptions
- Target % asphalt
- Target % air voids

27


29

TSR
JMF and Field Verification
Miscellaneous

STONE MASTIC ASPHALT • SMA mixtures fall under Superpave-QC/QA criteria • There are numerous additional criteria for SMA mixes.

DRAINDOWN

- One extra test: "Draindown" (AASHTO T 305).
- Draindown testing assures that the binder will not run out of the mix when hot
- A sample of loose mix is placed in a basket, heated for one hour at its mixing temperature, and the material that drains from the basket is weighed.

ROUNDING

■ EPG 106.20

- Based on ASTM E 29
- Is somewhat contradictory (eg., see gradation rounding in the EPG)
- Specifies "MoDOT rounding":
 0.35→0.4

33

■ 0.45 →0.4

ROUNDING, cont'd.

- Usually, round to the same number of significant figures as the specification being compared to:
- Consensus, VFA, TSR: nearest whole number
- Gradation, passing or retained %: nearest 0.1%
- Binder content (compared to spec), Pay Factors, %compaction, D/B, VMA, V_a: nearest 0.1%
- Binder content & moisture on data & some recording sheets: nearest 0.01%

Specific gravity: 3 places to the right of the decimal 34

	SUMMARY OF VOLUMETRIC EQUATIONS
Mix Design	Bulk Specific Gravity of Aggregate Blend
	C C . (combined) 100
	$G_{nb} = G_{nb} (combined) = \frac{100}{\frac{P_{n1}}{G_{m1}} + \frac{P_{n2}}{G_{m2}} + \frac{P_{n3}}{G_{m2}} + \dots}$
	Get Get Get
Mix Design	Effective Specific Gravity of Aggregate Blend
	100 - Pb
	$G_{uu} = \frac{100 - P_b}{100 - P_b}$
	Gaun Gs
Mix Design	Absorbed Asphalt Content
	(GG+)
	$P_{1w} = 100 \times \left(\frac{G_{we} - G_{wb}}{G_{wb} \times G_{w}} \right) \times G_0$
Mix Design	Effective Asphalt Content
	(P P.)
	$P_{1m} = P_{8} - \left(\frac{P_{1m} \times P_{n}}{100}\right)$
Mix Design	Ratio of Dust to Effective Asphalt (Sometimes called Dust Proportion)
	Parm 56 minus # 200
	$\frac{P_{\text{terms}}}{P_{\text{terms}}} = \frac{\frac{9 \text{ minus # 200}}{P_{\text{terms}}}$
	Ar Void Content
Mix Design and Field	Air Void Content
Verification	V _* - Gross - Gross × 100
	Gnn
Mix Design	Voids in Mineral Aggregate
and Field Verification	Grave
¥01100anoon	$VMA = 100 = \frac{G_{max} \times P_{x}}{G_{mb}}$
Mix Design	Voids Filled with Asphalt
and Field	
Verification	VFA = VMA - V. × 100
	in the second seco

SUMMARY

- 1. Determine design traffic level (total ESAL's)
- 2. Select aggregate sources
- 3. Select binder grade
- 4. Try several trial
- gradations at a single % binder ■ 5. Choose one blend that
- best meets V_{α} , VMA, VFA, $%G_{mm,ini}$, economy, chance of success

SUMMARY OF VOLUMETRIC EQUATIONS

Mix Design Bulk Specific Gravity of Aggregate Blend $G_{sb} = G_{sb} \text{ (combined)} = \frac{100}{\frac{P_{s1}}{G_{sb1}} + \frac{P_{s2}}{G_{sb2}} + \frac{P_{s3}}{G_{sb3}} + \dots}$	
$G_{sb} = G_{sb} \text{ (combined)} = \frac{100}{\frac{P_{s1}}{G_{sb1}} + \frac{P_{s2}}{G_{sb2}} + \frac{P_{s3}}{G_{sb3}} + \dots}$	
Mix Design Effective Specific Gravity of Aggregate Blend	
$G_{se} = \frac{100 - P_{b}}{\frac{100}{G_{mm}} - \frac{P_{b}}{G_{b}}}$	
Mix Design Absorbed Asphalt Content	
$P_{ba} = 100 \times \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}}\right) \times G_{b}$	
Mix Design Effective Asphalt Content	
$\mathbf{P_{be}} = \mathbf{P_b} - \left(\frac{\mathbf{P_{ba}} \times \mathbf{P_s}}{100}\right)$	2
Mix Design Ratio of Dust to Effective Asphalt (Sometimes called Dust Property Proper	ortion)
$\frac{P_{0.075}}{P_{be}} = \frac{\% \text{minus #200}}{P_{be}}$	
Mix Design Air Void Content	
and Field Verification $V_{a} = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$	
Mix Design Voids in Mineral Aggregate	
and Field Verification	
Verification $VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$	
Mix Design Voids Filled with Asphalt	
and Field Verification	
Verification $VFA = \frac{VMA - V_a}{VMA} \times 100$	

SUMMARY

- 6. Using the single gradation, try several trial % binders
- 7. Determine the % binder that results in V_a = 4.0%
- 8. Check other parameters: VMA, VFA, %G_{mm,ini}, %G_{mm,max}, TSR
- 9. SP nomenclature: NMS, design traffic level, specialty info

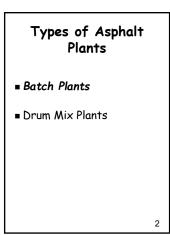
37

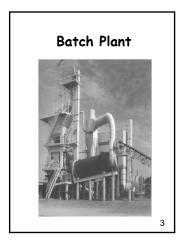
SUMMARY

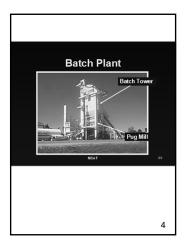
- 10. NMS= One sieve size larger than the largest sieve to accumulate ≥10% retained
- 11. JMF info needed daily: ■ G_{sb},
 - target % binder
 - Absorptions
 - ∎gyro specimen mass
 - gyro compaction temperature
 - nuclear specimen mass

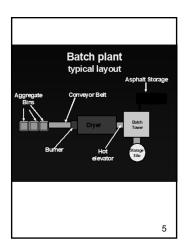
38

SUMMARY


- ■N_{des} for gyro
- Target % air voids
- (TSR specimen mass)

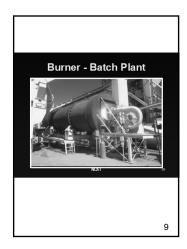

Module 3

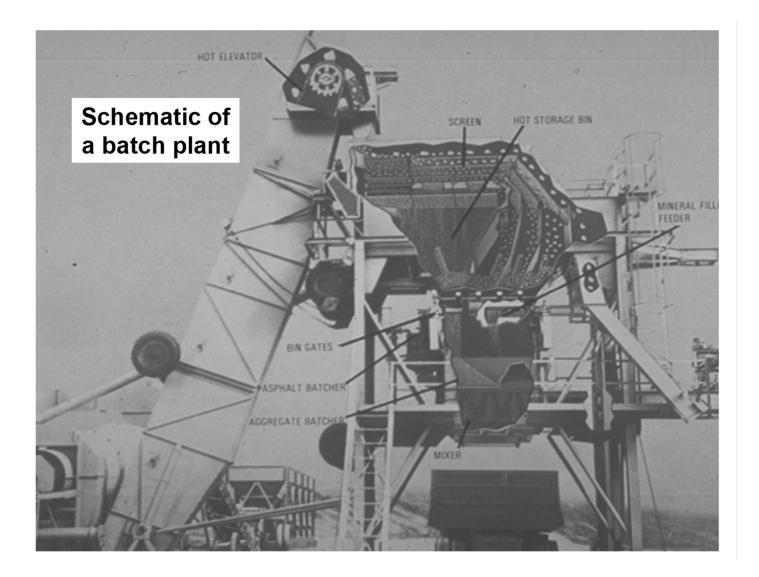

Plant Operations

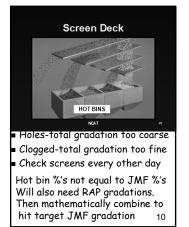

12-28-06 Revision 11-9-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-4-15 Revision 3-2-16 Revision 12-28-16 Revision 3-2-18 Revision 12-12-18 Revision 12-17-19 Revision 1-30-20 Revision

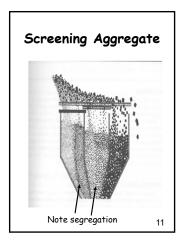
Module 3	
Plant Operations 12-28-06 Revision 13-207 Revision 14-207 Revision 14-207 Revision 14-290 Revision 14-290 Revision 14-29-09 Revision 14-29-09 Revision 14-21 Revision 14-21 Revision 12-28-16 Revision 12-28-16 Revision 12-28-16 Revision 12-28-16 Revision 12-28-18 Revision 12-28-18 Revision 12-28-18 Revision 12-28-18 Revision 12-21-28 Revision 12-21-28 Revision 12-21-29 Revision 12-27 Revision 12-29 Revision 12-27 Revision 12-29 Revision 12-20 Revisio	

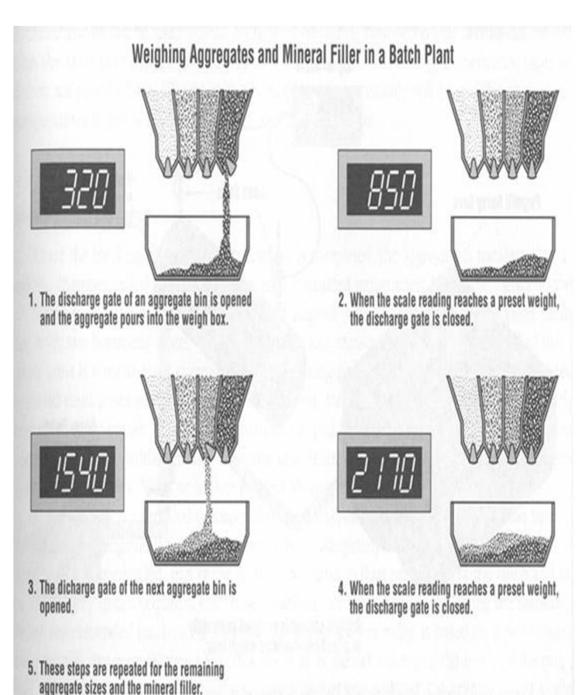
Batch Plant

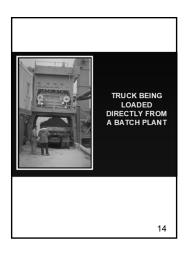

- Aggregate is heated. Reduces moisture related problems.
- Aggregate is rescreened.
- Aggregate is batched by weight.
- Batch plants provide a consistent mixture.


6

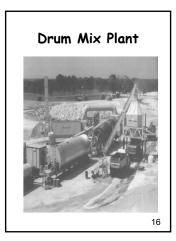

1/30/2020





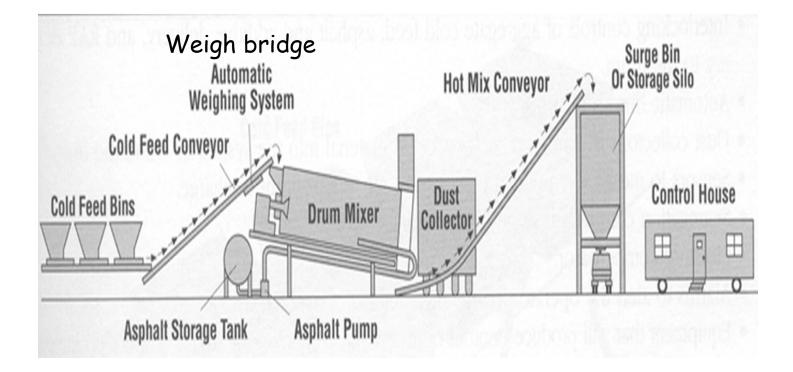


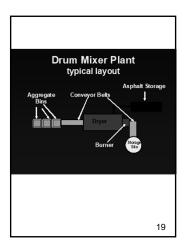
Batching Aggregates

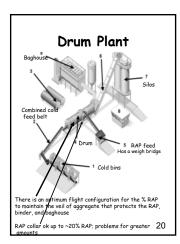


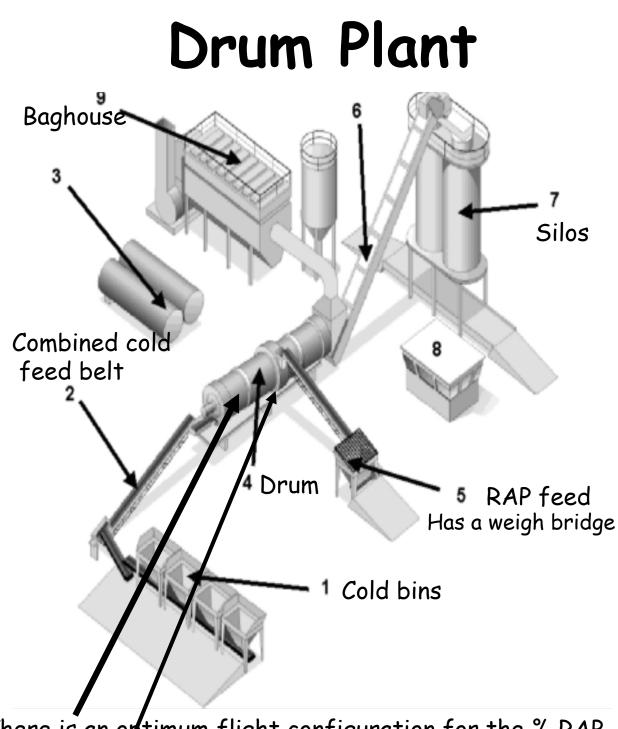

Types of Asphalt Plants

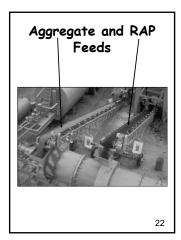
- Batch Plants
- Drum Mix Plants

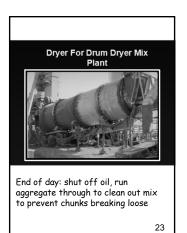


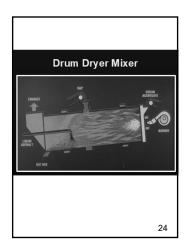

Drum Mix Plant

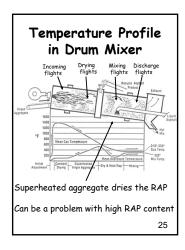

- Aggregate is divided into different bins and proportioned by bin percentages.
- More bins allow you to control your mixture better.
- Drum mix plants have a high production rate, but may not be able to use potential because of limiting roller rate. 17

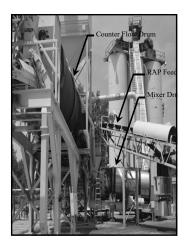

Drum Mix Plant



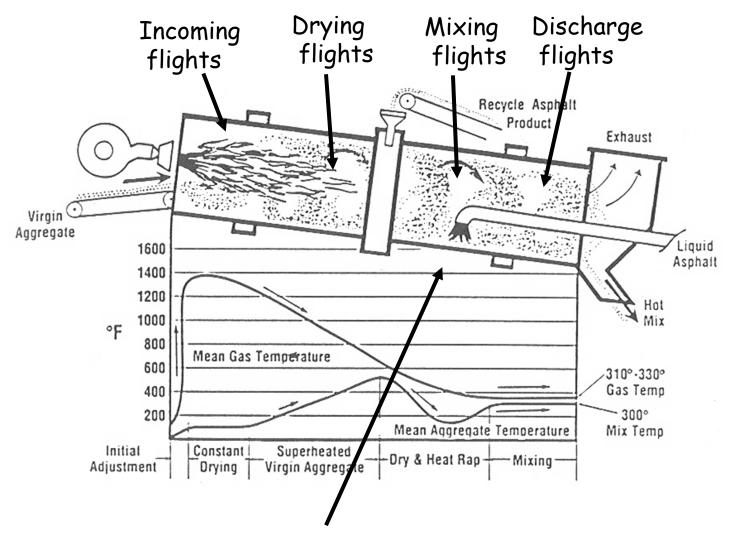


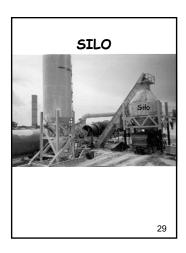



There is an optimum flight configuration for the % RAP to maintain the veil of aggregate that protects the RAP, binder, and baghouse


RAP collar ok up to ~20% RAP; problems for greater 20 amounts



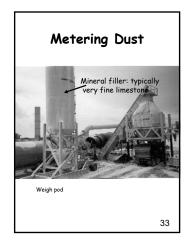



Temperature Profile in Drum Mixer



Superheated aggregate dries the RAP

Can be a problem with high RAP content



Aggregate Moisture Content

- Daily moisture contents are needed for every aggregate bin for drum mix plants.
- Wet fine aggregate will stick to conveyor belts. This may cause overasphalting & low voids.
- Moisture may cause tender mix behavior.

34

Aggregate Moisture cont'd.

 May need to slow down production to get the aggregate completely dried.

 Moisture affects the amount of dust that goes either to baghouse or stays in the dried aggregate. Thus it affects the required dust return feed rate. The amount of dust affects the mix volumetrics

35

36

Aggregate

- Daily gradation checks at the asphalt plant may help you spot a problem.
- Make sure aggregate stockpiles are properly labeled.
- Make sure the loader operator loads the correct aggregate in the cold feed bins.
- Loader operator should work to minimize degradation, contamination, and segregation.

1/30/2020

Daily Plant Procedures

- Make sure all equipment is well maintained (e.g, look for holes in screens)
- Check the bill of lading on all materials before you unload them:
 - Correct material
 - Check for "testing statement"— some binder suppliers are now sending out non-certified binder
- Check the quantities of AC, mineral filler, hydrated lime, burner fuel, etc.
- Dust control is important with Superpave. Make sure your dust collection system is working properly.

37

FIELD EXPERIENCES Quarry

- Quarry delivers material not in conformance with Contractor-Quarry agreement:
 - Production stone now only being checked by MoDOT at the plant
 - MoDOT doesn't see the agreement
 - No longer a Quarry QC plan in some Districts

38

FIELD EXPERIENCES Quarry, cont'd.

- Quarry has already changed screens and is no longer making the product required so it substitutes something else
- Quarry delivers the wrong material (e.g, makes several ³/₈" products)
- Keep an eye on:
 - Gradation
 - Specific gravity for certain products
 - Flat & elongated (crusher wear)

FIELD EXPERIENCES Receiving

- Contractor orders the wrong material (MoDOT and quarry may have different definitions of fractions)
- Contractor doesn't check material on a daily basis to ensure correct material is being delivered

40

FIELD EXPERIENCES Loader Operator

- Piles get mixed together
- Loader operator pushes dirt and bedding material up into stockpile or gets it on tires and tracks it onto pile
- Loader operator gets both sets of wheels on stockpile and breaks it down

41

FIELD EXPERIENCES Loader Operator

- Loader operator falls behind production, allows bin to empty, fills them with closest available rock
- Wrong material in bins from spillage from adjacent bin
- Wrong material in bins from getting piles mixed up
- Bin runs empty, then gets
- material dumped in, locks
- collector belt, no material

gets to cold feed belt

FIELD EXPERIENCES: Plant Operator

- Doesn't pay attention to computer screens and one bin runs faster or slower than it's supposed to, thus the combined grading changes
- Somebody changes gate settings on cold feed or puts them in improper position for the mix being made, thus the combined grading is wrong 43

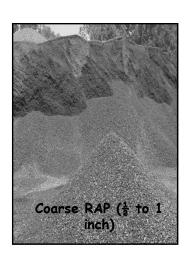
FIELD EXPERIENCES: Plant

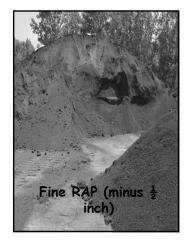
- Hole wears in shaker (scalper) screen and allows various oversized materials to get into mix: dirt clods, sticks, oversized aggregate, bottles, cans, etc.
- Motor or belts burn up on a bin and it stops running but plant diagnostics do not catch it

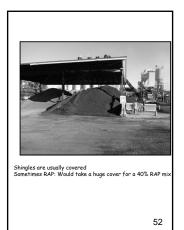
44

FIELD EXPERIENCES: Plant

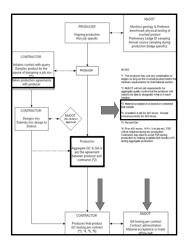
- Wind blows belts up and down-causes problems in weighing
- Lose a leg from 3 phase power-scalping screens run slower
- Times of peak power demand -screens run slower
- HMA silo-problems of carryover of wrong product when switching mixes

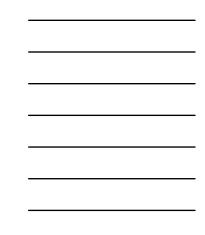

FIELD EXPERIENCES: Plant

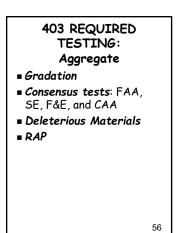

- AC hauler loads wrong grade of binder
- AC hauler doesn't know which tank to unload into and contaminates burner fuel
- AC hauler has hauled a different grade the previous night and rather than clean out this tank, he loads a new load on top of what was left in the tank
- Pugmill paddles wear >³/₄"-poor mixing and coating 47


FIELD EXPERIENCES: Plant

- Two separate storage tanks for 2 different grades of binder are connected—if valves are not in correct position, one tank can drain or equilibrate with the other tank, mixing the 2 grades
- If binder sample fails—must mill
- Burner fuel hauler doesn't know which tank to unload into and unloads into binder tank (possible explosion risk here)
- Valves are cleaned with dieselcan contaminate a sample-need to run some binder (~gal) through before sampling 48

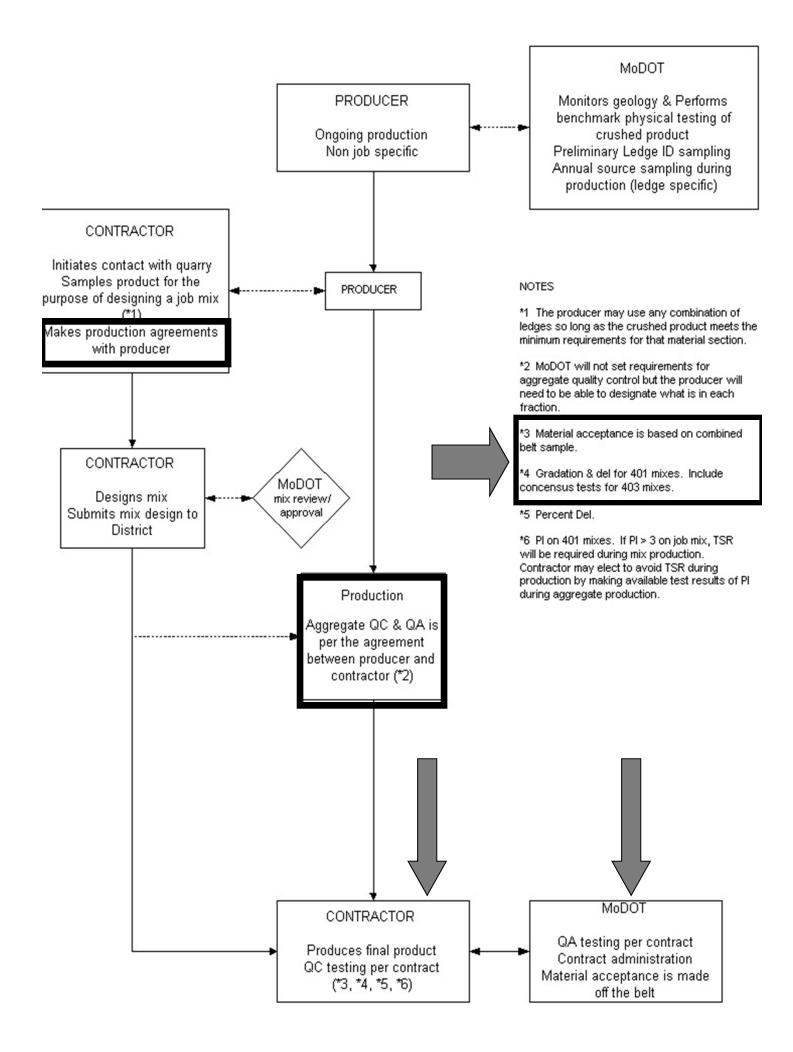

2006 CHANGES


- Emphasis on end-result testing to allow quarries more flexibility during production
- Quarry QC plans no longer required


2006 CHANGES

- Aggregate acceptance is at the mixing facility
- Usage: MoDOT still sampling/testing ledges
- MoDOT still visits quarries to assure that proper ledges are being used

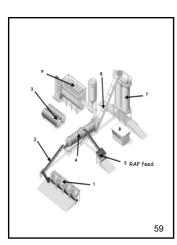
54



SAMPLING: Aggregate

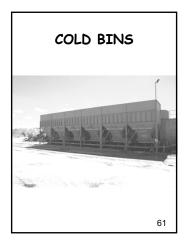
Gradation:

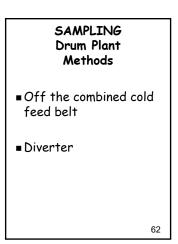
- Drum—cold feed belt
- Batch—hot bins
- batcn-not Dins
 Can use HMA sample- T308 residue (can't for dolomite)
 RAP- T308 residue; combine mathematically with virgin gradation (dolomite-have to extract)
- Deleterious:
- All plants—cold feed belt Consensus:
 - All plants—cold feed belt



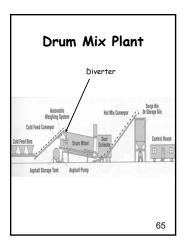
SAMPLING: RAP

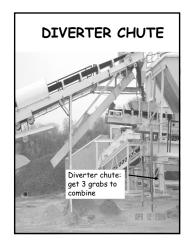

- RAP feed system
 - Gradation
 - Deleterious
 - ■RAP binder content
 - Micro-Deval*

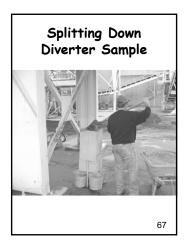

*RAP from MoDOT roadways is exempt

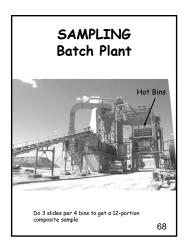

58

 QC retains half their sample (after final split) for QA.

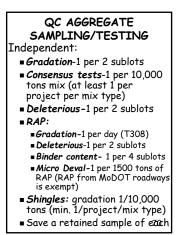












QA AGGREGATE SAMPLING/TESTING

- Independent:
 Gradation-1 per 4 sublots
 - minimum
 - *Consensus*-1 per project minimum (no matter how many mixes)
 Deleterious-1 per 4 sublots
 - Deleterious-1 per 4 sublots
 RAP binder content- 1 per project
- QC retained split:
 - Gradation -1 per week minimum
 - Consensus-1 per project minimum (no matter how many mixes)

71

Deleterious-same as gradation

■ RAP- none

RAP & RAS Binder Content

- Per Spec 403.2.6, RAP & RAS binder contents must be determined (separately)
- QC: 1 per 4 sublots
- QA: 1 per project
- T164 (solvent extraction)
- Can use T308 (ignition) if a correction factor is determined which is the difference between T164 & T308
- If use commercial lab to do T164, may want to use your own oven for T 308 because ovens vary

Sampling & Testing 2: Aggregate Cold feed: Deleterious Consensus •Gradation: if dolom maybe if limestone and 5: RAP 5: RAP -Binder content (T308/TIG) -Gradation-binder residue -(Mathematically combined with cold feed gradation if not using roadway sample for gradation) -Deleterious -Micro-Deval- maybe •7: Silo Discharge-Truck HMA Mini-stockpile: •Maybe TSR Not Shown-Roadway sample: •Binder content/moisture •(Gradation-binder residue) •Gyro pucks •Rice Gravity •TSR-maybe 73

AGGREGATE

Acceptance:

- Be within tolerance of JMF values (Gradation and Consensus tests)
- Be within standard specs (Deleterious)
- Compare "favorably" with QA results

74

RAP

- Deleterious Be within standard specs
- Micro Deval- be within Micro Deval of virgin aggregate + 5%
- May be difficult to find data on original virgin aggregate (try MoDOT's "Quarry Sample Source Data")

Sampling & Testing

2: Aggregate Cold feed: Deleterious ·Consensus Gradation: if dolomite and maybe if limestone 5: RAP •Binder content (T308/T16 ·Gradation-binder residue •(Mathematically combined with cold feed gradation if not using roadway sample for gradation) Deleterious ·Micro-Deval- maybe •7: Silo Discharge-Truck HMA Mini-stockpile: •Maybe TSR Not Shown-Roadway sample: ·Binder content/moisture •(Gradation-binder residue) ·Gyro pucks •Rice Gravity 73 **·**TSR-maybe

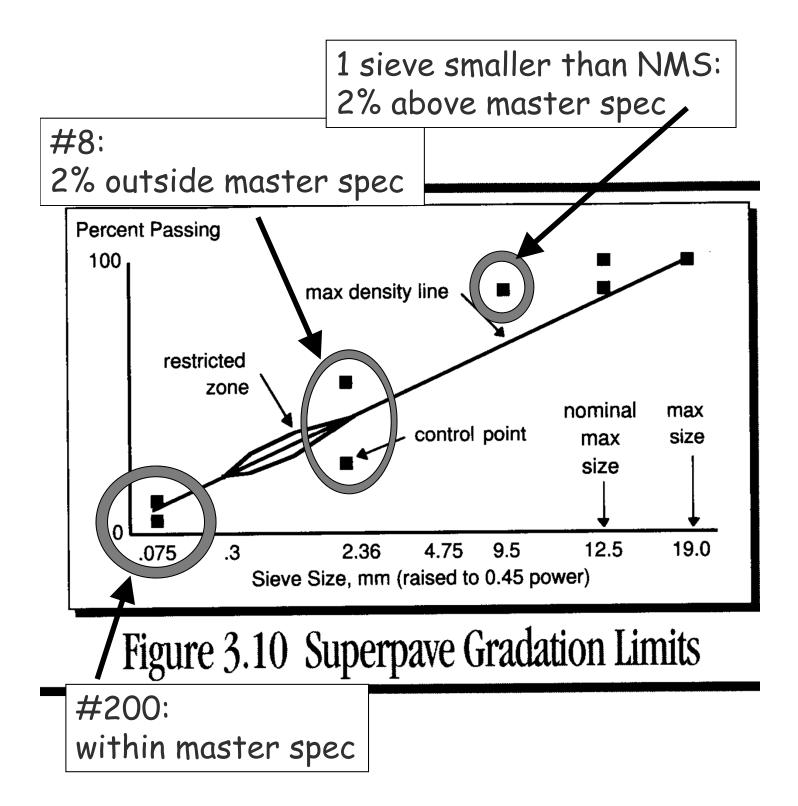
RAS

- Waste, manufacturer or new shingles must be essentially free of deleterious
- Post-consumer: ■ ≤ 1.5% wood
 - ≤ 1.5% wood
 ≤ 3.0 total deleterious
 - Less than the maximum
 - allowable asbestos defined by national or local standards

77

UNFAVORABLE COMPARISON

 Has been traced to the splitting operation and equipment that each side was using



GRADATION

403 master specField tolerances

SP	SPECIFIED GRADATIONS				
Sieve Size	SP250	SP190	SP125	SP095	SP048
1 ½ "	100				
1	90-100	100			
n 4	90 max	90-100	100		
1/2		90 max	90-100	100	
3/8			90 max	90-100	100
#4				90 max	90-100
#8	19-45	23-49	28-58	32-67	
#16					30-60
#30					
#50					
#100					
#200	1-7	2-8	2-10	2-10	7-12
					80

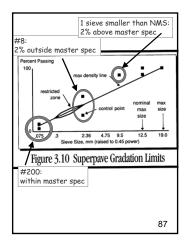
	403 SPECIFIED GRADATIONS			
Sieve	SP125×SM(R)	SP095×SM(R)		
1.5				
1				
3 4	100			
1/2	90-100	100		
3/8	50-80	70-95		
#4	20-35	30-50		
#8	16-24	20-30		
#16		21 max		
#30		18 max		
#50		15 max		
#100				
#200	8.0-11.0	8.0-12.0 ₈₁		

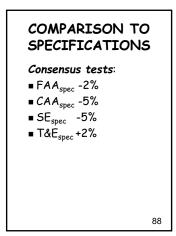
FIELD TOLERANCES

Aggregate gradation (non-SMA) (3 sieves): • 1 size smaller than NMS_{JMF}: not to exceed 92.0% • #8: not to exceed 2.0% beyond master spec

■ #200: within master spec

EXAMPLE


■ SP 190


Sieve	SP190	Tolerance	Test
1.5			
1	100		100
3 4	90- 100		99
1 2	90 max	92 max	91
3/8			
#4			
#8	23-49	21-51	22
#16			
#30			
#50			
#100			
#200	2-8	2-8	5.2
			84

	SMA TOLERANCES %'s off JMF Target Gradation		
Sieve	SP095	SP125	
<u>3</u> "			
<u>1</u> "		± 4	
3/8"	± 4	± 4	
#4	± 3	± 3	
#8	± 3	± 3	
#200	± 2	± 2	
	ŀ		
		85	

MINOR DEVIATIONS

 Minor deviations outside the tolerances are allowed if HMA test results indicate the binder content, volumetrics, and density are satisfactory

	Section 403 CONSENSUS REQUIREMENTS on blended aggregate			
Traffic Level	CAA	FAA	SE	F&E*
F	55/none		40	10
E	75/none	40	40	10
С	95/90	45	45	10
В	100/100	45	50	10
	≤ 20% @ a more c			-

89

90

FIELD TOLERANCES Example: C mix

- FAA: 45-2= minimum of 43
- SE: 45-5= minimum of 40
- T&E: 10+2= maximum of 12
- CAA: 95-5= minimum of 90 90-5= 85 so....90/85

90/05

AGGREGATE

Acceptance:

- Be within tolerance of JMF values (Gradation and Consensus tests)
- Be within standard specs (Deleterious)
- Compare "favorably" with QA results

91

COMPARING QA TO QC (QC Retained Sample) • Consensus Tests: • CAA: QC ± 5% • FAA: QC ± 2% • SE: QC ± 8% • T& E: QC ± 1%

- Gradation: see table
- If QC meets spec and QA compares favorably (verifies QC) but QA is out of spec, the sample passes

EXAMPLE COMPARISON

- FAA: QC= 46, QA= 48
- Is there "favorable comparison"?
- Yes, must be within 2, and they are.

93

UNFAVORABLE COMPARISON

 FAA most prone to "unfavorable comparison" because of incorrect specific gravity (eg-just using G_{sb} from JMF, which erroneously would include G_{sb} of coarse aggregate)

on QC retained sample so are running same type of sample		
Sieve Size	Percentage points	
≥ <u>3</u> ″	± 5.0%	
<u>1</u> "	± 5.0	
3/8"	± 4.0	
#4	± 4.0	
#8	± 3.0	
#10	± 3.0	
#16	± 3.0	
#20	± 3.0	
#30	± 3.0	
#40	± 2.0	
#50	± 2.0	
#100	± 2.0	
# 200	± 1.0	

UNFAVORABLE COMPARISON

 If unfavorable comparison, initiate "dispute resolution"

Conclusion

- Everyone is at a different knowledge level about Superpave.
- Work together, not against each other.
- Early on: Watch each other pull samples and run tests
- Big differences in results come from QA and QC using different sampling and splitting procedures

Module 4

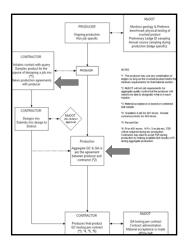
QC/QA OVERVIEW and HOT MIX ASPHALT QUALITY CONTROL PLAN

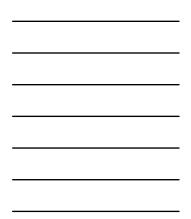
12-28-06 Revision 4-22-09 Revision 12-29-09 Revision 1-19-11 Revision 2-26-13 Revision 12-18-13 Revision 3-2-16 Revision 3-2-18 Revision 12-12-18 Revision 12-17-19 Revision

Module 4

QC/QA OVERVIEW and HOT MIX ASPHALT QUALITY CONTROL PLAN

12-28-06 Revision 4-22-09 Revision 12-29-09 Revision 2-26-13 Revision 12-18-13 Revision 3-2-16 Revision 12-12-18 Revision 12-17-19 Revision


Who's Who?


- Quality Control (QC) is the hot mix asphalt contractor.
- Quality Assurance (QA) is the specifying agency. MODOT.
- QC can also refer to the aggregate producer.

2

PROJECT FLOWCHART

- 1. Paving contractor writes Bituminous QC plan; submits QC plan to MoDOT (the mix design is often submitted at the same time)
- 2. MoDOT grants final approval of QC plan.
- 3. Paving Contractor contracts with Aggregate Producer. Samples aggregate for mix design (often, this is done contigen) is done earlier)

Important

 Agreement between Paving Contractor and the Quarry as to gradation tolerances

FLOWCHART, cont'd.

5

- FLOWCHART, contd.
 4. Paving contractor submits mix design info (Job Mix Formula=JMF) to MoDOT through the district.
 5. MoDOT Central Lab will verify the mix if QC lab does not have an AMRL round-robin rating of 3-5 and be within 2 standard deviations on each test. JMF approval granted (still have to sample aggregate if running nuclear gage so MoDOT can calibrate; or building a database)
 6. Aggregate production begins (actually, Superpave rock is more common now)
 7. Hot mix production begins.
- 7. Hot mix production begins. See "Hotmix Production."

AGGREGATE INSPECTION

- QC and QA perform tests at the mixing facility, compare results to each other and:
 - Job Special Provisions
 - Standard specifications (the version in effect on day of bid letting)
 - Engineering Policy Guide (EPG) guidelines

7

HOTMIX INSPECTION

- QC and QA perform tests, compare to each other and to:
 - Job Special Provisions
 - Standard SpecificationsEngineering Policy Guide
- Must use spec in force on contract date unless QC
- contract date unless QC requests change
- Pay factors are computed ("Best Management Practice" says at the end of each lot, now)

Quality Control

- QC is the contractor's responsibility to do the necessary testing during the production of the hot mix asphalt pavement to ensure a durable, well performing product is achieved.
- QC involves comparing the contractor's test results to the specifying agency's requirements and specifications; should use QC's equipment for comparisons to work

Quality Control

- The contractor provides control of all steps of the process: aggregate, binder, additives, mix design, HMA production, and compaction.
- The contractor is responsible for providing properly trained personnel and testing equipment.
- QC must always perform tests diligently and in compliance with all specifications.

10

11

Quality Assurance

- MoDOT personnel assure that the quality controls are working properly.
- QA personnel must also be properly trained.
- QA must always perform tests diligently and in compliance with all specifications.

Quality Control Plan

- The Quality Control Plan is a means for the producer to describe how control of the operation will be accomplished to ensure the materials produced meet specifications.
- The Quality Control Plan should not try to bypass any Standard Specifications or Special Provisions. 12

HMA Quality Control Plans

Prior to the approval of the trial mix design the HMA contractor will submit a QC Plan to the District which adds traffic and the sends to MoDOT Construction & Materials in Jefferson City

13

14

QC PLAN

"Short Form ■"On file"

QC PLAN Short Form

- Contract name
- Contract #
- Job #
- Route
- Contractor rep in charge of QC plus contact info Project level rep plus contact info
- Lot & sublot sizes and how they will be designated
- Binder content test method
- Binder content test method
 Number of cores cut per sample (more cores may be an advantage; up to 3 cores per "sample", traveled way and unconfined longitudinal joint)
 Whether gradations will be on T308 residue
 Name, address, and phone number of the third party testing lab that will be used for dispute resolution. 15

Items to be included in the HMA QC Plan-On File

- Location and phone number of the asphalt plant.
- List of material suppliers (not aggregate).
- List of personnel that will be performing QC testing, their responsibilities, and their Superpave QC/QA certification number.

16

17

Notes

- Lot sizes can be different for the same project (eg. 3000tons first lot, 10,000 thereafter)
- Third party cannot be the the one that performed the mix design

Items to be included in the HMA QC Plan

- Stockpile procedures at the asphalt plant.
 - Minimum stockpile size.
 How will material be loaded into asphalt bins.
 - Steps should minimize degradation, segregation, and contamination.
- Method for transporting
- samples from roadway to testing laboratory.
- Sampling/Testing procedures and their corresponding AASHTO/ASTM/MoDOT specification number.

Items to be included in the HMA QC Plan

- Discuss how segregation is to be minimized and what will be done if segregation is encountered.
- Describe how and when cores will be taken from the roadway.

19

Items to be included in the HMA QC Plan

- Describe how retained samples and cores will be maintained.
- Describe how retained samples and cores will be designated and labeled.
- Describe steps to be followed if the loose mix sample location falls on a roadway obstruction or at the beginning of the day before the plant has leveled out.

20

Items to be included in the HMA QC Plan

- State the course of action for out-ofspecification mix.
- Discuss how a re-sample will be collected if a sample is contaminated.

Items to be included in the HMA QC Plan Describe how the rolling pattern will be determined. State what will happen if

- State what will happen if equipment failure occurs.
- Describe how the plant is to be calibrated.
- State if control charts will be used.

 Attach copies of unique data sheets.

22

Items to be included in the HMA QC Plan

- Provide a detailed description of your mix design process.
 - Explain how aggregates were combined.
 - Explain mixing technique. (duration, type of mixer etc.)
 - Explain how Specific Gravities of the aggregate were determined. (plus #4?, plus #
 - 8?, or combined?.)
 Include any information that will eliminate testing variations.

23

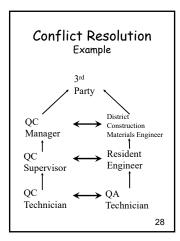
PRE-PAVING MEETING

- Go over QC/QA
 Project Checklist
- Include course of action for out-of-specification mix
- Will substantially reduce conflict

Checklist Items

Review QC Plan

- Random Number Method (and who: roadway? Plant?)
- Sample Identification (what, how, who)
- Location of QC Lab
- Rice Dryback
- Dispute Resolution
- Paperwork Sharing & Storage


25

26

Checklist Items, cont'd.

- Pay Factor Spreadsheet Version - the one in effect on the contract date (current version is posted on MoDOT website)
- Test Method Options
- Job Mix Approval
- Specifications to Review (use spec version in force at time of bidding)
- Anything else important to the Project

I have a disagreement with QC that we can't resolve. What do I do now?

Example QC Plan								
Bituminous	Quality Control Plan							
Project Number: J6I0000	Route: 70							
Contract ID: 000716-600	County: Warren							
QC Personnel								
QC contact person Joe Mine On-site QC contact person Joe Mine	r 573 555 1212 r Jr. 573 555 1212							
Lot/Sub-lot								
	of four sublots to each lot except the last lot shall l be 750 tons for Asphalt Content, VMA, and							
Lots will be designated by number and	sublots will be designated alphabetically.							
Asphalt Content Determination								
Asphalt content will be determined by	the binder ignition oven							
Density Core								
There will be 2 cores cut per sample.								
Third Party Resolution								
ACME Testing Lab, Inc 2000 Quarry Road Rolla, MO 65401								
	29							

Example QC Plan

Bituminous Quality Control Plan

Project Number: J6I0000

Route: 70

Contract ID: 000716-600

County: Warren

QC Personnel

QC contact person	Joe Miner 573 555 1212
On-site QC contact person	Joe Miner Jr. 573 555 1212

Lot/Sub-lot

Lots shall be 3000 ton with a minimum of four sublots to each lot except the last lot shall be greater than 3000 tons. Sublots shall be 750 tons for Asphalt Content, VMA, and Percent Air Voids.

Lots will be designated by number and sublots will be designated alphabetically.

Asphalt Content Determination

Asphalt content will be determined by the binder ignition oven

Density Core

There will be 2 cores cut per sample.

Third Party Resolution

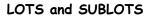
ACME Testing Lab, Inc 2000 Quarry Road Rolla, MO 65401

MODULE 5

SAMPLING LOOSE MIX AND CORES

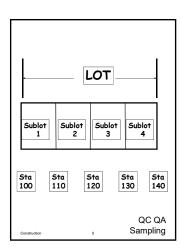
12-28-06 Revision 11-09-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 12-29-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-5-15 Revision 4-23-15 Revision 12-9-15 Revision 3-2-16 Revision 12-28-16 Revision 3-6-18 Revision 12-12-18 Revision 2-8-19 Revision 3-15-19 Revision 12-17-19 Revision

MODULE 5	
SAMPLING LOOSE MIX AND CORES	
12-28-06 Revision 11-99-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-07 Revision 12-29-19 Revision 12-29-19 Revision 1-9-11 Revision 2-26-13 Revision 2-26-13 Revision 2-29-14 Revision 2-3-15 Revision 2-3-16 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 2-2-18 Revision 3-6-18 Revision 2-2-19 Revision 2-2-19 Revision	
12-17-19 Revision	1



Resources

- 403 specification
- General provisions & Supplemental Specifications
- AASHTO Test Methods: R 97 Sampling Asphalt Mixtures
- R 47 Reducing Sample Size
- EPG
- FAQ
- Short Course Notebook


3

12/17/19

 Sampling, testing, and payment is done on a lot-by-lot basis.

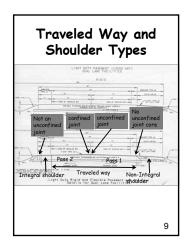
4

LOTS and SUBLOTS, cont'd.

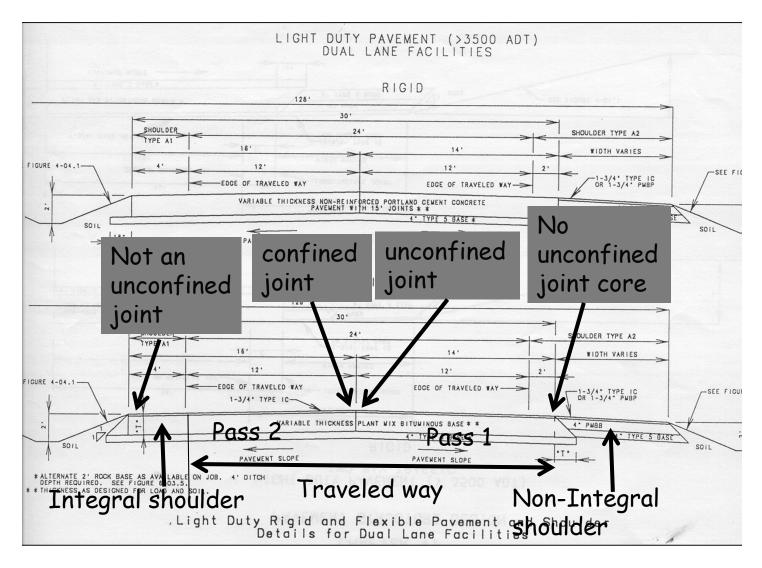
- Definition of a "Lot": No specified limitation
 - Typically 3000 or 4000 tons

Sometimes much larger

LOTS AND SUBLOTS, cont'd. • Sublot: • must have at least 4


- must have at least 4 sublots per lot
 Maximum sublot size= 1000 tons
- number of lots: Contractor's choice--put in QC plan
- more sublots means more lab work, but may increase pay factor somewhat
- If lot=3000 tons, a sublot= 750 tons

7


8

LOT ROUTINES 403 Mixes

- Traveled way + integral shoulders
- Non-integral shoulders (if Superpave)
- If not Superpave (eg, BP-1), random numbers not required- see "non-traveled area" notes

Traveled Way and Shoulder Types

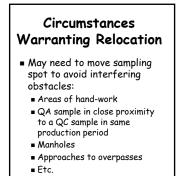
SAMPLE TYPES

 QUALITY LEVEL ANAYSIS (QLA)

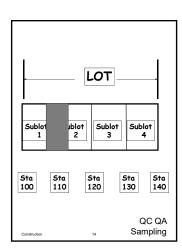
- QC- for determination of pay factors
- QA- for seeing if QC samples define the characteristics of the lot ("favorable comparison")
- "Extra" or "check" or "self-test" samples
- Samples should be clearly marked as to what they are

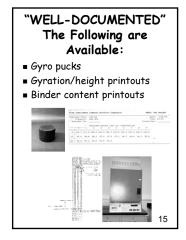
10

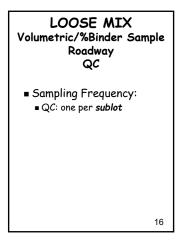
11

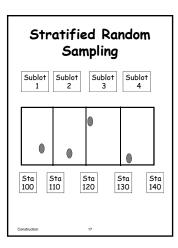

EXTRA or CHECK SAMPLES

Extra sampling done by MoDOT or contractor to:


- Check how the mix is doing
- Investigate problem areas e.g. does a problem exist?
- Determine limits of the problem
- Can be from truck, plant, mat
- Not random-cannot be used for QLA


EXTRA or CHECK SAMPLES

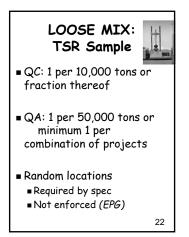

 Can be used to define removal limits, but must be "well-documented"

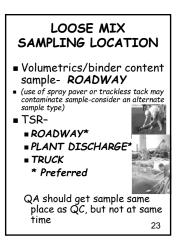


LOOSE MIX Volumetric/%Binder Sample Roadway Only QA

- QA: one per 4 sublots "independent sample" (spec 403.19.3)
- QA: once per day test QC "retained sample". This may be omitted on days when independent QA sample is taken, if confident and "favorable comparison" exists between QA's QC split and QC (403.1.18 EPG & FAQ #14)

Retained Samples 403.17.2.3 - Retained samples should be clearly labeled and not discarded until all QC/QA comparison issues are resolved. If the lab becomes crowded, the RE should store the samples in the project office. The retained sample is a contract requirement and belongs to the Commission. If the contractor wishes to keep ADDITIONAL mix for internal use they may of course do so 19


FAVORABLE COMPARISON QC:QA


• $G_{\rm mm}$: within 0.005 $\bullet G_{mb}$: within 0.010 $\blacksquare P_b$: within 0.1%

LOOSE MIX QLA Volumetric/%Binder Sample, cont'd.

Random locations ■QC= required ■QA= required (Might become part of the dataset from which Pay Factors are computed)

21

SAMPLING: QC Volumetrics/Binder

- QC gets their own volumetrics & %binder sample plus a "retained" sample for QA behind the paver
- Size: about 50 lbs each
- Additional 75-125 lbs for TSR (plus another 125 lb sample retained for QA) behind the paver, at the plant, or a truck sample

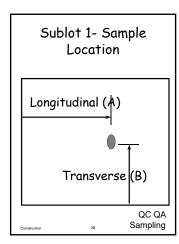
 Depth: full depth of the course

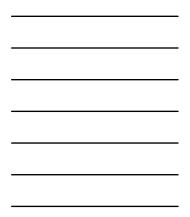
QC SAMPLING, Volumetrics/Binder cont'd.

 Preferred: ~100 lbs, mixed, quartered, from 2 opposite quarters 50 lbs retained for QA

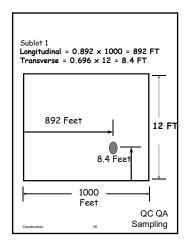
25

QA SAMPLING


- QA gets their own "independent" sample plus their retained sample
- Samples that are used for comparison to QC (QLA) should be randomly located

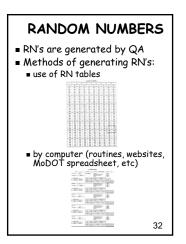

LOOSE MIX SAMPLE

LOCATION


- Longitudinal position in terms of tons of mix from the start of the lot
- Transverse position in terms of distance from edge of mat

27

Random Numbers											
RANDOM NUMBERS											
1		2		3		4		5			
A	8	A	8	A	8	A	8	A	8		
\$76	.730	.430	.754	.271	.870	.732	.721	.998	.239		
892	.348	.858	.025	.935	.114	.153	.518	.749	.291		
669	.726	.501	.422	-231	.505	.009	.420	.517	.858		
609	.482	.829	.140	_396	.325	.937	.310	.253	.761		
971	.824	.902	.470	.997	.392	.892	.357	.640	.463		
053	.899	.554	.627	.427	.760	.470	.240	.304	.393		
810	.159	.225	.163	.549	.405	.285	.542	.231	.519		
081	.277	.035	.039	.860	.507	.081	.538	.986	.501		
982	.468	.334	.921	.690	.816	.879	.414	.106	.931		
095	.801	.576	.417	.251	.884	.522	.235	.398	.222		
509	.025	.794	.850	.917	.387	.751	.608	.698	.683		
371	.059	.164	.838	.289	.169	.569	.377	.796	.396		
165	.996	.356	.375	.654	.379	.815	.592	.348	.743		
477	.535	.137	.155	.767	.187	.579	.787	.358 .698	.595 .539		
788	.101	.434	.638								
566	.815	.622	.549	.947	.169	.817	.472	.854	.466		
901	342	.873	.964	.942	.985	.123	.085	.335	.212		
470	.682	.412	.064	.150	.962	.925	.355	.909	.019		
.068	.242	.667	_356 _284	.195	_313 _215	.396	.460	.740	.247		
.874	.420	.127									
.897	.\$77	.209	.862	.428	.117	.100	.259	.425	.284		
.875	.369	.109	.843	.759	.239	.890	317	.428	_302		
.190	.496	.757	.283	.566	.491	.523	.665	-019-	.696		
.341	.688	.587	.908 _218		.333	.328	.404	1.195	.696		
.846											
.882	.227	.552	.077	.454	.731	.716	.265	8.0.5	.075		
.464	.658	.629	.269	.069 ·	.998	.917	.217	220	422		
.123	.791	.503	.447	.659 .263	.463	.798	307	.631	391		
.116	.120	.721	.137	.263	.176	.198	.379	.432	.939		
									.456		
.636	.195	.614	.486	.629	.663	.619	.007	.296	.450		
.630	.673	.665	.666		.592 .928	.441	.649	.270	.412		
.804	.112	.331	.606	.551	.928	.320	.041	.002	.185		
.360	.193	.181	.150	.564	.375	.890	.062	.519	.985		
.185	.451	.157	.150	.100	.413			1.44		5	


Random Numbers

	RANDOM NUMBERS										
1		2		3		4		5			
A	В	A	8	A	B	A	В	A	В		
.576	.730	.430	.754	.271	.870	.732	.721	.998	.239		
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291		
.669	.726	.501	.402	.231	.505	.009	.420	.517	.858		
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761		
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463		
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393		
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919		
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501		
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931		
.095	.801	.576	.417	.251	.884	.522	.235	.398	.222		
.509	.025	.794	.850	.917	.387	.751	.608	.698	.683		
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996		
.165	.996	.356	.375	.654	.379	.815	.592	.348	.743		
.477	.535	.137	.155	.767	.187	.579	.787	.358	.595		
.788	.101	.434	.638	.921	.894	.324	.871	.698	.539		
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466		
.901	.342	.873	.964	.942	.985	.123	.086	.335	.212		
.470	.682	.412	.064	.150	.962	.925	355	.909	.019		
.068	.242	.667	.356	.195	.313	.396	.460	.740	.247		
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326		
.897	.877	.209	.862	.428	.117	.100	.259	.425	.284		
.875	.969	.109	.843	.759	.239	.890	.317	.428	.302		
.190	.696	.757	.283	.666	.491	.523	.665	_1219	146		
,341	.688	.587	.908	.865	.333	.328	.404	.892	.696		
.846	.355	.831	.218	.945	.364	.673	.305	.195	.387 5		
.882	.227	.552	.077	.454	.731	.716	.265	.058	.075		
.464	.658	.629	.269	.069 ·	.998	.917	.217	2.220	659		
.123	.791	.503	.447	.659	.463	.994	.307	.631	.422		
.116	.120	.721	.137	.263	.176	.798	.879	.432	.391		
.836	.206	.914	.574	.870	.390	.104	.755	.082	.939		
.636	.195	.614	.486	.629	.663	.619	.007	.296	.456		
.630	.673	.665	.666	.399	.592	.441	.649	.270	.612		
.804	.112	.331	.606	.551	.928	.830	.841	.602	.183		
.360	.193	.181	.399	.564	.772	.890	.062	.919	.875		
.183	.651	.157	.150	.800	.875	.205	.446	.648	.985		

RANDOM NUMBERS

- Position of each loose mix sample and core: a transverse distance and a longitudinal distance
- Distances are determined by random numbers-one for longitudinal (A), one for transverse (B)
- The pair of random numbers are different for each sample location (core or loose mix) QC, or QA.

31

Random Numbers

- Object: to produce unbiased samples-sample bias occurs either during construction or during sampling
- QC should provide contingencies in QC Plan to handle RN's in weird locations (does not apply to early tonnage e.g first 50 tons)

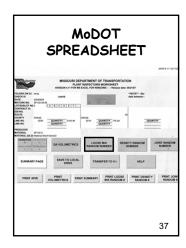
			ĸ	ANDOMIN	UMBERS				_
1		2		3		4		5	
A	8	A	8	A	8	A	8	A	8
.576	.730	.430	.754	.271	.870	.732	.721	.998	.239
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291
.669	.726	.501	.402	.231	.505	.009	.420	.517	.858
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931
.095	.801	.576	.417	.251	.884	.522	.235	.398	.222
.509	.025	.794	.850	.917	.387	.751	.608	.698	.683
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996
.165	.996	.356	.375	.654	.379	.815	.592	.348	.743
.477	.535	.137	.155	.767	.187	.579	.787	.158	.595
.788	.101	.434	.638	.021	.894	.324	.871	.698	.539
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466
.901	342	.873	.964	.942	.985	.123	.086	-732	.212
.470	.682	.412	.064	.150	.962	.925	.355	.909	.019
.068	.242	.667	.356	.195	713	.396	.460	.740	.247
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326
.897	.877	.209	.862	.428	.117	001.	.259	.425	.284
.875	.969	.109	.843	.759	.239	.890	.317	.428	.302
.190	.696	.757	.283	.666	.491	.523	.665	_قلعن	136
.341	.688	.587	.908	.865	733	.328	.404	.892	.696
.846	.355	.831	.218	.945	.364	.673	.305	/ .195	.387
.882 .	.227	.552	.077	.454	-11	.716	.265	820. 9	.075
.464	.658	.629	.269	.069	.998	.917	.217	220	-659
.123	.791	.503	.447	.659	.403	.994	.307	.631	.422
.116	.120	.721	.137	.263	.176	.798	.879	.432	_391
.836	.206	.914	.574	.870	.390	.104	.755	.082	.939
.636	.195	.614	.486	.629	.663	.619	,007	.296	.456
.630	.673	.665	.666	.399	.592	.441	.649	_270	.613
.804	.112	731	.606	.551	.928	.830	.841	.602	.183
.360	.193	.181	_399	.564	.772	.890	.062	.919	.\$75
.1\$3	.651	.157	.150	.800	.875	.205	.446	.648	.585

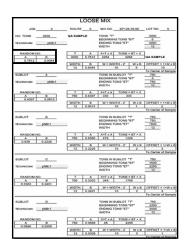
RN TABLES

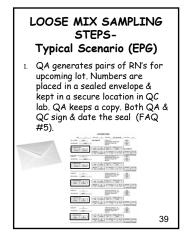
- Pick pairs row by row or column by column
- Don't jump around

RANDOM NUMBER GENERATION

 MoDOT spreadsheet is the preferred method

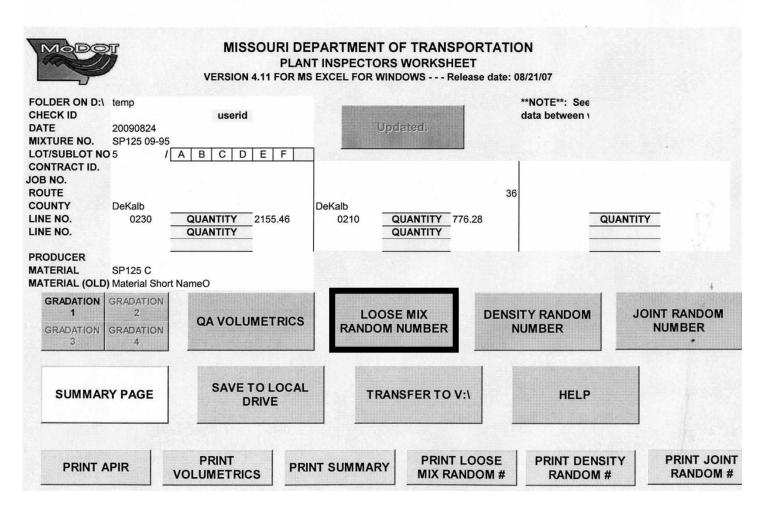

 Use the "Asphalt Random Location spreadsheet" (FAQ #5)

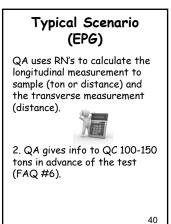

■ MoDOT internal site: http://eprojects/Template/Forms/All Items.aspx


36

RANDOM NUMBERS

1		2		3		. 4		5	
A	В	A	8	A	B	A	В	A	В
.576	.730	.430	.754	.271	.870	.732	.721	.998	.239
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291
.669	.726	.501	.402	.231	.505	.009	.420	.517	.858
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931
.095	.801	.576	.417	.251	.884	.522	.235	.398	.222
.509	.025	.794	.850	.917	.387	.751	.608	.698	.683
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996
.165	.996	.356	.375	.654	.379	.815	.592	.348	.743
.477	.535	.137	.155	.767	.187	.579	.787	.358	.595
.788	.101	.434	.638	.021	.894	.324	.871	.698	.539
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466
.901	.342	.873	.964	.942	.985	.123	.086	.335	.212
.470	.682	.412	.064	.150	.962	.925	.355	.909	.019
.068	.242	.667	.356	.195	.313	.396	.460	.740	.247
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326
.897	.877	.209	.862	.428	.117	.100	.259	.425	.284
.875	.969	.109	.843	.759	.239	.890	.317	.428	.302
.190	.696	.757	.283	.666	.491	.523	.665	_وللعرر	116
,341	.688	.587	.908	.865	.333	.328	.404	.892	.696
.846	.355	.831	.218	.945	.364	.673	.305	/ .195	.387
.882	.227	.552	.077	.454	731	.716	.265	.058	.075
.464	.658	.629	.269	.069	.998	.917	.217	2.220	659
.123	.791	.503	.447	.659	.463	.994	.307	.631	.422
.116	.120	.721	.137	.263	.176	.798	.879	.432	.391
.836	.206	.914	.574	.870	.390	.104	.755	.082	.939
.636	.195	.614	.486	.629	.663	.619	.007	.296	.456
.630	.673	.665	.666	.399	.592	.441	.049	.270	.612
.804	.112	.331	.606	.551	.928	.830	.841	.602	.183
.360	.193	.181	.399	.564	.772	.890	.062	.919	.87
.183	.651	.157	.150	.800	.875	.205	.446	.648	.98




MoDOT SPREADSHEET

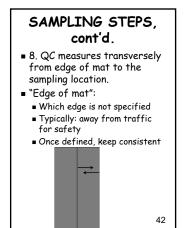
APIW 4.11 12/17/200

LOOSE MIX

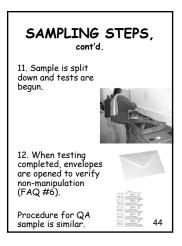
JOB 0	ROUTE	0	MIX NO.	SP125	09-95	LOT NO.	5
NO. TONS <u>3000</u> TECHNICIAN <u>philic1</u>	QA SAMP	LE	TONS "T" BEGINNIN ENDING T WIDTH	IG TONS	3000 0 3000 12		
A B 0.7512 0.9344	T 3000	A 0.7512	X=T x A 2254	TONS = 22	= BT + X 54	QA SAMPL	.E
	WIDTH 12	B 0.9344	W = WI	DTH - 2' 10	W x B 9	OFFSET = 1 To Center of	0
SUBLOT <u>A</u> TECHNICIAN phillc1				SUBLOT " IG TONS " ONS "ET"	BT"	750 0 750 750 12	Sample
RANDOM NO. A B 0.4397 0.0513	Т 750	A 0.4397	X=T x A 330	TONS = 33	= BT + X 30]	
0.4007	WIDTH 12	B 0.0513	W = WI	DTH - 2' 10	W x B 1	OFFSET =	2
SUBLOT <u>B</u> TECHNICIAN <u>philic1</u>			BEGINNIN	SUBLOT " IG TONS " ONS "ET"	BT"	750 750 1500 12	
A B 0.638 0.2229	T 750	A 0.6380	X=T x A 479	12]	
	WIDTH 12	B 0.2229	W = WI	DTH - 2' 10	<u> </u>	OFFSET =	3
SUBLOT <u>C</u> TECHNICIAN <u>philic1</u>			BEGINNIN	SUBLOT " NG TONS " TONS "ET"	BT"	750 1500 2250 12	
RANDOM NO.	T 750	A 0.3303	X=T x A 248	TONS : 17	= BT + X 48]	
0.3303 0.2401	WIDTH 12	B 0.2401	W = WI	DTH - 2' 10	W x B 2	OFFSET =	3
SUBLOT <u>D</u> TECHNICIAN <u>philic1</u>	1111111	8	BEGINNIN	SUBLOT NG TONS ' TONS "ET"	BT"	750 2250 3000 12	
RANDOM NO.	Т 750	A 0.0596	X=T x A 45	TONS = 22	= BT + X 95]	
0.0596 0.0308	WIDTH 12	B 0.0308	W = WI	DTH - 2' 10	W x B 0	OFFSET =	1

SAMPLING STEPS,

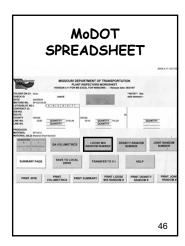
cont'd.

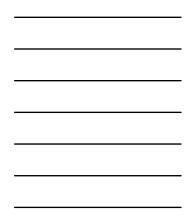

3. QC gives info to plant operator.

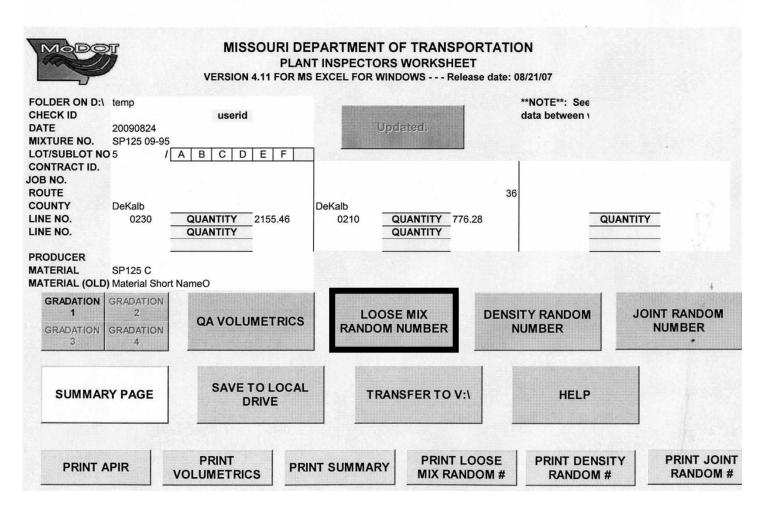
4. Plant operator marks ticket of the load that the RN ton fell in.


5. QC follows truck to site.

6. Roadway inspector notes the location (station) where the load went down. This will be arbitrary.


7. Samples should not be taken in areas of handwork; move 10 ft ahead of affected area (FAQ $\#_{2}$)





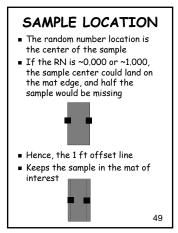
LC	DOSE	MIX
SETRANDOM	2080	LOOSE MIX NOTE MX NO 107 NO GATABATICE NOTE 2000 GATABATICE NOTE 2000
NOT SHOWN : SHOITATS	10-m0.04 Annolde.no 0.7912 0.9344	DODRO TONI TT DOR 1 A APT x A NOA D 1 A APT x A NOA D 2000 0.51% / 2004 2004 D A 2000 0.51% / 2004 2004 D A AARPLE 2000 4 0.000 / 100 3 B B B 2010 4 0.000 / 100 3 B B B B
FOR EACH	808c01 TC-WOW	Toris in Bullion 7/1 190 BEDANID TORI 111 0 DEVING 10140 111 0 DEVING 10140 111 0 WCPIN 00 100 4.011 4.0 100 300
CHARLE OF O, ', or Z UNCONFINED JOINTS	646607 <u>8</u>	NOC/10 B IM + BEC/20-2 If is the BEC/20-2 If is
2011-[3	RAINECOM (NO) A 8 0.4538 0.3229	I A A/F 1 A N(0) + § 1 + A 750 0.5300 479 320 W0/hx 8 0.4100/hz - 2 10 + 8 10 0.2200 9 2 3 11 0.2200 10 3 3 Science of Sample
	606007 Torecom	Tond in Bullion 110 750 BEDWINID TONS 111 1500 DOWD TOWS 111 200 WEDH 32 Y A 700 0,000 100 154
	0.000 0.000	WOD14 B W + MOD10-2 W + B OFF901 + 1-W + 1 12 0,3414 19 2 5 5 5 12 0,3414 19 2 7 5 Center of therep 10045 19 19 7 700 700 700 10045 10 2000 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000
	NONCON	Dolws Tork 101 200 1 A A/1 xA Nois + 1 + x 300 2000 0 0 100 00100 0 0 0 900 100 0 0 0 100 000 0 0 0

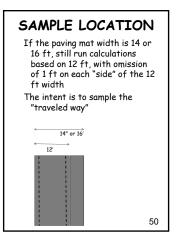
1		2		3		4		5	
A	8	A	8	A	В	A	8	A	8
.576	.730	.430	.754	.271	.870	.732	.721	.998	.239
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291
.669	.726	.501	.402	.231	.505	.009	.420	.517	.858
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931
.095	.801	.576	.417	.251	.884	.522	.235	.398	.222
.509	.025	.794	.850	.917	_387	.751	.608	.698	.683
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996
.165	.996	.356	.375	.654	379	.815	.592	.348	.743
.477	.535	.137	.155	.767	.187	.579	.787	.358	.595
.788	.101	.434	.638	.021	.894	.324	.871	.698	.539
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466
.901	342	.873	.964	.942	.985	.123	.086	-335	.212
.470	.682	.412	.064	.150	.962	.925	.155	.909	.019
.068	.242	.667	.356	.195	.313	.396	.460	.740	.247
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326
.897	.877	.209	.862	.428	.117	.100	.259	.425	.284
.875	.969	.109	.843	.759	.239	.890	.317	.428	.302
.190	.696	.757	.283	.666	.491	.523	.665	_قلع،	علال
.341	.688	.587	.908	.865	_333	.328	.404	.892	.696
.846	.355	.831	.218	.945	.364	.673	.305	/ .195	.387
.882	.227	.552	.077	.454	-111	.716	.265	820. 9	.075
.464	.658	.629	.269	.069	.998	917	.217	2.20	-659
.123	.791	.503	.447	.659	.463	.994	_307	.631	.02
.116	.120	.721	.137	.263	.176	.798	.879	.432	.391
.836	.206	.914	.574	.870		.104			_
.636	.195	.614	.486	.629	.663	.619	.007	.296	.45
.630	.673	.665	.666	.399	.592	.441	.649		
.804	.112	731	.606	.551	.928	.\$30	.841	.602	.18
.360	.193	.181	.150	.564	.772	.890	.062	.919	.372

MoDOT SPREADSHEET

APIW 4.11 12/17/200

LOOSE MIX

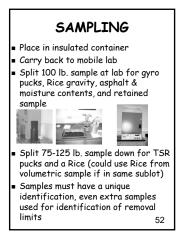

CHOICE OF O, ', or Z UNCONFINED JOINTS


JOB 0	ROUTE	0	MIX NO.	SP125	5 09-95	LOT NO. 5
NO. TONS 3000	QA SAMPL	F	TONS "T"			3000
NO. TONS	GA SAMPL		BEGINNIN		BT"	0
TECHNICIAN phillc1			ENDING T			3000
			WIDTH			
RANDOM NO.	T	•	X=T x A	TONC	DT · V	
A B	T 3000	A 0.7512	2254	22	= BT + X 54	ASAMPLE
0.7512 0.9344		0.1012	LLUT			
	WIDTH	В		DTH - 2'		OFFSET = 1+W x B
	12	0.9344		10	9	10
SUBLOT A			TONS IN S	SUBLOT .	T*	750
			BEGINNIN			0
TECHNICIAN phille1	-		ENDING T	ONS "ET"		750
			WIDTH			12
RANDOM NO.	Т	A	X=T x A	TONS	= BT + X	1
A B	750	0.4397	330	33		1
0.4397 0.0513		1.			-	
	WIDTH	B	W = WI	DTH - 2'	WxB	OFFSET = 1+W x B
	12	0.0513		10	1	2 To Center of Sample
3						To Center of Sample
SUBLOT B			TONS IN S	SUBLOT .	Τ.	750
			BEGINNIN			750
TECHNICIAN phillc1	-		ENDING T	ONS "ET"		1500
			WIDTH			12
RANDOM NO.	Т	А	X=T x A	TONS :	= BT + X]
A B	750	0.6380	479	12	29]
0.638 0.2229			14/ - 14/1			
	WIDTH 12	B 0.2229	W = WI	10	WxB 2	OFFSET = 1+W x B 3
		U.LLLU	L	10		To Center of Sample
SUBLOT C			TONS IN S			750
	:		BEGINNIN ENDING T			<u>1500</u> 2250
	-		WIDTH			12
RANDOM NO.	T	A	X=T x A		= BT + X	4
A B 0.3303 0.2401	750	0.3303	248	17	48	1
0.0000 0.2401	WIDTH	В	W = WI	DTH - 2'	WxB	OFFSET = 1+W x B
	12	0.2401		10	2	3
						To Center of Sample
SUBLOT D			TONS IN S	SUBLOT .	T.	750
				IG TONS		2250
TECHNICIAN philic1	1			ONS "ET"		3000
			WIDTH			12
RANDOM NO.	ТТ	A	Y=T v A	TONE		1
A B	750	0.0596	X=T x A 45	22	= BT + X 95	1
0.0596 0.0308						J
	WIDTH	В	W = WI	DTH - 2'	WxB	OFFSET = 1+W x B
	12	0.0308		10	0	1 To Contor of Sample
						To Center of Sample

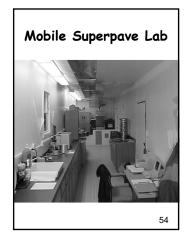
LOOSE MIX

RANDOM NUMBERS

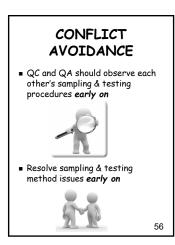
1		2		3		. 4		5	
A	В	A	8	A	B	A	В	A	В
.576	.730	.430	.754	.271	.870	.732	.721	.998	.239
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291
.669	.726	.501	.402	.231	.505	.009	.420	.517	.858
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931
.095	.801	.576	.417	.251	.884	.522	.235	.398	.222
.509	.025	.794	.850	.917	.387	.751	.608	.698	.683
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996
.165	.996	.356	.375	.654	.379	.815	.592	.348	.743
.477	.535	.137	.155	.767	.187	.579	.787	.358	.595
.788	.101	.434	.638	.021	.894	.324	.871	.698	.539
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466
.901	.342	.873	.964	.942	.985	.123	.086	.335	.212
.470	.682	.412	.064	.150	.962	.925	.355	.909	.019
.068	.242	.667	.356	.195	.313	.396	.460	.740	.247
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326
.897	.877	.209	.862	.428	.117	.100	.259	.425	.284
.875	.969	.109	.843	.759	.239	.890	.317	.428	.302
.190	.696	.757	.283	.666	.491	.523	.665	_وللعرر	116
,341	.688	.587	.908	.865	.333	.328	.404	.892	.696
.846	.355	.831	.218	.945	.364	.673	.305	/ .195	.387
.882	.227	.552	.077	.454	731	.716	.265	.058	.075
.464	.658	.629	.269	.069	.998	.917	.217	2.220	659
.123	.791	.503	.447	.659	.463	.994	.307	.631	.422
.116	.120	.721	.137	.263	.176	.798	.879	.432	.391
.836	.206	.914	.574	.870	.390	.104	.755	.082	.939
.636	.195	.614	.486	.629	.663	.619	.007	.296	.456
.630	.673	.665	.666	.399	.592	.441	.049	.270	.612
.804	.112	.331	.606	.551	.928	.830	.841	.602	.183
.360	.193	.181	.399	.564	.772	.890	.062	.919	.87
.183	.651	.157	.150	.800	.875	.205	.446	.648	.98

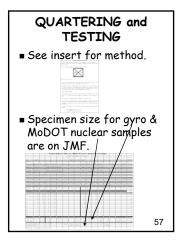


ROADWAY SAMPLING


 Using a square-nosed shovel and possibly a template, mark the area to be removed

- Remove all mixture within the area
- Do not contaminate the sample with underlying material
- Avoid segregation of the material 51

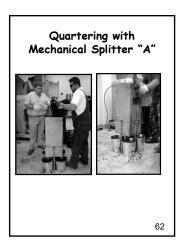


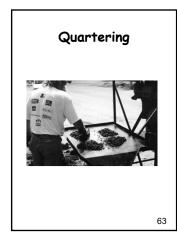


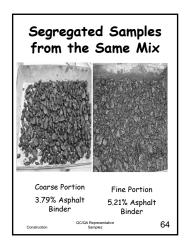
- No longer required to be at the plant
- To be located at a site appropriate to the work

QUARTERING and TESTING

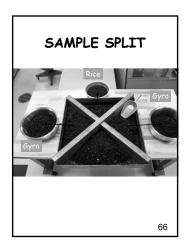
- Specimen size for Rice & ignition oven samples are in the test procedures.
 Back of Module 7 cookbook
 - Back of Module 8 cookbook

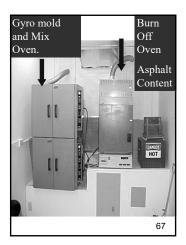

58


AASHTO R47 • Quartering templates • Quartering • "Quartermaster" • Riffle splitters • Incremental (loaf)


100 lbs Mix, avoid segregation Split/quarter Use appropriate release agent: no solvents or petroleum-based products Combine & retain opposite quarters = 50 lbs Combine other 2 apposite

 Combine other 2 opposite quarters = 50 lbs---continue quartering as follows
 60

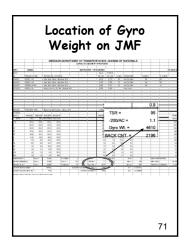


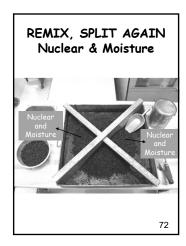


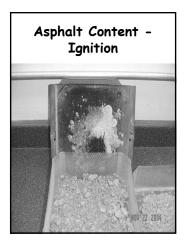
VOLUMETRICS-%AC SAMPLE 50 lb. sample -get portions for: 2 volumetric gyro pucks


Rice specific gravity

- Asphalt content (ignition oven or nuclear)
- Moisture content







Location of Gyro Weight on JMF

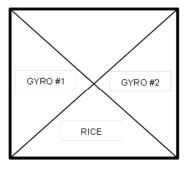
						A C		ONCRETE T	VDE SD125	нв							
						AS		UNCRETE I	TPE SP120	пв							
DA TE =	10/29/03						CONTRAC	TOR = MY E	BUSINESS							s	P125 03-1
IDENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	ER, LOCATIO	NC				SP. GR.	SP. GR.	%ABS	FORMATIO	N	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.515	2.713	2.9	Jet City Dol	0.	5-8		25	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dol		5-8		25	
35JSJ003	1002MSM	SLD	/ Hard Rock	Stone, Dig	Deep, MO				2.480	2.761	4.0	Jet City Dol	0.	5-8		10	
30CAJ016	1002HLHL				e. General, M	10			2.303	2.303		Hyd. Lime					
															10		
).9		
36DLJ016	1015ACPG	.7022	/ Black Aspl	halt Product	s, Decoy, MC	C			1.023								
MATERIAL										TS	R = -				95		
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CA J016					35JSJ0		•						COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime					6(20	NIAC	<u> </u>			4 4 [GRA
1 1/2"	100.0	100.0	100.0	100.0					60	-20	0/AC	,			1.E [100.
1"	100.0	100.0	100.0	100.0					60	-				4.0			100.
3/4"	100.0	100.0	100.0	100.0					60	Gy	io W	t. #		_ 46	10		100.
1/2"	97.6	100.0	100.0	100.0					58								98.
3/8"	83.8	96.1	100.0	100.0					50	BACK	(Ch	11 m		21	96		89.
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.		/	61	34		51.
#8	7.0	8.0	82.0	100.0					4.2	1.0	21.	3 2.0					28
#16	2.6	3.5	40.7	100.0					1.6	0.4	10	2.0					14.
#30	1.6	2.6	26.6	100.0					1.0	0.3	6.	9 2.0					10.
#50	1.6	2.1	13.5	100.0					1.0	0.2	3.	5 2.0					6.
#100	1.5	1.9	5.4	100.0					0.9	0.2	1.	4 2.0					4.
#200	1.5	1.8	4.2	99.0					0.9	0.2	1.	1 2.0					4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		toR =	95	SR Wt.		Nini =		9	MIX COM	POSITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	38 0		Ndes =	12	5	MIN. AGG	Э.	93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	4610	\square		Nmax =	20	5	ASPHALT	T CONTENT	6.29
CALIBRATION	NUMBER		90004			MASTER	GAUGE B	CNT. =	2100			A1 =	-5.23474	1			
MASTER GAU	GE SER NO	=	770				SAMPLE	WEIGHT =	7200			A2 =	3.43689	5			

Both QC and QA samples must be taken from the roadway. They are to be taken separately. The sample locations in both cases will be determined with a different se random numbers.	t o
Both QC and QA samples should be quartered at the site lab.	
ORDER OF IMPORTANCE	
 If the mix type to be quartered has changed since the last quartering, clean the 2' square pan. Otherwise, use a buttered pan. Butter = hot mix. 	X
 Place the whole 50 lb. loose mix sample into the pan. Mix byturning material ove minimum of 4 times with a flat-bottom socop, shape into a cone, flatten. Bring up pleose, distribute evenly on top so that all 4 quarters get the same amount. Shapi the pile so that all 4 quarters have the same amount of material. 	big
3. Insert quartering plates.	
 From a given quarter, pull just enough mix to make one gyro specimen (the requi weight is on the Job Mix Formula) and place in a clean pan. Clean off scoop into pan. 	
Do the same for the opposite quarter. Place an ID tag in each pan.	
Put the pans into the oven to get the mix to the compaction temperature (30 mix.	**
maximum heating allowed. Beenfore, may have to set over higher than marking temperatures income within the 30 minutes). Do not heat the mix above the mold in temperature.	19
From a third quarter, pull the proper amount for a Rice specimen and set aside fo cooling:	e
SP250 → 2500 grams (minimum) All others → 2000 grams (minimum)	

*2008 PROCESS REVIEW TEAM

- *Poor quartering procedures (QC & QA)
- *Poor split sample retention

TSR SAMPLING


- Roadway
- ■Plant discharge
- Truck
- QA samples should be taken from the same point as the QC, although not at the same time

78

QUARTERING LOOSE MIX

Both QC and QA samples must be taken from the roadway. They are to be taken separately. The sample locations in both cases will be determined with a different set of random numbers.

Both QC and QA samples should be quartered at the site lab.

ORDER OF IMPORTANCE

- If the mix type to be quartered has changed since the last quartering, clean the 2'X2' square pan. Otherwise, use a buttered pan. Butter = hot mix.
- 2. Place the whole 50 lb. loose mix sample into the pan. Mix by turning material over a minimum of 4 times with a flat-bottom scoop, shape into a cone, flatten. Bring up big pieces, distribute evenly on top so that all 4 quarters get the same amount. Shape the pile so that all 4 quarters have the same amount of material.
- 3. Insert quartering plates.
- From a given quarter, pull just enough mix to make one gyro specimen (the required weight is on the Job Mix Formula) and place in a clean pan. Clean off scoop into the pan.

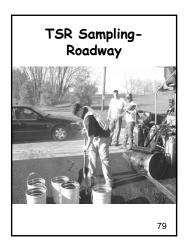
Do the same for the opposite quarter. Place an ID tag in each pan.

Put the pans into the oven to get the mix to the compaction temperature (30 minute maximum heating allowed, therefore, may have to set oven higher than melding temperature to keep within the 30 minutes). Do not heat the mix above the molding temperature.

From a third quarter, pull the proper amount for a Rice specimen and set aside for cooling:

> SP250 \rightarrow 2500 grams (minimum) All others \rightarrow 2000 grams (minimum)

Scrape material stuck on the scoop into the appropriate pan. Place an ID tag in each pan.

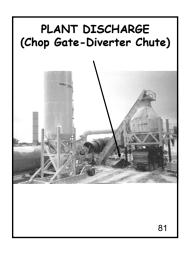

- 6. Remove the quartering plates; remix the material, cone, flatten, quarter.
- Remove sufficient material for the nuclear sample. The required amount is stated on the Job Mix Formula sheet. Scrape the scoop; place an ID tag in the pan.

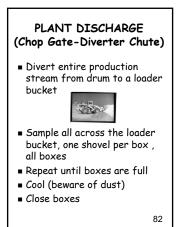
Compact nuclear sample into the nuclear gage pan while mix is still warm (may have to re-warm).

If running AC content by the ignition oven method, obtain the sample out of this quarter:

SP250 → 3000 to 3500 grams SP190 → 2000 to 2500 grams SP125 → 1500 to 2000 grams SP095 and SP048 → 1200 to 1700 grams

- Obtain moisture sample from same sample as the asphalt content sample. Treat the moisture sample the same as the mix sample in terms of the time interval between splitting and testing.
- Leave the 2'X2' pan buttered if the type of mix will not change before the next 50 lb. is quartered.

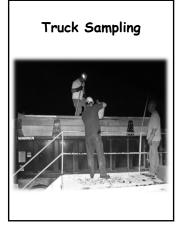



CAUTION

 Filling one bucket at a time may render different characteristics bucket-tobucket---better to place one shovelful per bucket at a time

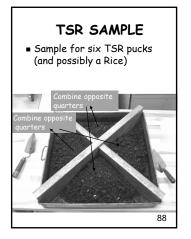
80

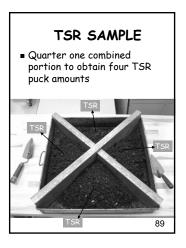
 Should recombine and quarter

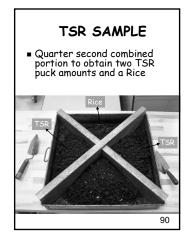


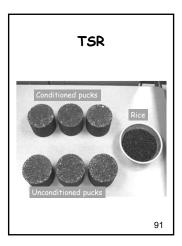
PLANT DISCHARGE (Chop Gate-Diverter Chute)

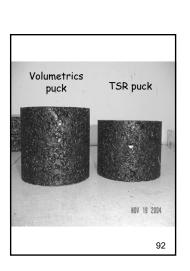
- Re-heat material
- Mix all boxes
- Quarter with templates
 Remove quarters to 4 buckets
- Quarter each bucket
- Pull one puck from each quarter




CAUTION


- Sampling methods limits the position of sampling
- Don't leave sample boxes uncovered at this location may get contaminated with dust and overspray of release agent


86


Truck "Mini-stockpile" • About 2 tons sampled from silo discharge into a truck • Dumped • Back dragged • Sampled into, say, 4 buckets or boxes... • Back at lab, material is combined, mixed, and quartered , combined into 2 piles • 4 pucks sampled from each pile

QA TSR Sample

 QA inspector will box up 125 lbs. of loose mix sample and ship to Central Lab for testing, retaining another 125 lbs

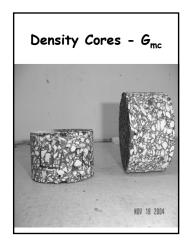
QA TSR Sample

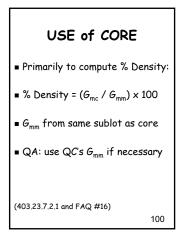
 Central Lab will determine from testing the received material the TSR puck weight to be used

TSR BOX INFO

- Site Manager ID number
- Mix number
- G_{mm} from sublot taken (QC or QA)
- Specimen weight QC is using

96

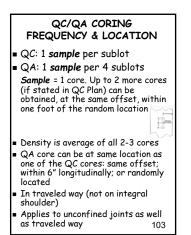

LOOSE MIX TESTING


Label samples!

- Re-heat mix to molding temperature (use a temperature probe in mix to facilitate temperature verification)
- Recommended to put gyro material into oven immediately to minimize additional binder absorption and aging
- Begin cooling Rice sample

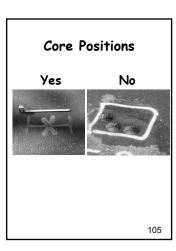
97

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>


TYPES OF CORES

- QLA cores----QLA Pay Factor
- Longitudinal unconfined joint density cores----Pay Adjustment Factor
- Non-integral shoulder cores---Pay Adjustment Factor

101


Types of Cores

- QLA
- Non-integral shoulders
- Unconfined joints

QA Core

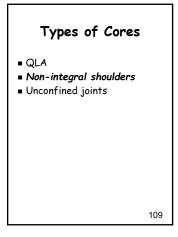
- Independent
- Can be randomly located as a location independent from QC's core, OR
- Typically, same "location" as QC core sample:
 - Same transverse offset from mat edge as QC sample
 - Within 6 in. longitudinally from QA core

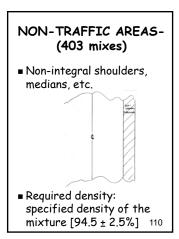
Coring

403.22.4.2 - Density core holes should be patched promptly to prevent moisture intrusion and damage to the pavement.

106

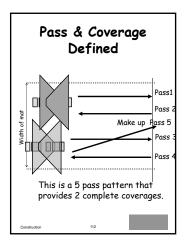
EXTRA QC CORES

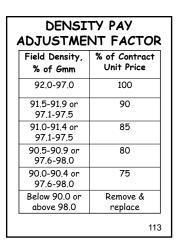

 Recommended that QA witness extra coring to avoid questions about unidentified holes


107

108

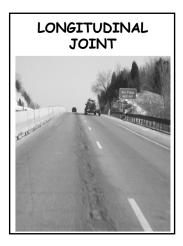
Thick Lifts If mix is placed in lifts ≥ 6 × NMS, cores should be cut in half & density determined separately Example:SP250 NMS= 1", 6" mat PFdensity will be based on N = 8, not N = 4


12/17/19

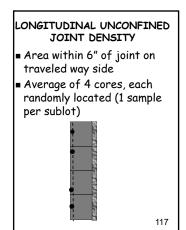


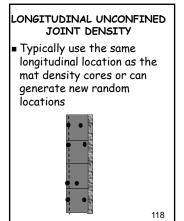
NON-TRAFFIC AREAS-(403 mixes), cont'd.

- When rolling pattern demonstrates successful achievement of density, RE may allow the pattern in lieu of density tests
- On re-surfacing projects where shoulders cannot withstand the compactive effort, RE can relax the density requirements



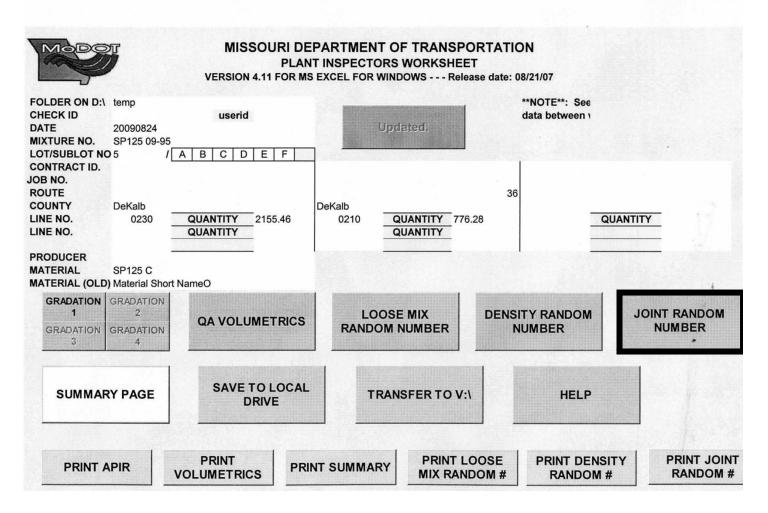
Types of Cores


■ QLA


- Non-integral shoulders
- Unconfined joints

Coring Frequencies

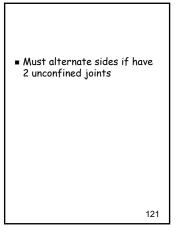
QC: 1 sample per sublot
QA: 1 sample per 4 sublots



		M₀D EAD		ET	APW 4.11 (21)
		RI DEPARTMENT C PLANT INSPECTORS FOR MS EXCEL FOR WIN	WORKSHEET		Annenion
OLDER ON D3. temp HECK 80 ATE 20080524 ENTURE NO. SP125 09- OT/SUBLOT NO 5 ONTRACT 80. OB NO. OUTE	userid 95 1 (▲ ● C O E T	-	ined.	"NOTE": See data between 1	
OUNTY Durub INE NO. 0230 INE NO. 0230 RECOUCER ATERIAL SP135.0 ATERIAL (OLD) Material SP		Les 0446	SUANTITY 775.28	QUAN	nity .
GRADIETION T DRACIETION 2 0 AUCATION 2 4	OF NOLIMET	RCS RANDOM	E MOK DEI	NSITY RANDOM NUMBER	JOINT RANDOM
SUMMARY PAGE	SAVE TO LO		ISFER TO VIL	HELP	
	PRINT	PRINT SUMMARY	PRINT LOOSE	PRINT DENSITY	PRINT JOP

JOI	NT [UDINAL DENSITY
JOB 0 SUBLOT A	ROUTE	AL JOINT DENSITY
TONS IN SUBLOT BEOIN STATION "STA" ENDING STATION LENGTH "L"	750 1000+00 1050+50 5050	RANDOM NO 0.7769 0.500 1 L A XHLXA STA+X 5050 0.7769 3923 1039-23
		Measure from unconfined edge.
SUBLOT B TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L"	750 1050+50 1100+50 5000	A B EDGE RANDOM NO 0.3616 0.474 1 L A Xr4_XA STA+> 5000 0.3816 1508 1069+50
		Measure from unconfined edge.
SUBLOTC TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	750 1100+50 1149+00	RANDOM ND A B EDGE RANDOM ND 08654 0.4791 1 L A X=L xA STA+)
LENGTH "L"	4850	4850 0.6654 3227 1132+77
		Measure from unconfined edge.
SUBLOT D TONS IN SUBLOT BEOIN STATION "STA" ENDING STATION LEINGTH "L"	750 1149+00 1199+10 5010	RANDOM NO 0.5892 0.4773 1
LOWIN L		2902 11/8+5
		Measure from unconfined wine
		120

MoDOT SPREADSHEET


APIW 4.11 12/17/200

LONGITUDINAL JOINT DENSITY

JOB	0	ROUTE	0 MIX NO.	SP125	09-95	LOT NO. 5
SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L"	Α	750 1000+00 1050+50 5050	RANDOM NO.	A 0.7769 A 0.7769	B 0.5033 X=L x A 3923	EDGE 1 STA + X 1039+23
			Measure fr	om unconfi	ned edge.	
SUBLOT	в		Г	A	в	EDGE
TONS IN SUBLOT		750	RANDOM NO.	0.3816	0.474	1
BEGIN STATION "STA"		1050+50			1	
ENDING STATION		1100+50	L	A	X=L x A	STA + X
LENGTH "L"		5000	5000	0.3816	1908	1069+58
	1			om unconfi	anha han	
			Measure tr	on ancom	lou ougo.	
SUBLOT	С			A	B	EDGE
TONS IN SUBLOT	C	750	RANDOM NO.		1 1	EDGE 1
TONS IN SUBLOT BEGIN STATION "STA"	C	1100+50	[A 0.6654	B 0.4791	1
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	C	1100+50 1149+00	RANDOM NO.	A 0.6654 A	B 0.4791 X=L x A	1 STA + X
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	C	1100+50	RANDOM NO.	A 0.6654	B 0.4791	1
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	<u> </u>	1100+50 1149+00	RANDOM NO.	A 0.6654 A	B 0.4791 X=L x A 3227	1 STA + X
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L"	<u> </u>	1100+50 1149+00	RANDOM NO.	A 0.6654 A 0.6654	B 0.4791 X=L x A 3227	1 STA + X
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L" SUBLOT TONS IN SUBLOT		1100+50 1149+00 4850 750	RANDOM NO.	A 0.6654 A 0.6654 om unconfi	B 0.4791 X=L x A 3227 ned edge.	1 STA + X 1132+77
TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L" SUBLOT TONS IN SUBLOT BEGIN STATION "STA"		1100+50 1149+00 4850 750 1149+00	RANDOM NO. L 4850 Measure fr RANDOM NO.	A 0.6654 A 0.6654 om unconfit A 0.5892	B 0.4791 X=L x A 3227 ned edge. B 0.4773	1 STA + X 1132+77 EDGE 1
SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L" SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L"		1100+50 1149+00 4850 750	RANDOM NO. L 4850 Measure fr	A 0.6654 A 0.6654 om unconfin A	B 0.4791 X=L x A 3227 med edge. B	1 STA + X 1132+77 EDGE

Measure from unconfined edge

LONGITUDINAL UNCONFINED JOINT DENSITY, cont'd.

- Required density:
 - Unconfined: no less than 2.0% below specified density (lower specified side = 92.0%)
 SP = 90.0 %

■SMA = 92.0 %

 Confined: included in evaluation of remainder of mat (thus, 94.5 ± 2.5% for non-SMA)

DENSITY PAY	LONGITUDINAL JOINT DENSITY PAY ADJUSTMENT FACTOR (PAF)							
Field Density, % of Gmm	% of Contract Unit Price							
90.0-96.0	100							
89.5-89.9 or 96.1-96.5	90							
89.0-89.4 or 96.6-97.0	85							
88.5-88.9 or 97.1-97.5	80							
88.0-88.4 or 97.6-98.0	75							
Below 88.0 or above 98.0	Remove & replace							
	123							

UNCONFINED JOINT DEDUCTIONS

 Pay reduction applied to full width of lane for a given lot.

- The lowest adjustment factor (PF_{total} or the PAF for average unconfined joint density) will apply to the lot.
- Exception: If the PAF = 100% and the PF_{total} is over 100 (use the PF_{total})
- PF_{total} includes PF's for binder content, air voids, VMA, and density)

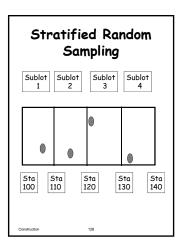
124

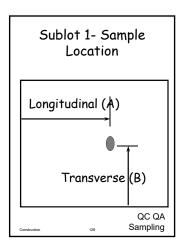
UNCONFINED JOINT DEDUCTIONS, cont'd.

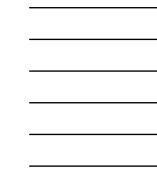
- See Module 10a for application
- Example: for a given lot, if PF_{total} = 95% and PAF = 90%, the 90% controls the whole lot
- Example: for a given lot, if PF_{total} = 105% and PAF = 100%, the 105% controls the whole lot

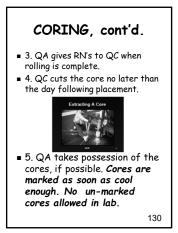
403.23.6 and EPG 403.1.21

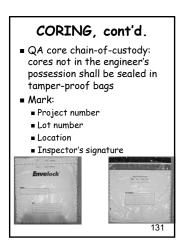
125


CONFINED JOINTS


- Density on confined joints is handled with the traveled way coring. Required density is same as for the traveled way
- 94.5 ± 2.5% for non-SMA
- 94.0% minimum for SMA


QLA CORING Typical Scenario


 Roadway inspector marks where each sublot starts.


- 1. QA generates and records RN's for freshly laid sublot.
- 2. QA calculates the longitudinal and transverse distances for the core.

CORING, cont'd. At the mobile trailer, core

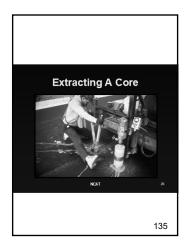
 6. At the mobile trailer, core density (G_{mc}) is determined.

• 7. Density = $(G_{mc} \div G_{mm}) \times 100$

 G_{mm} is from the loose mix Rice test sampled from the same sublot

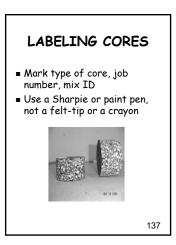
STATIONS

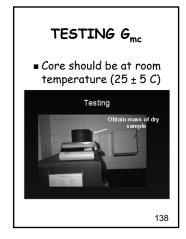
 Longitudinal distance may be in "stations" = 100 ft.


 5010 ft= 50 stations+ 10 ft or " station 50+10".

133

STATIONING Example


Beginning station = 1200+00
Add 5238 ft= 52+38
Ending station:

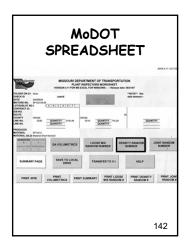

1200+00 <u>52+38</u> 1252+38

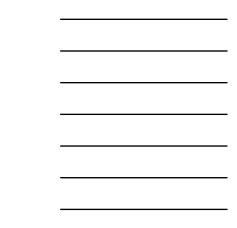
PROCEDURE

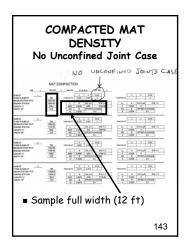
- Avoid distorting or cracking of the cores during and after removal from pavement.
- Cores should be free from seal coats, soil, paper, paint, any other foreign materials.
- Cores may be separated from other pavement lifts by sawing or other appropriate methods.
- Cores should be allowed to air dry overnight (12 hr minimum) to a constant weight (checking at 2 hr intervals) as per T 166.
- Some contractors report less variability with 6" diameter cores 136

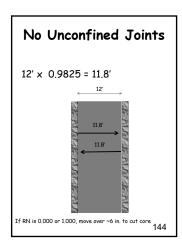
COMMON ERRORS: TESTING CORES

- Avoid distorting, bending, or cracking during and after removal from the pavement
- Samples should be free from seal coats, tack coats, soil, paper, paint, etc.
- Make sure puck /core has cooled to proper temperature
- Cores should initially be dry

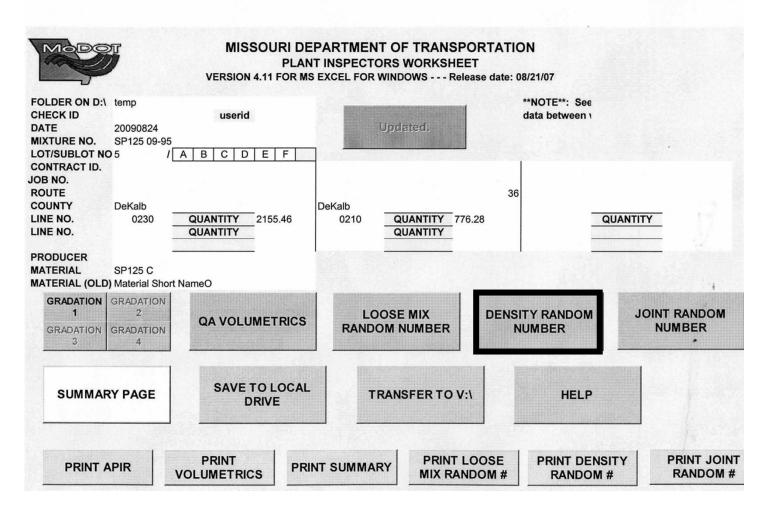

139


COMMON ERRORS:

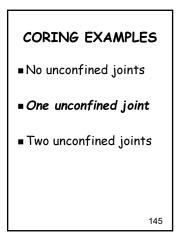

- TESTING CORES • After submersion, core should
- be at SSD condition:
- Don't shake the specimen
 Don't blot with a dry towel-use a damp one
- Make sure basket doesn't touch bottom or sides of tank. Make sure hook isn't touching hole in table
- Check for excessive water absorption (>2.0%) -use Corelok (T331) or Parafilm (D 1188) [not paraffin-coating]. Can cut top off for these methods
- See Module 6 for more details

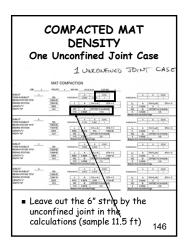

CORING EXAMPLES

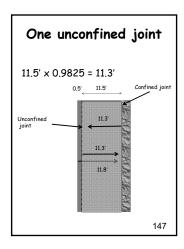
- No unconfined joints
- One unconfined joint
- Two unconfined joints



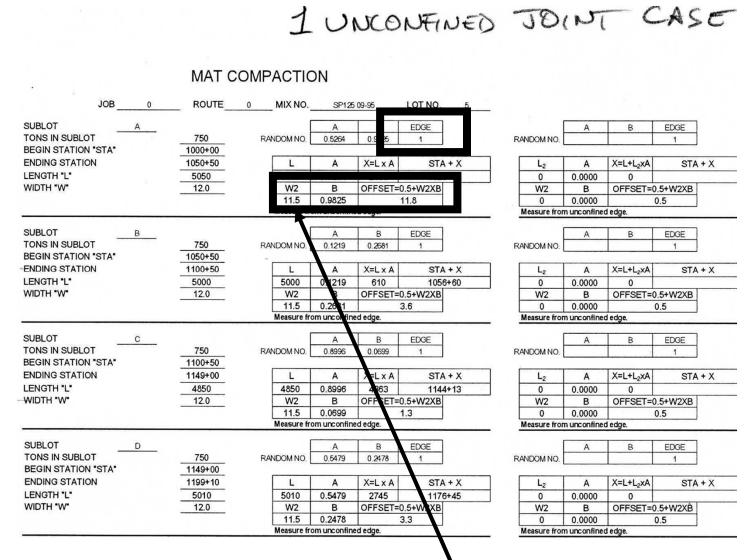
MoDOT SPREADSHEET

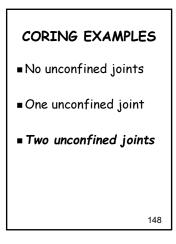

APIW 4.11 12/17/200

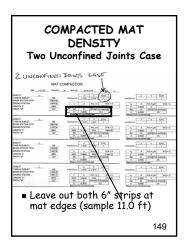


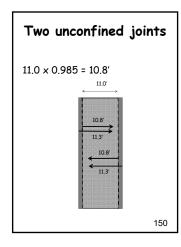

COMPACTED MAT DENSITY No Unconfined Joint Case

			00		NCON				•	(-	
					1						
	MA	T COMPACTIO	N		V						
JOB	0 ROU	TE MIX NO.	SP125	09-95	T NO. 5						
SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	A750	RANDOM NO.	A 0.5264	B E		RAN	DOM NO.	A	В	EDGE 0	
ENDING STATION	1050+5		A	X=L x A	STA + X		L ₂	A	X=L+L ₂ xA	STA	+ X
ENGTH "L"	5050	5050	0.5264	2658	1026+58		0	0.0000	0		
WIDTH "W"	12.0		B	OFFSET=0.04			W2	B	OFFSET=0	0+W2XB	
	12.0	12	0.9825	11.8			0	0.0000		0.0	
SUBLOT	в		A	BE	DGE		ſ	А	В	EDGE	
TONS IN SUBLOT	750	RANDOM NO.	0.1219	0.2681	0	RAN	DOM NO.			0	
BEGIN STATION "STA" ENDING STATION	1100+5			X=L x A	STA + X		L ₂	Α	X=L+L ₂ xA	STA	+ X
LENGTH "L"	5000	5000	0.12	610	1056+60		0	0.0000	0		
WIDTH "W"	12.0	W2	В	OFFSET=0.0+	W2XB		W2	В	OFFSET=0	.0+W2XB	
		12	0.2681	3.2		L	0	0.0000	1	0.0	
							1			EDOE]	
SUBLOT	<u>c</u> 750	RANDOM NO.	A 0.8996	0.069	DGE	DAN	DOM NO.	A	В	EDGE 0	
BEGIN STATION "STA"	1100+5		0.0990	0.005	0	- CAN	DOIVINO. [I		
ENDING STATION	1149+0	0 L	А	X=L x A	STA + X		L ₂	А	X=L+L ₂ xA	STA	+ X
ENGTH "L"	4850	4850	0.8996	4363	1144+13		0	0.0000	0		
VIDTH "W"	12.0	W2	В	OFFSET=0.0-	2XB		W2	В	OFFSET=0		
		12	0.0699	0.8		L	0	0.0000		0.0	
	-					_	ſ			5505	
SUBLOT	D750	RANDOM NO.	A 0.5479	B E 0.2478	DGE	DAN	DOM NO.	A	В	EDGE 0	
BEGIN STATION "STA"	1149+		0.5479	0.24/0		RAN	LOWINO.		II	0	
ENDING STATION	1199+		А	X=L x A	STA + X		L ₂	А	X=L+L ₂ xA	STA	+ X
LENGTH "L"	5010		0.5479	2745	1176+45		0	0.0000	0		
WIDTH "W"	12.0	W2	В	OFFSET=0.0-			W2	В	OFFSET=0		
		12	0.2478	3.0			0	0.0000		0.0	

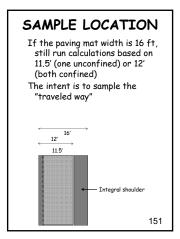

Sample full width (12 ft)

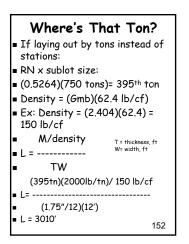





COMPACTED MAT DENSITY One Unconfined Joint Case

Leave out the 6" strip by the unconfined joint in the calculations (sample 11.5 ft) 146





COMPACTED MAT DENSITY Two Unconfined Joints Case

MAT COMPACTION J08IPI066 ROUTE06MIX NOSP12 09.65 NO5 SUBLOT A750 TONS IN SUBLOT 750 BEGIN STATION 'STA' 1000+00 12.0 100-205 VID TH 'u' 5050 VID TH 'u' 0.3225 VID TH 'u' 0.3225 VID TH 'u' 0.3225 VID TH 'u' 0.3205 VID TH 'u' 0.3205 VID TH 'u' 5000 VID TH 'u' 5000 VID TH 'u' 5000 VID TH 'u' 5000 VID TH 'u' 100+50 ENGIN STATION 'STA' 100+50 ENGIN STATION 'STA' 100+50 ENGIN STATION 'STA' 100+50 ENGIN STATION 'STA' 100+50 ENGIN TO' C	ZUNC	ONF	NED	JOINTS	CAS	2					
SUBLOTATons in SUBLOTABEDOETONS IN SUBLOT750RANDOM NO 0.5264 0.9825 2ENDING STATION1050+50LAX=L x ASTA + XUNIT 'W'505012.0WZBOFFSET=0.5+WZXBWIDT 'W'12.0WZBOFFSET=0.5+WZXBSUBLOTB750RANDOM NO 0.1219 0.2881 SUBLOTB750RANDOM NO 0.1219 0.2881 SUBLOT STATIONT100+50L A $X=L x A$ STA + XSUBLOTC750RANDOM NO 0.1219 0.2881 2 SUBLOTC750RANDOM NO 0.1219 0.2881 3.4 Messure from unconfined edgeWZBOFFSET=0.5+WZXB 0.0000 NO1100+50LAX=L x ASTA + XSUBLOTC750RANDOM NO 0.8996 0.899 2 SUBLOT 'L''4550Messure from unconfined edgeMessure from unconfined edgeSUBLOTC750RANDOM NO 0.8996 0.8996 $114.4+13$ WIDTH 'W'12.0Messure from unconfined edgeMessure from unconfined edgeSUBLOTDT149+00LA $X=L x A$ $STA + X$ UNING STATION1149+00Messure from unconfined edgeMessure from unconfined edgeSUBLOTDT0T149+10 0.69779 2.475 2.745 SUBLOTDT01149			MAT C	OMPACTION							
SUBLOTATons in SUBLOTABEDOETONS IN SUBLOT750RANDOM NO 0.5264 0.9825 2ENDING STATION1050+50LAX=L x ASTA + XUNIT 'W'505012.0WZBOFFSET=0.5+WZXBWIDT 'W'12.0WZBOFFSET=0.5+WZXBSUBLOTB750RANDOM NO 0.1219 0.2881 SUBLOTB750RANDOM NO 0.1219 0.2881 SUBLOT STATIONT100+50L A $X=L x A$ STA + XSUBLOTC750RANDOM NO 0.1219 0.2881 2 SUBLOTC750RANDOM NO 0.1219 0.2881 3.4 Messure from unconfined edgeWZBOFFSET=0.5+WZXB 0.0000 NO1100+50LAX=L x ASTA + XSUBLOTC750RANDOM NO 0.8996 0.899 2 SUBLOT 'L''4550Messure from unconfined edgeMessure from unconfined edgeSUBLOTC750RANDOM NO 0.8996 0.8996 $114.4+13$ WIDTH 'W'12.0Messure from unconfined edgeMessure from unconfined edgeSUBLOTDT149+00LA $X=L x A$ $STA + X$ UNING STATION1149+00Messure from unconfined edgeMessure from unconfined edgeSUBLOTDT0T149+10 0.69779 2.475 2.745 SUBLOTDT01149	JOB	J1P1036	ROUTE	36 MIX NO. SP	125 09-95	LA NO. 5					
LENGTH "L" Sobo Image: Construct of the second sec	TONS IN SUBLOT	Α				EDGE	RANDOM NO.	A	В		
WIDTH *W* 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB W2 B C W2 D B C <thc< th=""> <thc< td=""><td>ENDING STATION</td><td></td><td>1050+50</td><td>LA</td><td>X=L x A</td><td>STA + X</td><td>L₂</td><td>Α</td><td>X=L+L2XA</td><td>STA</td><td>+ X</td></thc<></thc<>	ENDING STATION		1050+50	LA	X=L x A	STA + X	L ₂	Α	X=L+L2XA	STA	+ X
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1	0	0.0000	0		
Measure from unconfined edge. Measure from unconfined edge. SUBLOT B 750 TONS IN SUBLOT 750 BEGIN STATION *STA* 1050+50 LINGTH *L* 5000 WIDTH *W* 12.0 WIDTH *W* 12.0 LINGTH *L* 5000 WIDTH *W* 12.0 SUBLOT C C 750 Measure from unconfined edge. SUBLOT C TONS IN SUBLOT TON EGIN STATION 11100+50 ENDING STATION 11149+00 LENGTH *L* 4850 WIDTH *W* 12.0 WIDTH *W* 12.0 Measure from unconfined edge. SUBLOT D C A Measure from unconfined edge.	WIDTH "W"		12.0			.5+W2XB	W2	В	OFFSET=	0.5+W2XB	
SUBLOTBTONS IN SUBLOT750BEGIN STATION "STA"1006950LINGTH "L"1100+50LINGTH "L"5000WIDTH "W"12.0SUBLOTCC750SUBLOTCTONS IN SUBLOTCSUBLOTCTONS IN SUBLOT750BEGIN STATION "STA"BUING STATIONSUBLOTCTONS IN SUBLOT750BEGIN STATIONSUBLOTCTONS IN SUBLOTC750BEGIN STATIONSUBLOT750RANDOM NO.LAX=L XASUBLOTCTONS IN SUBLOTTONS IN SUBLOTTONS IN SUBLOT1100+50BEGIN STATIONSUBLOTCDTONS IN SUBLOTDTONS IN SUBLOTDTONS IN SUBLOTDDNOMDDCONSTATIONSUBLOTDTONS IN SUBLOTDDTONS IN SUBLOTDCONSTATIONSUBLOTDTONS IN SUBLOTDDTONS IN SUBLOTDDTONS IN SUBLOTDDTONS IN SUBLOTDDTONS IN SUBLOTDDNUDH "W"110						1.3				0.5	
TONS IN SUBLOT 750 RANDOM NO. 0.1219 0.281 2 RANDOM NO. A B $ELOCE$ BEGIN STATION 'STA' 1100+50 $1100+50$ $11100+50$ $1100+50$	and the second se			Measur from uncon	fined edde.	Although the	Measure from	n unconfined	d edge.		
TONS IN SUBLOT 750 BEGIN STATION RANDOM NO. 0.1219 0.2881 2 RANDOM NO. 0.1219 0.2881 2 ENDING STATION 1100+50 SUBLOT 1100+50 12.0 L X=L x A STA + X L 2 A X=L+L_2XA STA + X WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB 0 0.0000 0.5 WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB 0 0.0000 0.5 SUBLOT C TONS IN SUBLOT RANDOM NO. 0.8996 0.699 2 Measure from unconfine edge. SUBLOT IN STA* 1100+50 RANDOM NO. 0.8996 0.899 2 Measure from unconfine edge. WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB Measure from unconfine edge. W2 B OFFSET=0.5+W2XB Measure from unconfine edge. SUBLOT D TONS IN SUBLOT Neesure from unconfine edge. W2 B OFFSET=0.5+W2XB Measure from unconfine edge. SUBLOT D	SUBLOT	в		A	B	FDGE	1	٨		EDGE	1
BEGIN STATION 'STA* 1050+50 ENDING STATION 1100+50 LENGTH 'L* 5000 WIDTH 'W* 12.0 SUBLOT C TONS IN SUBLOT 750 BEGIN STATION 1149+00 LL A X=LXA STA + X LA X=LXA STA + X 0.0000 0.0000 WIDTH 'W* 12.0 WIDTH 'W* 12.0 WIDTH 'W* 12.0 KANDOM NO. 0.4996 OBSS 500 2 Measure from unconfined edge. Measure from unconfined edge. SUBLOT D MUDTH 'W* 12.0 WIDTH 'W* 12.0 NUBUNG STATION 1149+00 ENDING STATION 1149+00 ENDING STATION 1199+10 LENGTH 'L' 5010<	TONS IN SUBLOT		750				RANDOM NO	A	- D		
LENGTH *L* 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000	BEGIN STATION "STA"		1050+50								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ENDING STATION		1100+50	LA	X=L x A	STA + X	L ₂	A	X=L+L ₂ xA	STA	+ X
WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB 11 0.2881 3.4 Measure from unconfinal edge. Measure from unconfinal edge. Measure from unconfinal edge. Measure from unconfinal edge. SUBLOT C TONS IN SUBLOT TONS IN SUBLOT A B EDGE Measure from unconfinal edge. Measure from unconfined edge. ENDING STATION 'STA' 1100+50 L A X=L XA STA + X Measure from unconfined edge. WIDTH "V" 12.0 L A X=L XA STA + X Measure from unconfined edge. SUBLOT 1149+00 L A X=L XA STA + X 0 0.0000 0 WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D ToNS IN SUBLOT ToNS IN SUBLOT <td>LENGTH "L"</td> <td></td> <td>5000</td> <td>5000 0.12</td> <td>610</td> <td>1056+60</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	LENGTH "L"		5000	5000 0.12	610	1056+60			-		
Measure from unconfinite edge. Measure from unconfinite edge. Measure from unconfinite edge. SUBLOT C A B EDGE Measure from unconfined edge. TONS IN SUBLOT 750 RANDOM NO. 0.8996 0.8996 0.8996 2 ENDING STATION 1149+00 L A X=L x A STA + X A B EDGE WIDTH "V" 12.0 W2 B OFFSET=0.5+W2XB Measure from unconfined edge. Measure from unconfined edge. SUBLOT D Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D RANDOM NO. A B EDGE Measure from unconfined edge. SUBLOT D RANDOM NO. A B EDGE Measure from unconfined edge. SUBLOT D RANDOM NO. A B EDGE Measure from unconfined edge. <t< td=""><td>WIDTH "W"</td><td></td><td>12.0</td><td>W2 B</td><td>OFFSET=0</td><td>.5+W2XB</td><td>W2</td><td></td><td>OFFSET=</td><td>0.5+W2XB</td><td></td></t<>	WIDTH "W"		12.0	W2 B	OFFSET=0	.5+W2XB	W2		OFFSET=	0.5+W2XB	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.4	0	0.0000		0.5	
TONS IN SUBLOT 750 RANDOM NO. A 996 COUST RANDOM NO. A 96 COUST RANDOM NO. A 149+00 A 149+00 A 1000000 A 1144+13 A 10000000 A 1000000 A 10000000 A 10000000 A 10000000 A 10000000 A 10000000 A 10000000 A 100000000 A 1000000000 A 1000000000000000000000000000000000000	Sector States and States			Measure from uncon	finad edge.		Measure from	nunconfined	d edge.		
TONS IN SUBLOT 750 RANDOM NO. 0.8996 0.6999 2 RANDOM NO. A B EDDE BEGIN STATION *STA* 1100+50 1149+00 L A X=L_XA STA + X L L A X=L_XA STA + X 0 0.0000 0 LENGTH *L* 4850 4850 0.8996 4363 1144+13 0 0.0000 0 W2 B OFFSET=1.5+W2XB 0 0.0000 0 W2 B OFFSET=0.5+W2XB 0 0.0000 0.5 W2 B OFFSET=0.5+W2XB 0 0.0000 0.5 Measure from unconfined edge. M2 B OFFSET=0.5+W2XB 0 0.0000 0.5 Measure from unconfined edge. M2 B OFFSET=0.5+W2XB 0 0.0000 0.5 Measure from unconfined edge. M2 B EDGE Measure from unconfined edge. M2 B A B EDGE Measure from unconfined edge. M2 M2 <td>SUBLOT</td> <td>C</td> <td></td> <td></td> <td></td> <td>FDOF</td> <td>ï</td> <td></td> <td></td> <td></td> <td></td>	SUBLOT	C				FDOF	ï				
BEGIN STATION *STA* 1100+50 L A X=L XA STA + X ENDING STATION 1149+00 L A X=L XA STA + X LENGTH *L* 4850 4850 0.8996 4363 1144+13 WIDTH *W* 12.0 W2 B OFFSET=1.5+W2XB 0 0.0000 0 SUBLOT D Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D 750 RANDOM NO. 0.5479 0.2478 2 RANDOM NO. 129 ENDING STATION *STA* 1149+00 L A X=L x A STA + X 0 0.0000 0.5 BEGIN STATION *STA* 1149+00 L A X=L x A STA + X 0 0.0000 0.5 BEGIN STATION *STA* 1149+00 L A X=L x A STA + X 0 0.0000 0.5 WIDTH *W* 12.0 V2 B OFFSET=0.5+W2XB 0 0.0000 0 0 WIDTH *W* 12.0 W2 B			750				PANDOMINO	A	В		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1044DOM/140. 0.033	0.033	2	RANDOMINO.			2	
LENGTH *L* 4850 4850 0.8996 4363 1144+13 0 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=1.5+W2XB 0 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=1.5+W2XB 0 0.0000 0 SUBLOT D Measure from unconfined edge. SUBLOT D 750 RANDOM NO. 0.5479 0.2478 2 Measure from unconfined edge. ENDING STATION *STA* 1149+00 L A X=L x A STA + X 2 ENDING STATION 1199+10 L A X=L x A STA + X 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=0.5+W2XB 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=0.5+W2XB 0 0 0 0 0.0000 0.5				LA	X=L x A	STA + X	L ₂	A	X=L+L ₂ XA	STA	+ X
Max Max B EDGE Measure from unconfined edge. SUBLOT D Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D TONS IN SUBLOT 750 RANDOM NO. 0.5479 0.2478 2 Measure from unconfined edge. ENDING STATION *STA* 1149+00 L A X=L x A STA + X L2 A X=L+L_2XA STA + X LENGTH *L* 5010 0.5479 2745 1176 45 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB 0 0.0000 0.5	LENGTH "L"		4850	4850 0.8996	4363	1144+13		0.0000	-		
11 0.0699 18 0 0.0000 0.5 Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. Measure from unconfined edge. SUBLOT D Random No. 0.5479 0.2478 2 Measure from unconfined edge. ENDING STATION *STA* 1149+00 L A X=L x A STA + X C L2 A X=L+L_2xA STA + X LENGTH *L* 5010 0.5479 2745 1176 45 0 0.0000 0 WIDTH *W* 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB 0 0.0000 0.5	WIDTH "W"		12.0	W2 B	OFFSET=	.5+W2XB	W2	В	OFFSET=	0.5+W2XB	
SUBLOT D TONS IN SUBLOT 750 BEGIN STATION *STA* 1149+00 ENDING STATION 1199+10 LENGTH *L* 5010 WIDTH *W* 12.0 VUE B OFFSET=0.5+W2XB 0 0.0000 11 0.2478 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000				11 0.0699) 1	3	0	0.0000			
TONS IN SUBLOT 750 RANDOM NO. 0.5479 0.2478 2 RANDOM NO. A B EDDE BEGIN STATION *STA* 1149+00 1199+10 0.5479 0.2478 2 RANDOM NO. 2 2 0 2 0				Measure from uncon	fined edge.		Measure from	nunconfined	d edge.		
TONS IN SUBLOT 750 RANDOM NO. 0.5479 0.2478 2 RANDOM NO. A B EDDE BEGIN STATION *STA* 1149+00 1199+10 0.5479 0.2478 2 RANDOM NO. 2 2 0 2 0	SUBLOT	D					r		1 1		
BEGIN STATION "STA" 1149+00 ENDING STATION 1199+10 LENGTH "L" 5010 WIDTH "W" 12.0 WZ B OFFSET=0.5+W2XB 11 0.2478 3.2 0 0.0000 W2 B 0 0.0000 0 0.0000			750				SUSSIL	A	В		
ENDING STATION 1199+10 L A X=L x A STA + X LENGTH "L" 5010 0.5479 2745 1176 45 0 0.0000 0 WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB 0 0.0000 0 11 0.2478 3.2 0 0.0000 0.5				RANDOM NO	0.24/8	2	RANDOM NO. [2	
LENGTH "L" 5010 0.5479 2745 1176 45 0 0.0000 0 WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB 0 0.0000 0 0 11 0.2478 3.2 0 0.0000 0.5 0 0.0000 0.5				LA	X=L x A	ST + X		۵	X=I +I -YA	STA	+ Y
WIDTH "W" 12.0 W2 B OFFSET=0.5+W2XB W2 B OFFSET=0.5+W2XB 11 0.2478 3.2 0 0.0000 0.5		1.1.1.1							-	314	1 + 1
11 0.2478 3.2 0 0.0000 0.5									-	5+14/2YP	
0.0000 0.0											
Measure from unconfined edge. Measure from unconfined edge.	The second second	Section 1	Constant Mary							0.0	

Leave out both 6" strips at mat edges (sample 11.0 ft)

PAY ADJUSTMENT FACTORS

- QLA Pay Factors
- TSR Pay Adjustment Factor (403.23.5)
- Density Pay Adjustment Factor [403.23.7.4.1(b)]
- Longitudinal Joint
 Density Pay Adjustment
 Factor
- Smoothness Pay Adjustment Factor
 153

12/17/19

		CORING SUI	MMARY	
Where	Who	Core Location Determination	Coring Frequency	Pay Facto Type
Traveled Way	QC	Random	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	Tuctor
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pa Adjustmen Factor
Longitudinal Joint, confined		Considered p	part of the traveled way	
Longitudinal Joint, unconfined	QC	Random Number	1 sample/sublot	Longitudina Joint Density Pa Adjustmen Factor
	QA	Random Number	1 sample/ 4 sublots.	
Base widening, entrances	Not QLA	2222	RE discretion	Density Pa Adjustmen Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/sublot	Density Pa Adjustmen Factor

SUMMARY

- 1. Lots unlimited size.
 2. Each lot must be subdivided into 4 or more sublots.
- 3. Maximum sublot size= 1000 tons
- 4. QC & QA get their own independent loose mix samples. Both are to be located by random number.

155

SUMMARY

5. Loose mix volumetrics-%binder samples taken behind the paver:
QC: 1 sample per sublot: 50 lbs. for QC 50 lbs. for QA-retained
-QA: 1 independent sample per 4 sublots 50 lbs. 50 lbs. 50 lbs. 50 lbs. retained
-QA: 1 QC retained split per day

CORING SUMMARY

Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	2 2
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined		Considered p	part of the traveled way	/
Joint, confined Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	????	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/ <u>sublot</u>	Density Pay Adjustment Factor

CoringSummary.doc (3-2-16)

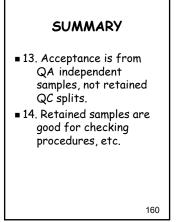
SUMMARY

 6. Loose mix TSR samples taken behind the paver or plant:
 QC: 1 per 10,000 tons: 75-125 lbs for QC 125 lbs for QAretained
 QA: 1 independent sample per 50,000 tons 125 lbs sent to Central Lab, 125 lbs retained

157

SUMMARY

- 7. Location by random numbers:
 - longitudinally by tonnage or feet
 - \blacksquare transversely by feet
- 8. Sample is quartered:
 - 2 gyro pucks
 - 1 Rice
 - 1 binder content (nuclear or ignition oven)


158

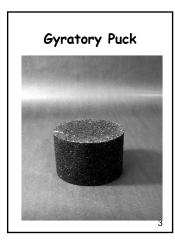

- 1 moisture content
- 9. TSR sample split: 6+ pucks and a Rice

SUMMARY

■ 10. Coring:

- QC: 1 QLA sample per sublot
- QA: 1 QLA sample per 4 sublots
- 11. Location by random
- numbers:
- longitudinally by station or tonnage
- transversely by feet
- 12. Extra samples may be taken by the contractor or MoDOT, but are not allowable as QLA samples.

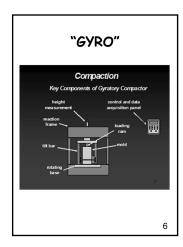
MODULE 6

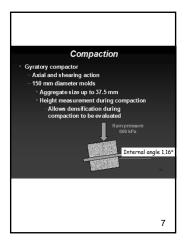

GYRATORY COMPACTOR OPERATIONS T 312

11-24-06 Revision 11-9-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 2-5-15 Revision 12-28-16 Revision 12-12-18 Revision 1-11-19 Revision 1-14-19 Revision 2-8-19 Revision 2-25-19 Revision 12-17-19 Revision

<section-header><section-header>

OUTLINE


- Introduction
- Compaction method
- Bulk specific gravity of gyro pucks
- Calculations
- Verification & Calibration

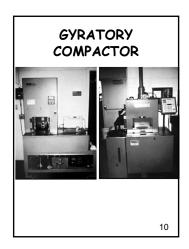


GYRATORY COMPACTOR

- Uses a gyratory motion which compacts by shearing action
- Simulates compacting action achieved under a roller
- The resulting specimen's density, particle orientation and structural characteristics are similar to a pavement

USES of the GYRO

- 1. During mix design (lab fabricated sample)
 2. During construction
- 2. During construction for field verification (plant-mixed material)


USES, cont'd.

8

9

■ To evaluate:

- volumetric properties e.g. air voids and VMA
 densification properties e.g. tenderness potential
- moisture sensitivity (TSR)

GYROS In Missouri

In descending order of usage:

- Big PineBaby Pine
- Troxler 4141
- Troxler 4140
- Brovold

OUTLINE

Introduction

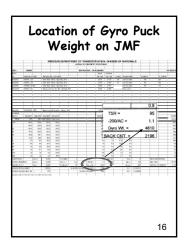
- Compaction method
- Bulk specific gravity of gyro pucks

Calculations

Verification & Calibration

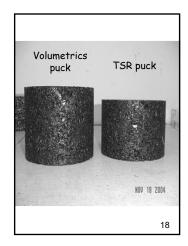
13

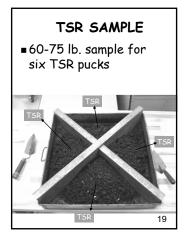
AASHTO TEST METHODS & SPECIFICATIONS

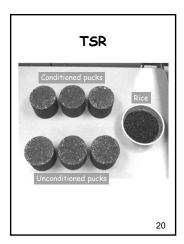

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)
- Voidless Mix (Rice)
 T 283 Moisture Sensitivity

14

Volumetrics/Binder Content Sample

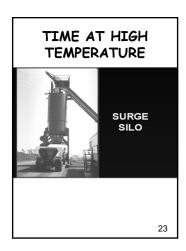

 50 lb. sample -get 2 portions for the 2 volumetric pucks

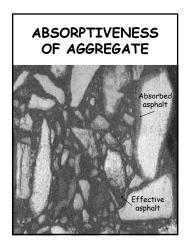

OPERATIONAL MODES

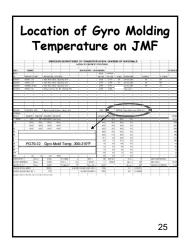

- 1. Normally, compact to a fixed number of gyrations; resulting height must be =115 ± 5 mm
- 2. For TSR, compact to a fixed height = 95 ± 5 mm

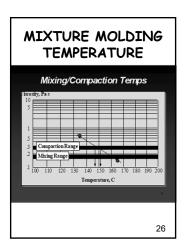
Location of Gyro Puck Weight on JMF

								ONCRETE T				MATERI			1		
						AS	PHALICC	UNCRETE I	TPE SP120	пв							
DA TE =	10/29/03						CONTRAC	TOR = MY E	BUSINESS						-	S	P125 03-1
IDENT.									BULK	APPAR.					-		
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATI	NC				SP. GR.	SP. GR.	%ABS	FORMATIO	N	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.515	2.713	2.9	Jet City Dol	lo.	5-8		25	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dol		5-8		25	
35JSJ003	1002MSM		/ Hard Rock						2.480	2.761		Jet City Dol		5-8		10	
30CAJ016	1002HLHL				e. General, M	10			2.303	2.303		Hyd. Lime					
			,,	,								.,			-		
												1		-			
															0.9		
36DLJ016	1015ACPG	.7022	/ Black Asp	halt Product	s, Decoy, MC	2			1.023								
MATERIAL										TS	R =				95		
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CAJ016					35JSJ0								COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime	Ì				60		o la c				[GRA
1 1/2"	100.0	100.0	100.0	100.0					6(-20	0/AC	, ==			1.1		100.
1"	100.0	100.0	100.0	100.0					60	_							100.
3/4"	100.0	100.0	100.0	100.0					60	GVI	ro W	1. m	_	_ 46	10		100.
1/2"	97.6	100.0	100.0	100.0					58								98.
3/8"	83.8	96.1	100.0	100.0					50		CON	ПТ =		24	96		89.
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.0			61	30		51.
#8	7.0	8.0	82.0	100.0					4.2	1.0	21.3	3 2.0					28
#16	2.6	3.5	40.7	100.0					1.6	0.4	10	2.0					14.
#30	1.6	2.6	26.6	100.0					1.0	0.3	6.1	9 2.0					10.
#50	1.6	2.1	13.5	100.0					1.0	0,2	3.	5 2.0					6.
#100	1.5	1.9	5.4	100.0					0.9	0.2	1.4	4 2.0)				4.
#200	1.5	1.8	4.2	99.0					0.9	0.2	1.	1 2.0)				4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		TSR =	95	SR Wt.		Nini =	: 9	9	MIX COM	POSITION	
CHARACTERIS	STICS	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	38 0		Ndes =	12	5	MIN. AGO	Э.	93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	4610	\mathcal{D}		Nmax =	20	5		T CONTENT	6.29
CALIBRATION	NUMBER		90004			MASTER	GAUGE D	CNT =	2100	\nearrow		A1 =	-5.23474	1			
	GE SER NO	_	770					WEIGHT =	7200			A2 =	3,43689	5			

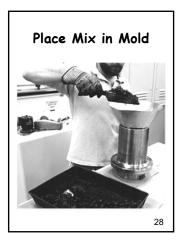


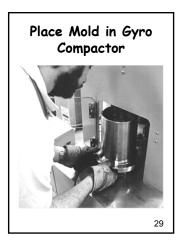

SAMPLE PREP


- Mix design lab-produced sample: prior to compaction, condition sample in oven for 2 hours at compaction temperature.
- Absorption is occurring during this step.
- Field verification sample: no special conditioning step; conditioning occurs in silo, truck, and MTV.
- Recommended that reheating of field sample should not exceed 30 min.₂₁


TIME AT HIGH TEMPERATURE

- Continued absorption of asphalt
- Age-hardening of asphalt



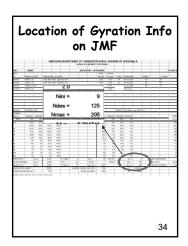


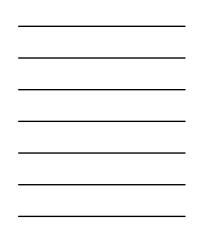
Location of Gyro Molding Temperature on JMF

							PHALTIC CONCRE							 		
						A 3	PHALTIC CONCRE	TE TIPE SPI25	пр							
DA TE =	10/29/03						CONTRACTOR =	MY BUSINESS							s	P125 03-1
IDENT.								BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATI	ON			SP. GR.	SP. GR.	%ABS	FORMATION	1	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO			2.515	2.713	2.9	Jet City Dold).	5-8	1	25	
35JSJ002	100204LD	1	/ Hard Rock	Stone, Dig	Deep, MO			2.476	2.725	3.7	Jet City Dolo).	5-8	1	25	
35JSJ003	1002MSM	SLD	/ Hard Rock	Stone, Dig	Deep, MO			2.480	2.761		Jet City Dolo).	5-8	f	10	
30CAJ016	1002HLHL		/ Missy Lim	e Co. #2, St	e. General, N	10		2.303	2.303		Hyd. Lime					
									_							
36DLJ016	1015ACPG	.7022	/ Black Aspl	halt Product	s, Decoy, MO)		1.023	($($ $)$	PG70-22	Gyro Mold T	emp. 300-3	10°F) — —		
MATERIAL													\square			
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CA J016				35JSJ001	35JSJ002	35JSJ003	300A3010					COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime				00.0	12.0	26.0	2.0					GRA
1 1/2"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100
1"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100
3/4"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100
1/2"								58.6	12.0	26.0	2.0					98
3/8"								50.3	11.5	26.0	2.0					89
#4								19.1	4.2	26.0	2.0					51.
#8								4.2	1.0	21.3	2.0					28
#16	PG7	0-22	Gyro	Mok	i Tem	p. 300)-310°F	1.6	0.4	10.6	5 2.0					14.
#30				<u> </u>				1.0	0.3	6.9	2.0					10.
#50								1.0	0.3	3.5	5 2.0					6.
#100								0.9	0.2	1.4	2.0					4.
#200	1.5	1.8	4.2	99.0				0.9	0.2	1.1	2.0					4.
LABORATORY		Gmm =	2.405		% VOIDS =	4	TSR =	95	TSR Wt.		Nini =	9		МІХ СОМРО	SITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4	-200/A0	C = 1.1	3855.0		Ndes =	125		MIN. AGG.		93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72	Gyro W	/t. = 4610			Nmax =	205		ASPHALT C	ONTENT	6.29
CALIBRATION I	NUMBER		90004			MASTER	R GAUGE BACK CN	IT. = 2196			A1 =	-5.234741				
	GE SER NO		770				SAMPLE WEIGH				A2 =	3.436895				

GYRO SETTINGS

- Pressure= 600 ± 18 kPa
- Number of gyrations is a function of design traffic


GYI	RATI	ON LEV	ELS
Design	N _{initial}	N_{design}	N _{maximum}
F		50	
E	7	75	115
С	8	80 or 100	160
В	9	125	205
N _{initia} = SMA = N _{de}	I or N _{ma} : _{sign} = 100	0 gyrations: _x requireme uirement	


NUMBER OF GYRATIONS

- N_{ini}= initial number of gyrations: at a low number, the ease of mix densification is analyzed to spot tenderness potential.
- N_{des}= the number of gyrations corresponding to the design traffic; want 4% air voids at this point (96% density)
- N_{max}= maximum number applied to the specimen to assess densification after many years; want > 2% V_a (<98% density) 32

NUMBER OF GYRATIONS

- N_{ini}, N_{des}, and N_{max} are shown on the JMF.
- Samples for field verification of volumetrics should be compacted to N_{des} gyrations.

12/17/19

Location of Gyration Info on JMF

												MATERI					
						AS	SPHALTIC	CONCRETE T	TPE SP12	нв							
DA TE =	10/29/03						CONTRA	CTOR = MY E	BUSINESS							s	SP125 03-1
IDENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATI	ON				SP. GR.	SP. GR.	%ABS	FORMATIO	N	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.515	2.713	2.9	Jet City Dol	D.	5-8		25	
35JSJ002	100204LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.476	2.725	3.7	Jet City Dol	D.	5-8		25	
35JSJ003	1002MSM	SLD	/		20					2.761		Jet City Dol	D.	5-8		10	
30CAJ016	1002HLHL		/		2.0					2.303		Hyd. Lime					
			-	N	ini =			9	9								
				Nd	98 =			12	5								
36DLJ016	1015ACPG	7022	/								PG70-22	Gyro Mold 1	emp. 300-31	0°F			
MATERIAL			1	Mm				- 20	5								
IDENT #	35JSJ001	35JSJ002						<u> </u>	0	35JSJ002	35JSJ003	30CAJ016					COME
03016	3/4"	3/8"	N				-).() 12.0	26.0	2.0					GRA
1 1/2"	100.0	100.0			.			174	a).(12.0	26.0	2.0					100.
1"	100.0	100.0	100.0	100.0					60.	12.0	26.0	2.0					100
3/4"	100.0	100.0	100.0	100.0					60	12.0	26.0	2.0					100
1/2"	97.6	100.0	100.0	100.0					58.6	6 12.0	26.0	2.0					98.
3/8"	83.8	96.1	100.0	100.0					50.3	3 11.5	26.0	2.0					89.
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.0	2.0					51.
#8	7.0	8.0	82.0	100.0					4.2	2 0	21.3	3 2.0					28
#16	2.6	3.5	40.7	100.0					1.6	6 0.4	10.6	5 2.0					14.
#30	1.6	2.6	26.6	100.0					1.(0.3	6.9	9 2.0					10.
#50	1.6	2.1	13.5	100.0					1.(0.3	3.6	5 2.0					6.
#100	1.5	1.9	5.4	100.0					0.9	0.2		1					4.
#200	1.5	1.8	4.2	99.0					0.9	0.2		2.0					4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		TSR =	9	5 TSR Wt.		Nini =	9		MIX COMPO	OSITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.		93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	461)		Nmax =	205		ASPHALT C	ONTENT	6.29
CALIBRATION I	NUMBER		90004			MASTER	R GAUGE	BACK CNT. =	219	3		A1 =	-5.234741				
MASTER GAU	GE SER NO	. =	770				SAMPL	E WEIGHT =	720)		A2 =	3.436895				

NOTES

- OPERATION
 Clean rollers with solvent
 - Keep rotation ring cleaned and oiled
 - Periodically, check oil level
 - Make sure antirotational cogs are tight. Keep some spares on hand.

38

RECORD KEEPING

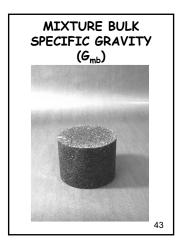
- Must have a unique ID on each piece of equipment
- Must keep a list of equipmment for IAS inspection

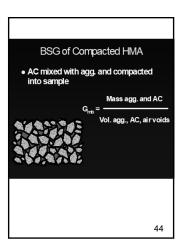
COMMON GYRO ERRORS

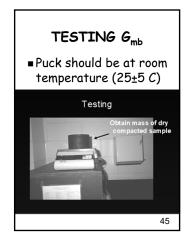
 Not placing a paper disk on bottom or top of specimen

- Not removing paper disks while puck is still warm
- Not using top or bottom plates
- Not compacting mix at proper temperature
- Not properly verifying the calibration of the compactor prior to use
- Not pre-heating the mold and plates
- Not charging the mold with mix quickly in one lift without spading or rodding

40

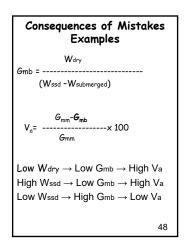

COMMON GYRO ERRORS, cont'd.


- Avoid allowing built-up asphalt in gyro mold to smear the sides of the puck as it is extruded, closing off voids. As a minimum, wipe off top and bottom lids after every puck.
- Don't let paper disks become brittle by keeping them in in bottom of mold in oven overnight


41

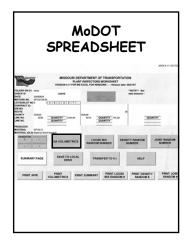
OUTLINE

- Introduction
- Compaction method
- Bulk specific gravity of gyro pucks
- Calculations
- Verification & Calibration

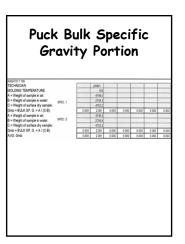


COMMON G_{mb} TESTING ERRORS

- Submerged specimens touch side of water container
- Water temperature not 25 ± 1
 C (77 ± 1.8 F)
- Specimen temperature not 25 ± 5 C (77 ± 9 F)
- Dirty water in water container
 Air bubbles clinging to the basket
- Blotting with a dry towel
- Blotting more than 15 seconds
- Water level not maintained
 47



OUTLINE


Introduction

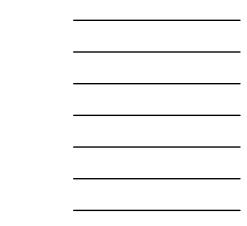
- Compaction method
- Bulk specific gravity of gyro pucks
- Calculations
- Verification & Calibration

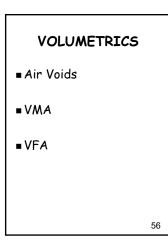
Calculations	
• G _{mb} = A / (B - C)	
Where: A = mass of dry sample B = mass of SSD sample C = mass of sample under v	vater

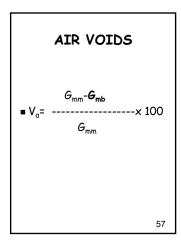
JOB ROUTE	MIX NO.	6P125		LOT NO.			
SUBLOT	A	0	0	D	e	*	
AASHTO T 209	Alterated	afters TBS at	monthing to 1	0% on any a	posteriorile film:	500	
TECHNICIAN	(a	protect			a carden a		
A = Wt. of sample:		20/4.4					
A2=Wit. of sample (dry-back):							
D = WL of flask filled with water: X = A + D (A2 used in lieu of A for dru-back)	0.0	1392.3	0.0	0.0	0.0	0.0	
E = Wt. of fask filled with water and sample:	0.0	2028.1	9.0			0.0	-
	0.0	842.8	0.0	0.0	0.0	0.0	
0mm = MAX. SPECIFIC GRAVITY = A / Y	0.000	2.470		2.470	2.470	2.470	
AAU-ITO T 166 TECHNICIAN							
TECHNICIAN MOLDING TEMPERATURE		162	-	-			
A = Weight of sample in air:	-	4748.0		-			
B = Weight of sample in water: onco a		2758.3			-	-	
C = Weight of surface dry sample:		4792.2				-	
Gmb = BULK SP. G. = A / (C-B)	0.000	2.361		0.000	0.000	6.000	
A = Weight of sample in air: B = Weight of sample is air: 5PEC.2	_	4748.0					
B = Weight of sample in water: 5PEC. 2 C = Weight of surface dry sample:	-	2758.8		-			
Gmb = BULK SP. G. = A / (C-B)	0.000	2 361	0.000	0.000	0.000	0.000	-
AVG. Gmb	0.000	2 361	0.000	0.000	0.000	0.000	
			_				_
TECHNICIAN MIDOT TMM, PUCLEARD		1994			_	_	
SAMPLE WEIGHT		1					
BACKGROUND							
COUNTS		_			_		
GAUGE % AC							
		6.71				1	
NUCLEAR OR IONITION	_						
% MOISTURE % AC BY IGNITION OR NUCLEAR		0.12			-		
AASHTO R 35			_				-
	0.000	2.470	2.470	2.470	2.475	2.479	2.
8 = Gmb (FIELD) (Avg.)	0.000	2.361	0.000	0.000	0.000	0.000	
C = Geb (Job Mix) D = Ps = Percent Agg. in mix	100.0	2.642	0.000	0.000	0.000	0.000	- 61
D = Ps = Percent Agg. in mix VMA = 100 - (B X D / C)	0.0	94.4	100.0	100-0	100-0	900.0	50
VMA = 100 - (0 X 0 / C) Va = 100 X (IA - B) / A)	0.0	3.0	100.0	100.0	100-0	100.0	10
VFA = (VMA-Va) / VMA	00	76	100.0	6		-00.0	
· · · · · · · · · · · · · · · · · · ·							
Veight in water:		_		-		_	-
Neight of surface dry sample:	-						-
+ CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	-
= MAX. SPECIFIC GRAVITY (T209)	0.000	2.470	2.470	2.470	2.475	2.475	- 7
IMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	_
KNESS OT			0	0			-
	<u> </u>		d	0		,	-
no core manor See Updated v	vorksk	leet					-
Veight of sample in air:							
Veight in water;							_
reight of surface dry sample: = CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	6.000	-
= CORE SPECIFIC GRAVITY = A / (C - B) = MAX, SPECIFIC GRAVITY (T209)	0.000	2.470	2.470	2.670	2.470	2.470	-1

Excessive Water Absorption

- MoDOT now enforcing the water absorption check: at the end of the test, water absorption is calculated:
- Abs= [(B A) / (B C)] × 100
- \blacksquare A= mass dry specimen in air
- B = mass SSD specimen in air
- C = mass specimen in water
- If greater than 2%, must re-run using CoreLok (T331) or paraffin coated (wrapped) ["Parafilm"] specimen (D1188)

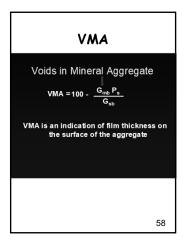

SUPERPAVE MIXTURE PROPERTIES

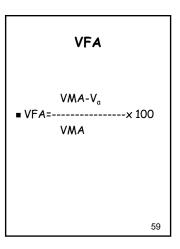

				LOT NO.			
SUBLOT	A	В	С	D	E	F	
DATE		08/24/09					
AASHTO T 209	A2 required		sorption >2	.0% on any a	ggregate frac	ction.	
		phillc1 2076.6					
A = Wt. of sample: A2=Wt. of sample (dry-back):		2076.6					
D = Wt. of flask filled with water:		1392.3					
X = A + D (A2 used in lieu of A for dry-back)	0.0	3468.9	0.0	0.0	0.0	0.0	0.0
E = Wt. of flask filled with water and sample:		2628.1					
Y = X - E	0.0	840.8	0.0	0.0	0.0	0.0	0.0
Gmm = MAX. SPECIFIC GRAVITY = A / Y	0.000	2.470	2.470	2.470	2.470	2.470	2.470
AASHTO T 166							
TECHNICIAN		phillc1					
MOLDING TEMPERATURE		152					
A = Weight of sample in air:		4748.0					
B = Weight of sample in water: SPEC. 1		2758.3					
C = Weight of surface dry sample:		4752.2					
Gmb = BULK SP. G. = A / (C-B)	0.000	2.381	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air: B = Weight of sample in water: SPEC. 2		4748.0					
C = Weight of surface dry sample:		2758.8 4753.2					
G = Weight of surface dry sample. Gmb = BULK SP. G. = A / (C-B)	0.000	2.381	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	0.000	2.381	0.000	0.000	0.000	0.000	0.000
TECHNICIAN		phillc1					
MoDOT TM54 (NUCLEAR)							
SAMPLE WEIGHT							
BACKGROUND							
COUNTS							
GAUGE % AC							
AASHTO T 308 (IGNITION) GAUGE %AC		5.71					
NUCLEAR OR IGNITION		9 .7.1					
% MOISTURE		0.12					
% AC BY IGNITION OR NUCLEAR		5.6					
AASHTO R 35		-					
A = Gmm (FIELD)	0.000	2.470	2.470	2.470	2.470	2.470	2.470
B = Gmb (FIELD) (Avg.)	0.000	2.381	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)		2.642	0.000	0.000	0.000	0.000	0.000
D = Ps = Percent Agg. in mix	100.0	94.4	100.0	100.0	100.0	100.0	100.0
VMA = 100 - (B X D / C)	0.0	14.9	0.0	0.0	0.0	0.0	0.0
Va = 100 X ((A - B) / A)	0.0	3.6	100.0	100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA	0	76	0	0	0	0	0
veignt of sample in all.							
Veight in water:							
Veight of surface dry sample:							
= CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	0
= MAX. SPECIFIC GRAVITY (T209)	0.000	2.470	2.470	2.470	2.470	2.470	2
DMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	
KNESS							
LOT	A	В	С	D	E	F	
ND CORE SUBLOT VSECENOTODATED V	unkal	neet					
	167 101	ICCI					
Veight of sample in air:							
Veight in water:							
Veight of surface dry sample:							
= CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	0.
I = MAX. SPECIFIC GRAVITY (T209)	0.000	2.470	2.470	2.470	2.470	2.470	2.
MPACTION OF COPE - 100 × (Gmc / Gmm)							


Puck Bulk Specific Gravity Portion

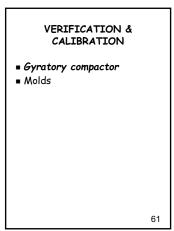
AASHTO T 166								
TECHNICIAN			phillc1					
MOLDING TEMPERATURE			152					
A = Weight of sample in air:			4748.0					
B = Weight of sample in water:	SPEC. 1		2758.3					
C = Weight of surface dry sample:	OFLO. I		4752.2					
Gmb = BULK SP. G. = A / (C-B)		0.000	2.381	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air:			4748.0					
B = Weight of sample in water:	SPEC. 2		2758.8					
C = Weight of surface dry sample:			4753.2					
Gmb = BULK SP. G. = A / (C-B)		0.000	2.381	0.000	0.000	0.000	0.000	0.000
AVG. Gmb		0.000	2.381	0.000	0.000	0.000	0.000	0.000

Check fo Water Up to 2 Cores	At	oso	orp	otic	on	-	n
Induition Trees T 1660 N = Marcia Interpreter Intel S = Marcia Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent S = Marcia Intelligent S = Marcia Intelligent S = Marcia Intelligent Intelligent Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent Intelligent S = Marcia Intelligent S = Marcia Intell	6.000 6.000 6.0	6.000 0.000 0.0	1.000 1.000 0.0	0.00 0.00 0.0	6.000 6.000	6.000 8.000 6.0	600 600 60
$ \begin{array}{l} \label{eq:constraints} \label{eq:constraints} \\ \mbox{rescale} \end{tabular} \end{tabular} \\ \mbox{a} \end{tabular} \end{tabular} \\ \mbox{a} \end{tabular} \end{tabular} \\ \mbox{a} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \mbox{a} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \mbox{a} \end{tabular} \e$	6.000 6.000 6.0	0.000 0.000 0.0	202 202 202 0.0	0.00 0.00 0.00 0.0 0.0	6.000 6.000 6.0 6.0	6000 600 60	60X 60X 84 84
Adductor Tator Concelok The Onderwood Concelok Data Mana Dea Mana De Mana sample methods De Mana	4.0	0.0	60	0.0	6.6	60	6
f = Blag specific gravity. grav_production_column Gene = Ar (C = 0 + A) = C = (A + A) F (E) Grave = A (Grave) Grave = Bar, SPECOFIC GPANISTY (1209) SCOMPACTION OF COPIE = 100 ± (Grave / Grave) CHECK (S) CHECK (S) DEMONDER DEMONDER SUBLIDT SUBLIDT	8.000 8.000 6.0	0.000 0.000 0.0	2.04 2.04 0.0	0.00 0.00 2.0	6200 6200 62	8.000 8.000 6.0	6.03 6.03 6.6
TOB 24D CORE SUBLOT VINEN DENOTED IN GC PLAN TE ONGE VIN A = Makes of scientifies in size. Dag Makes B = Makes inseted scientifies. C = Makes scientifies in settings.	4.0	0.0	63	0.0	0.1	20	
E = Mass of instead service in market F = Bag growthis (party), and generalization() Gene = AA / (C + (0 + A) = - (0 + A) / T) Gene = NAA, A (C + (0 + A) = - (0 + A) / T) S = COMPAC BION OF COVEL = 100 ±(Gene / Gene) CHEON (%) THOO NASIS	0.402 2.000 2.000 0.0	640 0.000 0.000 0.0	8.402 2.032 2.032 0.0	0.802 0.80 0.80 0.0	6.4/2 6.000 6.0	6.40 2222 2220 2220 200 20	6.60 6.00 6.00

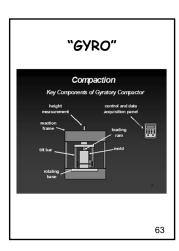


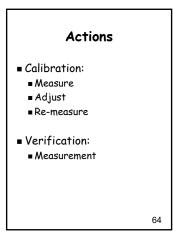


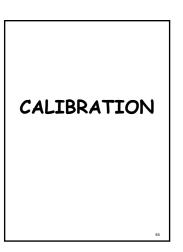
Check for Excessive Water Absorption Up to 2 Cores at Same Location


AASHTO T 166 T 166							
A = Mass of sample in air: MENU							
B = Mass in water:							
C = Mass of surface dry sample:							
Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WATER ABS. = 100 x ((B-A)/(B-C))	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUBLOT							
FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN							
TECHNICIAN							
A = Weight of sample in air:							
B = Weight in water:							
C = Weight of surface dry sample:							
Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	0.000	0.000	0.000	0.00
% COMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	0.
WATER ABS. = 100 x ((B-A)/(B-C))	0.0	0.0	0.0	0.0	0.0	0.0	0.
THICKNESS							
SUBLOT							
AASHTO T 331 Corelok							
A = Mass of sample in air:							
Bag Mass							
B = Mass sealed sample:	0.0	0.0	0.0	0.0	0.0	0.0	C
C = Mass sample removed from bag:							
E = Mass of sealed sample in water:							
F = Bag specific gravity: (0.932 green InstroTek bag)							
Gmc = A / ((C + (B - A)) - E - ((B - A) / F))	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	0.000	0.000	0.000	0.00
% COMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	0.
CHECK (%)							
THICKNESS							
SUBLOT							
FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN							
TECHNICIAN							
A = Mass of sample in air: Bag Mass							
B = Mass sealed sample:	0.0	0.0	0.0	0.0	0.0	0.0	C
C = Mass sample removed from bag:	0.0	0.0	0.0	0.0	0.0	0.0	0
E = Mass of sealed sample in water:							
F = Bag specific gravity: (0.932 green InstroTek bag)	0.932	0.932	0.932	0.932	0.932	0.932	0.9
Gmc = A / ((C + (B - A)) - E - ((B - A) / F))	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	0.000	0.000	0.000	0.00
% COMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	0.
CHECK (%)							
THICKNESS							
SUBLOT							

OUTLINE

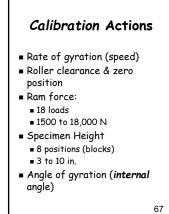

- Introduction
- Compaction method
- Bulk specific gravity of gyro pucks
- Calculations
- Verification & Calibration



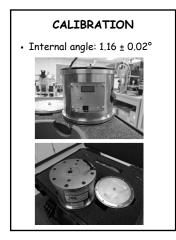

CALIBRATION AND VERIFICATION

- Must check: rate of gyration (rotational speed)

 - speed) coller clearance & zero position height measurement ram force (load) angle of gyration: Internal angle (calibration) External angle (verification)






CALIBRATION FREQUENCY

Calibration should be performed:

- At least once per yearWhen verification fails
- when verification tail

CALIBRATION

- Rate of gyration (rotational speed): 30.0 ± 0.5 rotations per minute (10 rotations in 20 ± 0.33 sec)
- Ram Force: Target ± 1%
- Ram Position (height):±0.002"
- Internal angle: 1.16 ± 0.02°
- Roller clearances and zero position - done on some machines

1 20	ine AFGC1 MAFGC125X (11 MAFGC125XA (MAFGC125XE (220 V 60 Ha) 220 V 50 Ha) O	y Compact	Calibra	a for	se Record
\$0C 0	arter (Company Name)	0.1.	SOC Location	ROLLA		
Status of Compactor	r Prior to Calif.	ration Change				
37.22 Machine Hours Previo	8-21-07 na SOC Calendon (B-2 Previous SC	7-08 C Verification Date	Pin	Cartified	Service
External Angle of G	yration		Internal	Angle of Gy	ration	
Pine ACGCA001 Argle Sensor Appendus		After adjustment	D Test	Quip (DAVI) AFLSI (RAM) rgle Device		
Parameter	"As Found"	"As Left"	- 11-	20-07	D Owne	d by Custome d by Calibrate
Unloaded Angle	1120"	.1110	Device Ca	Restion Date		
Loaded Anala			Pa	rameter	"As Found"	"As Lef
Adjustable Link Cap (0.002" to 0.004")	.0025	.coas in	Internal	Angle	119 00	t 1,173
Intermediate Link Gap (0.0007' to 0.004')	. 0025	. orage in	Consolid	lation Pressu	are (Force Me	asurement)
Fixed Link Gap 40.0015" to 0.0025	600.	.ees in		FGCLR05C	2331	
Zero Plane (0.001" tulerancel	.0 = .0	.00 in	Load Ring	Mudel	- 2321 Sela Num	
Dial Difference	.//20	1110	11-	21-07	B Owne	d by Custome d by Calibrate
Specimen Height (Pe	sition Measure		Ring Calib		maa	sured
Pine AFG123C			Force (newtona)	Dial	"As Found"	"As Left"
Gage Block Model		1-204-2029	1500	33.2	33.1	33.1
11-20-07	D Owned	by Castomer by Calibrator	3500	28.6	78.8	56-5
Block Calibration Date	_	-	1000	<u></u>	/3.0	78.8
Height (inches)	"As Found"	"As Left"	5500	124.8	124.9	135.0
10	10.000	10.000	6500	147.8	19/7	147.8
9	9.000	9.000	7500	176.5	.76.5	170.7
	8.000	3,000	9500	193.1	215.9	198.0
6	6.000	6-000	10500	289	2383	2386
0	5.000	5.000	11500	200	261.7	24.9
4	4.000	4-000	12500	288.6	293.9	284.0
3	3.000	3-000	13500	306.3	307.0	-307.1
1% of 78.6=	0.8		14,00	329.2	352.9	.529.5
78.6-0.8= 7		ما منا ما	16500	379.9	376.0	714
/ 0,0=0,0= /	/ .0=10Wer	mmr-ok	17500	3.98.9	3921	11
78.6+0.8= 7						

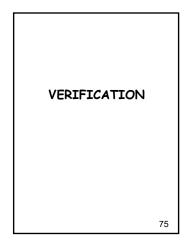
		MPACTOR (is specific				
	511001	Dial	Dial	Dial	Dial	Di
Newtons	lbf	(actual)	- 1%	+ 1%	- 3%	+ 3
0	0.0	0.0	0.0	0.0	0.0	0
500	112.4	11.0	10.9	11.1	10.7	11
1000	224.8	22.0	21.8	22.2	21.3	22
1500	337.2	33.0	32.7	33.3	32.0	34
2000	449.6	44.4	43.9	44.8	43.1	45
2500	562.0	55.8	55.2	56.3	54.1	57
3000	674.4	67.2	- 66.5	67.8	65.2	69
3500	788.8	78.9	78.1	79.6	78.5	81
4000	899.2	90.6	09.0	91.0	87.8	93
4500	1011.6	102.2	101.2	103.3	99.2	, 105
5000	1124.1	113.9	112.8	115.1	110.5	117
5500	1238.5	125.1	123.8	128.3	121.3	128
6000	1348.9	138.2	134.8	137.5	132.1	140
6500	1461.3	147.7	146.2	149.2	143.3	152
7000	1401.3	169.3	167.7	160.8	154.5	164
7500	1686.1	170.8	109.1	172.5	165.7	175
8000	1798.5	182.5	180.7	184.3	177.0	188
8500	1910.9	194.2	192.2	198.1	188.3	200
9000	2023.3	205.8	203.8	207.9	199.7	212
9500	2135.7	217.2	215.0	219.3	210.7	223
10000	2248.1	228.5	228.2	230.8	221.7	235
10500	2360.5	239.9	237.5	242.3	232.7	247
11000	2472.9	251.3	248.8	253.8	243.7	258
11500	2585.3	262.7	260.1	265.3	254.8	270
12000	2697.7	274.1	271.4	276.8	265.9	282
12500	2810.1	286.0	283.2	288.9	277.5	294
12500	2010.1	298.0	295.0	301.0	289.0	306
13500	3034.9	309.9	306.8	313.0	300.6	319
14000	3147.3	320.9	317.7	324.1	311.3	330
14500	3259.7	331.9	328.6	335.3	322.0	341
15000	3372.2	343.5	340.0	346.9	333.2	353
15500	3484.6	355.0	351.5	358.6	344.4	365
16000	3597.0	366.6	362.9	370.2	355.6	300
16500	3709.4	378.1	374.4	381.9	368.8	389
17000	3821.8	3/9.7	385.8	393.6	378.1	401
17500	3934.2	401.4	397.3	405.4	389.3	413
18000	4048.6	413.0	408.8	417.1	400.6	425
10000	4040.0	413.0		417.1	400.0	420

Model Mil Soco	witer (Company Name)	220 V 60 Hz) 220 V 50 Hz) <u>C</u> Seri	35 al Namber SGC Location	Technician (s) RollA	d fora . pr and dane) , Mo.	5-20-08		
	r Prior to Calil 8-24-07 ous SGC Calibration I	3-2	7-08 C Verification Date	Previous C	Cutified	Servic.		
External Angle of G	vration		Internal	Angle of Gy		· · · · · · · · · · · · · · · · · · ·		
Pine ACGCA001 Angle Sensor Apparatus	D Own	After adjustment	D Test(uip (DAVI) AFLSI (RAM)	Serial Numb			
Parameter	"As Found"	"As Left"	- 11-2	20-07	D Owned	by Customer by Calibrato		
Unloaded Angle	,1120"	,1110	Device Cal	bration Date				
Loaded Angle		11110	Pa	rameter	"As Found"	"As Left		
Adjustable Link Gap (0.002* to 0.004") Intermediate Link Gap	.0025	, ooas in	Internal		1,19 00			
(0.002" to 0.004")	. 0025	.0025 in	Consolid	ation Pressu	ire (Force Mea	surement)		
Fixed Link Gap 0.0015" to 0.002"	.003	.0015 in	Pine Al	FGCLR05C	2321			
(0.001" tolerance)	,00	.00 ir						
Dial Difference	.1120"	.1110	Ring Calibr	AI-07 ation Date	_ B ⁻ Owned	by Calibrato		
pecimen Height (Pe Pine AFG123C	02203000033	and a second	Force (newtons)	Dial (actual)	*As Found*	"As Left"		
Gage Block Model	Serial Numb	· · · · · · · · · · · · · · · · · · ·	1500	33.2	33.1	33.1		
11-20-07 Block Celibration Date		by Customer by Calibrator	2500 3500	78.6	78.8	78,8		
Height (inches)	"As Found"	"As Left"	5500	12/10	101.5	1014		
10	10.000	10.000	6500	124.8	124.9	125.0		
9	9.000	9.000	7500	178.5	176.5	170.7		
8	8.000	8.000	8500	193.1	1928	193.0		
7	7000	7.000	9500	215.7	215.9	216.1		
6	6.000	6.000	10500	238.7	238.3	2386		
4	5,000	5.000	11500	246.9	261.7	24.9		
4	4.000	3.000	12500	283.6	283.9	284.0		
3		2,000		306.3	307.0	307.1		
3	3.000		14520	229.2	329.2	529.6		
			14500 . 15500 .	329.2	352.8	3530		
1% of 78.6=	0.8		75500 . 16500 .	Manager and an an annual sector	the second second second second	-529.5 3530		
	0.8 7.8=lowei	r limit-ok	16500 . 16500 . 17500	352,5	352.8			

8/1/2006

PROVING RING SERIAL NUMBER: 1440 CALIBRATION DATE: 8/1/20 Different than previous example <u>GYRATORY COMPACTOR CALIBRATION DATA POINTS</u>

This sheet is specific to a certain proving ring


		•				
*************		Dial	Dial	Dial	Dial	Dial
Newtons	lbf	(actual)	- 1%	+ 1%	- 3%	+ 3%
0	0.0	0.0	0.0	0.0	0.0	0.0
500	112.4	11.0	10.9	11.1	10.7	11.3
1000	224.8	22.0	21.8	22.2	21.3	22.7
1500	337.2	33.0	32.7	33.3	32.0	34.0
2000	449.6	44.4	43.9	44.8	43.1	45.7
2500	562.0	55.8	55.2	56.3	54.1	57.5
3000	674.4	67.2	66.5	67.8	65.2	69.2
3500	786.8	78.9	78.1	79.6	76.5	81.2
4000	899.2	90.6	09.0	91.5	87.8	93.3
4500	1011.6	102.2	101.2	103.3	99.2	, 105.3
5000	1124.1	113.9	112.8	115.1	110.5	117.4
5500	1236.5	125.1	123.8	126.3	121.3	128.8
6000	1348.9	136.2	134.8	137.5	132.1	140.3
6500	1461.3	147.7	146.2	149.2	143.3	152.1
7000	1573.7	159.3	157.7	160.8	154.5	164.0
7500	1686.1	170.8	169.1	172.5	165.7	175.9
8000	1798.5	182.5	180.7	184.3	177.0	188.0
8500	1910.9	194.2	192.2	196.1	188.3	200.0
9000	2023.3	205.8	203.8	207.9	199.7	212.0
9500	2135.7	217.2	215.0	219.3	210.7	223.7
10000	2248.1	228.5	226.2	230.8	221.7	235.4
10500	2360.5	239.9	237.5	242.3	232.7	247.1
11000	2472.9	251.3	248.8	253.8	243.7	258.8
11500	2585.3	262.7	260.1	265.3	254.8	270.6
12000	2697.7	274.1	271.4	276.8	265.9	282.3
12500	2810.1	286.0	283.2	288.9	277.5	294.6
13000	2922.5	298.0	295.0	301.0	289.0	306.9
13500	3034.9	309.9	306.8	313.0	300.6	319.2
14000	3147.3	320.9	317.7	324.1	311.3	330.6
14500	3259.7	331.9	328.6	335.3	322.0	341.9
15000	3372.2	343.5	340.0	346.9	333.2	353.8
15500	3484.6	355.0	351.5	358.6	344.4	365.7
16000	3597.0	366.6	362.9	370.2	355.6	377.6
16500	3709.4	378.1	374.4	381.9	366.8	389.5
17000	3821.8	389.7	385.8	393.6	378.1	401.4
17500	3934.2	401.4	397.3	405.4	389.3	413.4
18000	4046.6	413.0	408.8	417.1	400.6	425.4

Roller Clearance & Zero Position

 Make sure external angle jig and rollers are clean
 Make sure dial gages are i

- Make sure dial gages are in snug and gage tips are tightened
- Want some play in rollers:
 0.0015 to 0.0020 (fixed post)
 0.0020 to 0.0040 (other
 - 0.0020 to 0.0040 (other 2 posts)
 Zero Degree Position
- Zero Degree Position Check: at 180° rotation dial readings remain within ± 0.0010"

GYRA	TORY COMPACTOR PROFICIENCY EXAM LIST OF SPECIFICATIONS
Verificatio	n of Calibration
• R	ed of grandom: 10 relations 10 20 33 seconds Thomas Mate Iola and Thomas Iona Angel 16 Reading a Target 1 %: (CA 17 Reading a Target 1 %: (CA 18 Reading a granter than Target 3 %: Calibration required 18 Reading a granter than Target 3 %: Calibration required 19 Reading a Granter than Second 2002; CK 19 Reading a Granter than Councer out less than 6.000 11 Measure Height 6 0.000 1 0.000 1 0.000+; 20 Relation required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 1 for 0.000 +; 20 Relations required the system than 0.000 +; 20 Rel
	MACHINE ASSISTANCE STOPS AT THIS POINT
• Zero	er Clearances: 0.0015 to 0.0020' for fixed post (3 o'clock): OK 0.0020 to 0.0040' for other two posts (9 and 12 o'clock): OK 0.0020 to 0.0040' for other two posts (9 and 12 o'clock): OK 0.00210' for other than a 0.0010' when angle verification device is rotated 160'. OK
• Inter 0	International Construction Determines the left and the right dial Conclusions and United Determines (International Conceptore) Comparer difference: International Conceptore and Determines (Conceptore and Determines Conceptore) NOTE: Actual "ofference Internations of 1126": OK NOTE: Actual "ofference Internations of the Internal and and exclusion determined Conceptore alteration using the Internal and and exclusion Workfly the internal angle measurement instrument (Io, Pine RMA) using the state angle gravity equip . The calibration NoTE Determine the internal angle: Neuroger 115 a 2022 explores 115 a 2

GYRATORY COMPACTOR PROFICIENCY EXAM LIST OF SPECIFICATIONS

Verification of Calibration

- Speed of gyrations: 10 rotations in 20 ± 0.33 seconds
- Ram Force: Must look at proving ring calibration chart.
 - If Reading = Target ± 1%: OK
 - Treading is greater than rarget ± 1%, but less than or equal to Target ± 3%: Calibration recommended
 - If Reading is greater than Target ± 3%: Calibration required
- Height (Ram Position):
 - If Measured Height = 6.000 ± 0.002 ": OK
 - In Measured is greater than 0.000 ± 0.002, but less than 6.000 ± 0.004": Calibration recommended
 - If Measured is greater than or equal to 6.000 ± 0.004":
 Calibration required (Machine may indicate this condition)

======MACHINE ASSISTANCE STOPS AT THIS POINT=======

- Roller Clearances:
 - o 0.0015 to 0.0020" for fixed post (3 o'clock): OK
 - o 0.0020 to 0.0040" for other two posts (9 and 12 o'clock): OK
- Zero Degree Position:
 - Dial indicator readings do not change by more than ± 0.0010" when angle verification device is rotated 180°: OK
- External Angle:
 - Calculate the difference between the left and the right dial indicator readings (difference = left – right)
 - Compare difference:
 - For example, $0.1083^{"} \le \text{difference} \le 0.1126^{"}$: OK
 - o NOTE: Actual "difference limits" for a compactor will be
 - determined during calibration using the internal angle device.
- Internal Angle:
 - Verify the internal angle measurement instrument (e.g. Pine RAM) using the static angle gauge (e.g. Pine calibration tube)
 - Determine the internal angle: Average of 4 measurements (2 of top angle, and 2 of bottom angle) shall be 1.16 ± 0.02 degrees.

Verification Actions

- Rate of gyration (speed)
- Roller clearance & zero
- position Ram force:
- 2 loads
- 3500; 14,500 N
- Specimen Height
- 1 position (blocks)
- ∎ 6 in.
- Angle of gyration (external angle)

76

VERIFICATION FREQUENCY

- Verification is a shortened version of calibration
- Frequency of verification: Monthly

 - When moved
 After any maintenance or adjustments
 After questionable results
- Condition:

 - Clean, cold machine
 "Cold" = warmed up to operating temperature, but mix has not been run through the machine

k.: Verif	icatio					nterne	al In:
		of	Exter	nal Ar	ngle		
					-		
		_					
VERIFIED/BY	3641	T VI Großs	ibration/Verif	cation Data S	1 1 6-7	50	.76-
CALVER DATE	1000	1.7.09	4.8.09	41309		4/25/09	1/2/1
IOTATION SPEED	19:92	1990	1899	1994	1999	2015	1996
LOAD	740	111	7771	11.14	1111	1.1.1.5	
3500	79.0	1.5	79.3	79.0	72.2	720	29.2
14500	3310	182.2	331.8	330.8	332.2	331,9	3325
0K7	OK	er K-	ok	de.	OK	or	æ
REAGHT				3.997		5.999	1
6 ± 0.002	5.999	5.999	5.999	0020	5.999	0.0015	6.000
Roller Clearence	0030					0.0015	0.0135
3021-63040 8,12	1135-2315	0.005	0040	10005	10005	0.0005	0.00+0
0° POSITION 1 8.000	0.0095	1005	0005	.00+5	. 0000	0,0000	0.001
demail Angle Top 1	1.28	1.17	1.18	1.18	1.18	1.18	118
2	1.195	1.17	1.18	1.18	1.18	1,17	118
ter Angle Bottom 1	1.192	1.19	1,19	1.19	419	1.19	1.19
2	1.1911	1.19	1.19	1,19	1.12	412	1.19
116 x 002" AVO	1.190	1,18	1.19	1.19	1.19	1.18	1.19
Arge OK7		OK	7		<	OK	
VERIFIED/BY	60	36	56	de	20	26	50
CAL/VER DATE	3.4.09	5.5.09	5-6-69	5-13-09	5-19-09	5-26-39	5-27-0
ROTATION SPEED	20.04	20.10	20.02		20.10	20.02	20.06
LOAD	90.04	avijo	ALC: N	1.120.17	00000	av a	
3500	79.1	79.0	79.1	24 3	79,3	76.0	76.0
14500	331.8	332.0	332.0	332.5	3326	322.0	324,2
OK?	V	4	OK	10K	O/C_	OK	1.19
HEIGHT	4.000	6.001	1	5.000		5.999	6.00
6 ± 0.002			4,000		6,000	5,997	6.00
Roller Clearence	.0015	10020	0020		0035 1071	Deydan	
	0040 po 35	-0040.000	1010 1035	0042.00	10	2010	0605
0° POSITION	4045.440			ino in	. 2005	1010	0000
Internal Angle Top 1	117	1.17	1.19	1.18	1.18	1,18	1.18
2	1.18	1.16	1.17.	1.18	1.18	1.16	1.16
Inter Angle Bottom 1	1.19	1.19	1.19	1.19	1.19	1:19	1.19
	117	1.19	1.19	1.19	1.4	119	1.19
			1.18	1.19	179	1.18	1.18 OF

Ex.: Verification Work Sheet Using Internal Instead of External Angle

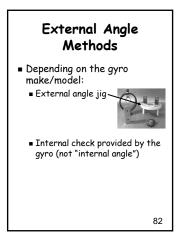
					010		
VERIFIED/BY	564AE	ratory Cali	ibration/Verifi	cation Data S	164 164	JG	JG
CAL/VER DATE	Hare .	-7-09	4-8-09	41309	4-27-09	4/28/09	4129/09
ROTATION SPEED 30.0 ± 0.5	19,98	1990	19.99	1994	1999	2015	1996
LOAD	79.0						
3500	79.0	9.5	79.3	19.0	79.2	79.0	79.2
14500	331.0	32.2	331.8	330.8	332.2	331,9	332,2
OK?	OK	OK	oK	OK	OK	ok	OK
HEIGHT 6 ± 0.002	5.999	5,999	5.999	5.999	5,999	5.999	6.000
Roller Clearence 0.0015 - 0.0020 3 0.0020 - 0.0040 9,12	0020	0 2 0 0 30 0 0 3 5	·0020	,0020 ,0040.0035	0015	0,0015 0.0035 0.0040	0.0015 0.0035 0.0040
0° POSITION ± 0.0010	0,0005	005	0000	10005	:0005	0,0005	0.0000
nternal Angle Top 1	1,20	1.17	1.18	1.18	1.18	1.18	118
2	1019151	1.17	1.18	1:18	1.18.	1,17	1.18
nter Angle Bottom 1	1.1911	1,19	1,19	1.19	1,19	1,19	1,19
2	1.19119	1.19	1,19	1.19	1.19	1,19	1.19
1.16 ± 0.02° AVG	1.19118	1,18	1.19	1.19	1.19	1,18	1.19
Angle OK?	C E	OK	?	?	2	OK	

VERIFIED/BY	he	56	56	ae	RP	JG	Je
CAL/VER DATE	5.4-09	5-5-09	5-6-09	5-13-09	5-19-09	5-26-89	5-27-09
ROTATION SPEED 30.0 ± 0.5	20.04	20,10	20.02	30.11	20.10	20,02	20.06
LOAD		9				S	- Holes
3500	79.1	79,0	79.1	79.3	79,3	76.0	76.0
14500	331.8	332.0	332.0	332.5	332.4	329.0	324,0
OK?	V		OK	BR	DIC	OK	an New
HEIGHT 6 ± 0.002	4.000	6.001	4,000	3,999	4,000	5,999	6.000
Roller Clearence 0.0015 - 0.0020 3 0.0020 - 0.0040 9,12	.0015 .0040.0035	:0020	0020	10020	0020 00350040	0015	0015
0° POSITION ± 0.0010	,0005.0005	0005,000	. 0005-,0005	,0000,000	,0005	0010	0005
Internal Angle Top 1	1:17	1.17	1.18	1,18	1.18	1,18	118
2	1.18	1016	1.17	1.18	1.18	1.16	1.16
nter Angle Bottom 1	1.19	1.19	1.19	1.19	1.19	1:19	1.19
2	119	1.19	1.19	1.19	1.19	119	1.19
1.16 ± 0.02° AVG	1.18	1.18	1,18	1.19	1:19	1.18	1,187
Angle OK?	OK	OK	oK	40	OK	ok	OK

Standard Specification

 403.17.3.1 (standard spec)

 The gyratory compactor should be calibrated yearly using internal angle. It may be <u>verified</u> using external angle. It should be verified daily monthly during production and after each move.


79

VERIFICATION:

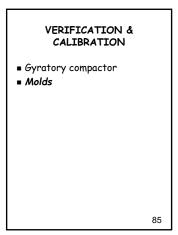
• External angle verification can be substituted for internal angle verification; The external angle must correspond to be within the proper internal angle range as established during calibration, e.g. during calibration of the internal angle, the corresponding external angle will be noted. This can be used for external angle verification

VERIFICATION

- Rate of gyration (rotational speed): 30.0 ± 0.5 rotations per minute (10 rotations in 20 ± 0.33 sec)
- Ram Force: Target ± 1%
- Ram Position (height):±0.002"
- External angle: Whatever corresponds to internal angle as set during calibration: 1.16 ± 0.02°
- Roller clearances and zero position - done on some machines
 81

Example

- During calibration, the internal angle was set to 1.173 ° which met 1.16 ± 0.02°
- At the same time, the external angle difference was 0.1110 in. which, using trigonometry, corresponds to 1.27° (tan θ = Difference/ L) where L = 5.000 in.



 For the next year, during monthly verification, the external angle must be 1.27 ± 0.02°
 83

No so	ine AFGC1 MAFGC125X (11 MAFGC125XA (MAFGC125XE (SSourt D	220 V 60 Hz) 220 V 50 Hz) <u>C</u>	y Compact	Calibra	a fott.	e Record
500.0	arter (Company Name)		SOC Location	(City and State)	-, max.	
Status of Compactor	r Prior to Calif.	bration Change				
37.22 Machine Hours Press	8-21-07 na 500 Calibraton 0	3-2 Perios 6		Pin	Cartified	Servic
External Angle of G	watten		Internet.	Angle of G		
				Angle of G		
Pine ACGCA001		of by Customer of by Calibrator	D Tine	AFLSI (RAM)		
Angle Sensor Appendius		any carriers	internet Ac	igle Device	Seta Nun	d by Cestome
Parameter	"As Found"	"As Left"	- 11-	20-07 Bratim Date	D'Owne	d by Castome d by Calibrati
Unloaded Angle	1120"	.1110	Device Ca	Renation Date		
Loaded Angle	1.1.00		Pa	rameter	"As Found"	"As Let
Adjustable Link Cap			Internal	Angle	119	1173
(0.002" to 0.004") Intermediate Link Gap	.0025	.003.5				
(0.002" to 0.0047	.0025	.0025			are (Force Me	asurement
Fixed Link Gep (0.0015" to 0.002")	.003	2100.		FGCLR050	2851	
Zero Plane (0.001" talerance)	.00	.00	Load Ring	Model	2.321 Seta Nure	
Dial Difference	.//20	.1110	11-	21-07		t by Custome (by Calibrate
			Ring Calib	ration Dale		,
Specimen Height (Pe	osition Measure	ment1.27°	Porce	Dial	"As Found"	"As Left"
Pine AFG123C	2524-292	2-204-2029	(newtona)	(actual)		
Gage Block Hodel			1500	33.2	33.1	35.1
11-20-07	D Owned	by Castomer by Calibrator	3500	5913	78.0	90.0
Block Calibration Date			3500	28.6	78.8	78,8
Height (inches)	"As Found"	"As Left"	5500	1017	1013	10114
10	10.680	10.000	6500	124.8	124.9	125.0
9	9.000	9.000	7500	176.5	187.7	147.8
			8500		176.5	170.7
	8.000	3,000	9500	193.1	1929	198.0
	6.000	6.000	10500	215.7	215.9	2386
6			11500	264.9	258.5	24.9
6		S 444				
6	5,000	5.000	12500	253.6		
3	5,000	4.000		298.6	293.9	284.0
3 4 3	5,000		12500	306.3	293.9 302.0	307.1
3 4 3	5,000	4.000	12500 13500		293.9	-307.1 -307.1
3 4 3	5,000	4.000	12500 13500 14500	306.3	293.9 3020 329.2	307.1
0 4	5,000	4.000	12500 13500 14500 15500	3063 329.2 352.5	293.9 3020 329.2 362.9	3071

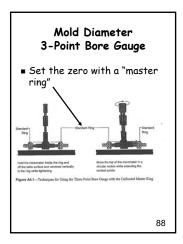
Model MI SOCO	when (Company Name)	(220 V 60 Hz) (220 V 50 Hz) <u>(</u> Ser	50C Location	RollA	pn and date)	5-20-08
	r Prior to Cali 8-24-07 ous SGC Calibration	3-7	C Verification Date	- Pin	Cutified	Servic
External Angle of G	vention					orner (nander
Pine ACGCA001 Angle Sensor Apparatus	D Own	ed by Customer ed by Calibrator	D Test	Angle of Gy Quip (DAVI) AFLSI (RAM) gle Device	Serial Numb	
Parameter	"As Found"	"As Left"		20-07 Bration Date	_ E Owned	by Cestomer by Calibrato
Unloaded Angle	,1120"	.1110			ALL PLAN IN	
Loaded Angle				rameter	"As Found"	"As Left
Adjustable Link Gap (0.002° to 0.004")	.0025	,0025	Internal	Angle	1,19	1.173
Intermediate Link Gap (0.002" to 0.004")	. 0025	.0025	Consolid	ation Pressu	ire (Force Mea	surement)
Fixed Link Gap 40.0015" to 0.002"j	.003	.0015		FGCLR05C	2321	
Zero Plane (0.001" tolerance)	.00	.00	Load Ring Model パースリーのフ Ring Calibration Date		Serial Numb	
Dial Difference	.1120"	.1110			_ © Owned	Owned by Customer
Specimen Height (Pe	sition Measur	ementia 270	King Cald	ason Date		
Pine AFG123C		anageranan.	Force (newtons)	Dial (actual)	*As Found*	"As Left"
Gage Block Model	Serial Numb	17-2929-2929 Hr	1500	33.2	33.1	33.1
		t by Customer	2500	60.5	76.0	56.0
11-20-07 Block Calibration Date	Owned	t by Calibrator	3500	28.6	78.8	78,8
			4500	1017	101.5	1014
Height (inches)	"As Found"	"As Left"	5500	124.8	124.9	125.0
10	10.000	10.000	6500	147.8	147.7	147.8
9	9.000	9.000	7500	178.5	176.5	170.7
8	8.000	3.000	8500	193.1	1928	193.0
7	7.000	7.000	9500	215.7	215.9	216.1
6	6.000	6.000	10500	238.3	238.3	2386
AND INCOME.	5,000	5.000	11500	740.9	261.7	24.9
0.		4.000	12500	283.6	283.9	284.0
4	7.000					2 . St. 19
4 3	3.000		13500	306.3	362.0	13071
3	3.000	3.000	13500	306.3	307.0	307.1
				3063 329,2 352,5	367.0 329.2 352.8	.529.5
3			14500	329.2	329.2	.529.5 3530
3			14500 15500	329.2	329.2	.529.5

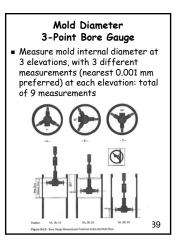
411.1

GYRO MOLD EVALUATION • Frequency: min. 12 months

 External calibration service (usually in conjunction with gyro calibration)
 In-house

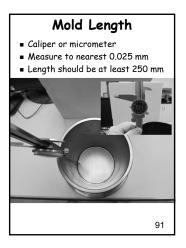
Critical dimensions:


- Mold inside diameter
- End plate diameter
- Mold length


86

Internal Diameter

Methods:


- Three-point internal bore gauge
- Coordinate Measuring Machine (CMM)

Mold Diameter 3-Point Bore Gauge

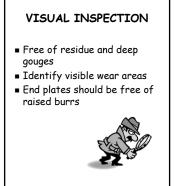
- For in-service molds, each diameter bore measurement recommended to be 149.9-150.0 mm.
- Maximum clearance should be ≤ 150.2 mm
- If any diameter fails maximum, mold should not be used (too much play, compaction tends to decrease, which would affect volumetrics)

End Plate Diameter

- Measure with a caliper or micrometer
- Find maximum plate diameter (A) by measuring several points
 Measure a "B" diameter at a point 90° from A
- Diameters at each point should be 149.50 to 149.75 mm
- If end plate has excessive clearance, it should not be used: too much play, decrease in compaction

	0)	ratory Cos	npactor M	fold Inspec	ction Report	rt	
ill.	Mitutoyo with 150	/ Rouse S11-166 Bore 4	Mo. Jage	And Special	Lett 1 mil dan lemi	<u>-20-0</u> 8	1
	Deves(a) Use	to Measur Mold		7-25 18 mm key 0			
N	fold Din			AASHT	O T-312	Standard	
parameter		minimum	maximum	A	B	с	D
		fold Identifica	tion Number	1	2	3	
Inner Diametes	(top)	(149.90 mm)	(150.00 mm)	5,9045	5904	59035	
Inner Dianeter	(middle)	5.9016* (149.90 mm)	5.9055* (150.00 mm)	53055	59045	5904	
Inner Diameter	(botton)	5.9016* (149.90 mm)	5.9055* (150.00 mm)	5.912	59055	5.905	
	Ton P	late Identifica	tion Monther				
Top Flate Diam		5.8858* (147.50 mm)	5.8957* (349.75 mm)	5-214	6916	5.993	
	Renner R	late Identifica					-
Botton Flate D		5.8858* (149.50 mm)	5.8957* (149.75 mil	5 893	5.915	5 49 9	
0	in Mal						
parameter	ucai Moi	a Dimens	naximum	A A	e Pine Al	GCI252	-
Nold Flange Thi	ckness (1)	. 228*	1.002*		,999	~	D
				1.000	,411	1,000	
lotes Regarding Excessive mold inner diameter tends to decrea The AASUTO T	wear can infl of the mold at se. If this clear 312 specificat	in the outer da rance is less th ions for mold is denote he lower	an 0.5 mm, th noer diameter than 0.5 mm	intes (top or b on the impact) and end plate	otion) increase on compaction i outer diameter	s, the amount is insignificant.	of compact
The AASKTO T	 If this clear 312 specificat 	ions for mold is denote he lower	an 0.5 mm, th sner diameter	and end plate	on compaction outer diameter	is insignificant. Is worded in su	ch a

Calibration Data Sheet- Mold


	yratory Con	npactor M	old Inspec	ction Repo	rt	
, Mitutoy with 150	T. / Rollin, and Ecoarion o 511-166 Bore (0 mm setting ring and to Measure Mold	Gage	David Technicisn (sign 7-25 150 mm Ring Ca	and date here)	<u>5-20-0</u> 8	3
Mold Di	mensions a	as per the	AASHT	O T-312	Standard	
parameter	ninimun	waximum	A	B	с	D
	Mold Identifica	tion Number	1	2	3	
Inner Diameter (top)	5.9016*	5.9055* (250.00 mm)	5,9045	5.904	59035	1
Inner Dianeter (middle)	5.9016" (149.90 mm)	5.9055" (150.00 mm)	59055	59045	5904	
Inner Diameter (bottom)	5.9016* (149.30 mm)	5.9055" (150.00 mm)	5,912	5 9055	5,905	
Тор	Plate Identifica	tion Number				
Top Plate Diameter	5.8858*	5.8957* (1149.75 mm)	5:894	5895	5 893	
		2 N 1		1.1.1.1		1.
Bottom	Plate Identifica	non Number				

Critical Mold Dimensions specific to the Pine AFGC125X

parameter	minimum	maximum	A	В	C	D
Mold Flange Thickness (1)	.998*	1.002*	1.000	,9998	1,000	

Notes Regarding Mold Wear:

- Excessive mold wear can influence the volumetric properties of compacted specimens. As the clearance between the
 inner diameter of the mold and the outer diameter of the plates (top or bottom) increases, the amount of compaction
 tends to decrease. If this clearance is less than 0.5 mm, then the impact on compaction is insignificant.
- The AASHTO T-312 specifications for mold inner diameter and end plate outer diameter is worded in such a way that
 the clearance should indeed always be lower than 0.5 mm. (Because of the precise wording used in the specification,
 however, it is possible for a mold to have wear which exceeds that permitted by AASHTO T312 yet still has a
 clearance which is less than 0.5 mm.)
- Pine recommends that any mold with an inner diameter worn beyond 5.9134" (150.20 mm) should be replaced.

PROFICIENCY EXAMS

Make pucksVerification of the gyro

95

MODULE 7

MAXIMUM SPECIFIC GRAVITY OF VOIDLESS LOOSE MIX (RICE) G_{mm}

11-24-06 Revision 11-9-07 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 12-29-14 Revision 12-9-15 Revision 3-2-16 Revision 12-12-18 Revision 2-8-19 Revision 12-17-19 Revision

ACCOUNT SPECIFIC SALANDA SPECIFICAS SPECIFIC

AASHTO TEST METHODS & SPECIFICATIONS

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity

"RICE" GR	AVITY
Maximum Spec	
● Loose (uncompa	acted) mixture
G _{mm} =	Mass agg. and AC
C. C. L. MILLER	
	3

MAXIMUM SPECIFIC GRAVITY OF VOIDLESS MIX

• Specific gravity is the ratio of the mass in air of a volume of material to the mass in air of an equal volume of water

4

5

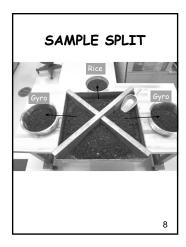
6

- "Rice" test
- "G_{mm}": ■ G=specific gravity
 - ∎m=mix
 - ∎m=maximum

SAMPLE LOCATION Volumetric sample: behind the paver TSR sample: Behind paver

■Truck

Plant discharge


USES

- 2. Computing pavement density (a pay factor):
 Density=(G_{mc}÷ G_{mm})×100
- G_{mc}=core specific gravity

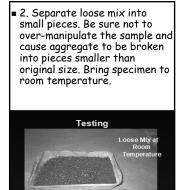
CALIBRATION

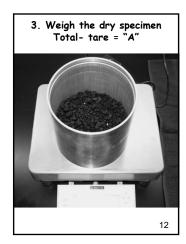
7

- Pycnometer: daily
 Vacuum: every 12
- Vacuum: every 12 months

ALTERNATE METHODS

9

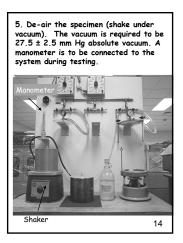

■ Weigh-in-Air


∎Weigh-in-Water

SUMMARY OF STEPS: Weigh-in-Air Method

 1. Dry specimen to constant weight at 105 ± 5 °C (mass repeats within 0.1%) -see cookbook on "mass repeats"

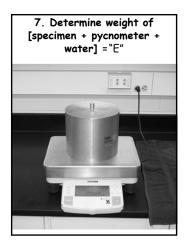
Run AASHTO T 329 Moisture content of mix to be assured that the specimen is dry (< 0.1%).

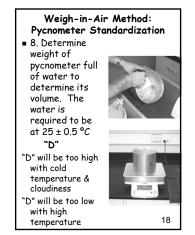


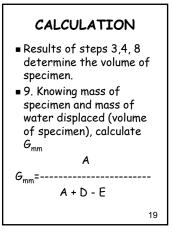
Weigh-in-Air Method

 4. Add sufficient water to the pycnometer containing the specimen to cover it (~25 °C)

13


AGITATION


Mechanical

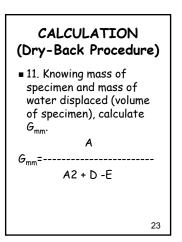

Manual

 Manual method has come and gone and come again in the specs as an allowable method

DRY-BACK STEP

- 10. If absorption of any coarse aggregate fraction is greater than 2.0%, dry back the specimen to a surface dry condition and weigh. Use this weight "A2" in the denominator in place of "A".
- Absorption data is on the JMF.

20


DRY-BACK

- Purpose- to see if water has penetrated the binder coating
- So--dry the sample back to a surface-dry condition --don't oven dry all the way to ~ zero moisture

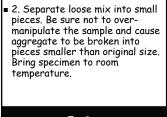
When to Implement Dry-Back

- If coarse aggregate absorptions are excessive, perform on first lot (all sublots)
- If initial Gmm and the dryback Gmm are within 0.002 of each other in each of the first 4 sublots, the dry-back procedure may be reduced to once per 4 sublots (FAQ).

22

ALTERNATE METHODS

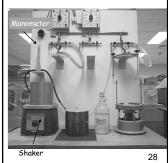
■ Weigh-in-Air


■ Weigh-in-Water

SUMMARY OF STEPS: Weigh-in-Water Method

 1. Dry specimen to constant weight at 105 ± 5 °C (mass repeats within 0.1%)-see cookbook on "mass repeats"

Or


Run AASHTO T 329 Moisture content of mix to be assured that the specimen is dry (< 0.1%).

4. De-air the specimen (shake under vacuum). The vacuum is required to be 27.5 ± 2.5 mm Hg absolute vacuum. A manometer is to be connected to the system during testing.

ALTERNATE METHOD: Weigh-in-Water 5. Instead of weighing on top of the scale (in air), suspend the pycnometer below the scale in water (25 ± 1°C) without lid: [pycnometer +specimen] under water= C

29

Weigh in Water

- 6. Remove specimen from pycnometer. Immediately determine weight under water of pycnometer.
- [pycnometer] under water= B

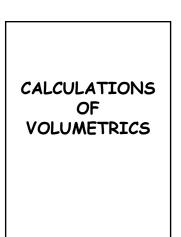
■ 7. Calculate G_{mm}: A

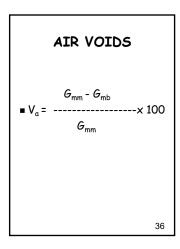
G_{mm}=-----A + B - C

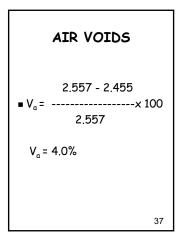
DRY-BACK STEP

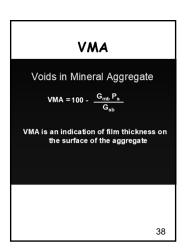
- 8. If absorption of any coarse aggregate fraction is greater than 2.0%, dry back the specimen to a surface dry condition and weigh. Use this weight "A2" in the denominator.
- Absorption data is on the JMF.

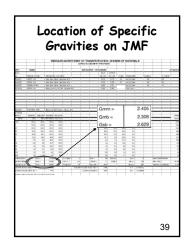
31

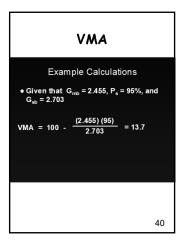


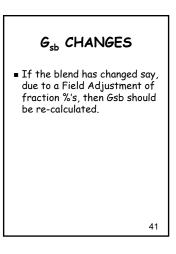

RICE GRAVITY Methods in Missouri

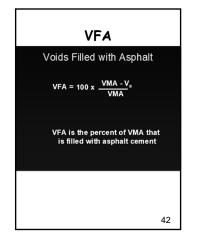

Weigh-in-air: slight majorityWeigh-in-water

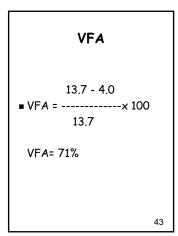

RICE GRAVITY Methods in Missouri


- Mechanical agitation- vast majority
- Manual very few
- Combination a few
- A few tailor the method to the circumstance





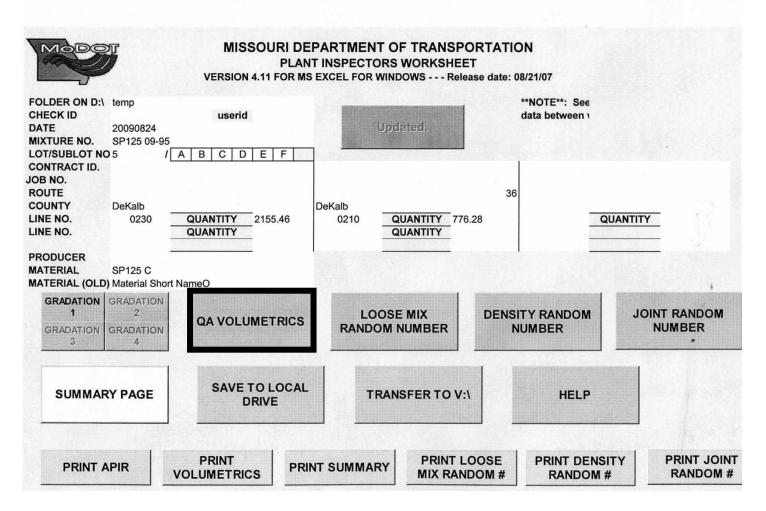



Location of Specific Gravities on JMF

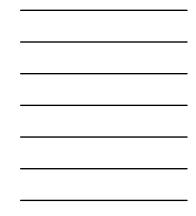
			MI	SSOUR	DEPAR						ONOF	MATERIA	ALS				
						AS	SPHALTIC C	ONCRETE T	YPE SP125	łВ							
DA TE =	10/29/03						CONTRAC	TOR = MY E	USINESS							S	P125 03-1
DENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	ER, LOCATIO	NC				SP. GR.	SP. GR.	%ABS	FORMATION	I	LEDGES	%	CHERT	
35JSJ001	100207LD		/ Hard Rock						2.515	2.713	2.9	Jet City Dolo		5-8	2	5	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dolo		5-8	2		
35JSJ003	1002MSM		/ Hard Rock						2.480	2.761	0.1	Jet City Dolo		5-8	1		
30CAJ016	1002HLHL				e. General, M	10			2.303	2.303		Hyd. Lime	-			-	
									0		- 1		0.4	05			
36DLJ016	1015ACPG.	.7022	/ Black Asp	halt Product	s, Decoy, MC)			Gmr	n =	- 1		2.4	05			
MATERIAL											- 1						
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CA J016					Gmb	1 -			2.3	08			COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime					unit	/ -			2.0	00			GRA
1 1/2"	100.0	100.0	100.0	100.0					~ .				00	00			100.
1"	100.0	100.0	100.0	100.0					Gsb	=			2.6	29			100.
3/4"	100.0	100.0	100.0	100.0					60.0	12.0	26.0	0 2.0					100
1/2"	97.6	100.0	100.0	100.0					58.6	12.0	26.0	0 2.0					98.
3/8"	83.8	96.1	100.0	100.0					50.3	11.5	26.0	0 2.0					89.
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.0	0 2.0					51.
#8	7.0	8.0	82.0	100.0					4.2	1.0	21.3	3 2.0					28.
#16	2.6	3.5	40.7	100.0					1.6	0.4	10.6	6 2.0					14.
#30	1.6	2.6	26.6	100.0					1.0	0.3	6.9	9 2.0					10.
#50	1.6	2.1	13.5	100.0					1.0	0.3	3.5	5 2.0					6.
#100	1.5	1.9	5.4	100.0					0.9	0.2	1.4	4 2.0					4.
#200	1.5		4.2	92.0					0.9	0.2	1.1	1 2.0					4.
LABORATORY		Gmm =	2.405	$\boldsymbol{\times}$	% VOIDS =	4		TSR =	95	TSR Wt.		Nini =	9		MIX COMPOS	ITION	
CHARACTERIS	s	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.		93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	4610			Nmax =	205		ASPHALT CC	NTENT	6.29
	NUMBER		90004			MASTER	R GAUGE B	ACK CNT. =	2196			A1 =	-5.234741				
CALIBRATION I																	

CALCULATIONS

- QC calculates air voids, VMA, and VFA 1 per sublot
- QA calculates air voids, VMA, and VFA 1 per
 4 sublots


Only air voids and VMA are pay factors

44


MoDOT SPREADSHEET IRI DEPARTMENT OF TRANSPORTA PLANT INSPECTORS WORKSHEET "NOTE": See mandal Upsmed 6210 QUANTITY QUANTITY QUANTITY 775.28 QUANTITY LOOSE MIX NUMBER JOINT RAND HELP SAVE TO LOCAL DRIVE PRINT APIR PRINT VOLUMETRICS PRINT SUMMARY PRINT LODGE PRINT DENSITY PRINT JON 45

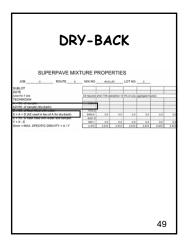
MoDOT SPREADSHEET

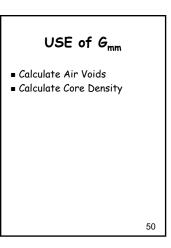
APIW 4.11 12/17/200

308 0 ROUTE 0	MIX NO.	F 13	ue	LOT NO.	0		
SUBLOT							
AASHTO Y 209	A2 required	afen 185.a	December 10	(The on any a	core pate that	ition.	
TECHNICIAN							
A = Wt. of sample: A2+Wt. of sample (dry-back):	1504.4		_				
D = WL of flask filled with water;	7472.2						
X = A + D (A2 used in lieu of A for dry-back)	9066.6		0.0	0.0		9.9	
E = WL of fask filled with water and sample: Y = X - E	6421.5						
Y = X - E Gmm = MAX. SPECIFIC GRAVITY = A / Y	645.1	0.0	0.0	2.472	2.472	2.472	2.472
					1011		
TECHNICIAN							
MOLDING TEMPERATURE	4947.8				_	_	
B = Weight of sample in water	48657 A 2901 9			-	-		-
C = Weight of surface dry sample:	4880.4			_	_		
Gmb = BULK SP. G. = A / (C-8)	2.342		0.000	4.000	0.000	0.000	
A = Weight of sample in air: B = Weight of sample in water: SPEC. 2	4000.1		-		-		-
C = Weight of surface dry sample:	4911.0			-			
Gmb = BULK SP. G. = A / (C-B)	2.336		0.000	0.000	0.000	0.000	
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
TECHNICIAN				_		-	
MIDOT TMM (NUCLEAR)							
SAMPLE WEIGHT BACKGROUND							
COUNTS							
GAUGE % AC							
AASHTO T 308 (IONITION) GAUGE SAC	6.35						
% MOISTURE % AC BY IGNITION OR NUCLEAR	0.12	-	-	-	-	-	
AABHTO R 35							
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.422
B = Gmb (FIELD) (Avg.)							
C = Gab (Job Mix) D = Ps = Percent Apg. in mix	2.667	2.557	2.657	2.667	2.997	2.557	2.657
VMA = 100 - (B X D / C)	13.3	100.0	930-0 930-0	100-0	500-0 500-0	100-0	100.0
Va = 100 X ((A - B) / A)	5.4		900.0	100.0	100.0	100.0	
VFA-{(VMA-V4)/VMA] X 100	69	0	0	0	0	0	0
AASHTO T 196 TECHNICIAN							
A = Weight of sample in air:	1266		-	-			
0 = Weight in water:	710						
C = Weight of surface dry sample:	1340						
Ome = CORE SPECIFIC GRAVITY = A / (C - B) Ome = MAX. SPECIFIC GRAVITY (T209)	2 242	2.472	0.000 2.472	0.000	0-000 2:472	0.000	2.472
% COMPACTION OF CORE = 100 x (Gmc / Gmn	92.3	2472	7477	2472	2472	0.0	7477
THICKNESS SUBLOT						-	-
FOR JND CORE BUILDT WHEN DENOTED IN GC PLAN TECHNICIAN							
A = Weight of sample in air:				-	-		
C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	_	-				_	
Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	2.472	2.472	0.000	0.000
% COMPACTION OF COBE = 100 x (Ome / Ome		0.0	0.0	0.0	0.0	0.0	0.0
THECKNESS		-	-				

	ERPAVE MIX				-			
JOB0	ROUTE 0	MIX NO	P/A	,ut	LOT NO.	0		
SUBLOT DATE MISHTO T 209		A2 required w	ihen T85 al	beorption 12	0% on any a	ggregale frac	tion	
FECHNICIAN A = Wt. of sample:		1594.4	-				-	
2×WL of sample (dry-bac D = WL of flask filled with v		7472.2				-	_	
(= A + D (A2 used in lieu	of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0
E = WL of flask filled with v Y = X - E	vater and sample:	8421.5						
f = X - E 3mm = MAX. SPECIFIC 0	RAVITY = A / Y	645.1	2.472	2.472	0.0	2.472	0.0	0.

DRY-BACK


 If dry-back procedure is done, substitute "A₂" for "A" in the *denominator*


							APIW 4.
SUPERPAVE MIXT			BTIE	9			
SOFERFAVE MIAT		NOF		3			
JOB 0 ROUTE 0	MIX NO.	#VAI	LUE!	LOT NO.	0		
UBLOT							
ОАТЕ АSHTO T 209	A2 required v	vhen T85 a	bsorption >2	0% on any a	corecate frac	tion	
ECHNICIAN	Az required v	vilen 105 a	usorption >2		gyregate frat		
A = Wt. of sample:	1594.4						
2=Wt. of sample (dry-back):							
D = Wt. of flask filled with water:	7472.2						
K = A + D (A2 used in lieu of A for dry-back) E = Wt. of flask filled with water and sample:	9066.6 8421.5	0.0	0.0	0.0	0.0	0.0	0.0
f = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Smm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472
ASHTO 1 166							
ECHNICIAN IOLDING TEMPERATURE							
= Weight of sample in air:	4867.8						
B = Weight of sample in water: SPEC. 1	2801.9						
C = Weight of surface dry sample:	4880.4						
Smb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air:	4899.1						
B = Weight of sample in water: SPEC. 2 C = Weight of surface dry sample:	2814.5 4911.9						
Simble BULK SP. G. = $A / (C-B)$	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
ECHNICIAN							
10DOT TM54 (NUCLEAR)							
SAMPLE WEIGHT BACKGROUND							
COUNTS							
GAUGE % AC							
ASHTO T 308 (IGNITION)							
GAUGE %AC IUCLEAR OR IGNITION	5.35						
% MOISTURE	0.12						
& AC BY IGNITION OR NUCLEAR	5.2						
ASHTO R 35							
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
B = Gmb (FIELD) (Avg.)	2.339	0.000	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)	2.557	2.557	2.557	2.557	2.557	2.557	2.557
D = Ps = Percent Agg. in mix	94.8	100.0	100.0	100.0	100.0	100.0	100.0
/MA = 100 - (B X D / C) /a = 100 X ((A - B) / A)	13.3 5.4	100.0 100.0	100.0	100.0 100.0	100.0	100.0	100.0 100.0
/FA = (VMA-Va) / VMA] X 100	59	0.0	100.0	0	0.00	0	0.00
					-	•	<u> </u>
ASHTO T 166 ECHNICIAN							
= Weight of sample in air:	1255						
B = Weight in water:	710						
C = Weight of surface dry sample:	1260		_				
Sinc = CORE SPECIFIC GRAVITY = $A / (C - B)$	2.282	0.000	0.000	0.000	0.000	0.000	0.000
Smm = MAX. SPECIFIC GRAVITY (T209) % COMPACTION OF CORE = 100 x (Gmc / Gmm)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
HICKNESS	92.3	0.0	0.0	0.0	0.0	0.0	0.0
UBLOT							
OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN							
ECHNICIAN							
= Weight of sample in air:							
= Weight in water:							
= Weight of surface dry sample:	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IIIII - WAA, SPECIFIC GRAVITY (1209)	2.472	2.472	2.472	2.472	2.472	2.472	2.472 0.0
	0.0						
% COMPACTION OF CORE = 100 x (Gmc / Gmm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0

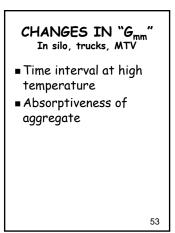
$G_{\rm mm}$ Portion

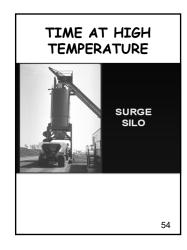
SUPERPAVE MIXTURE PROPERTIES

JOB 0 ROUTE 0	MIX NO	#VA	LUE!	LOT NO.	0		
SUBLOT DATE		ubon 795 o	hoomtion >2		aaroaata fr	ation	
AASHTO T 209 TECHNICIAN A = Wt. of sample: A2=Wt. of sample (dry-back):	A2 required	wnen 185a	bsorption >2		aggregate m		
D = Wt. of flask filled with water:	7472.2						
X = A + D (A2 used in lieu of A for dry-back) E = Wt. of flask filled with water and sample:	9066.6 8421.5	0.0	0.0	0.0	0.0	0.0	0.0
Y = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472

MX NO	#VN.		OT NO.	0		
A2 required a	ren 185 aŭ	eorgeon >2 C	to on any a	gregate the	tion.	
1104.4		-	-			
				-		
7472.2						
0000.0	0.0	0.0	0.0			0.0
645.1	0.0	0.0	0.0	0.0	0.0	
2.472	2.472	2.472	2.472	2.472	2.472	
						_
		-	-			_
4057.8	-		-			
2901.9						
4000.4						0.000
4800.1	0.300	9.000		w-300	0.000	+ 000
2914.5						
2,336	0.000	0.000	0.000	0.000	0.000	0.000
2.00			- 300 [- 307		- 000
	- 1		- 1	1	- 1	
	-		-			
		-				
5.35	- 1		-		-	
	-	-	-	-	-	-
	_				_	
2.472	2.472	2.472	2.472	2.472	2.472	2.472
2.667	2.557	2.557	2.667	2.557	2.557	2.657
94.8	100.0	9.00.0	900-0	900-0	100-0	100-0
	100.0	900 O	500-0	400-0	100.0	100.0
5.4	0.0	900.0	0	00		-30.0
			1		1	
1044						_
1065 1540						
110	0.000	0.000	0.000	0.000	9 900	0.000
(355 179) (380) 2 2872 2 472	2472	2.472	2.4/2	2.472	2 472	2.672
110	2.472	0.000 2.472 9.9	2.472 0.0	0.00 2.472 0.0	2472	100
110	2 472	2472	2 472	1-000 2-472 0-5	0 500 2 472 5 0	2.007
110	2 472	2.472	2.472	2472	0.000 2.472 9.0	2.672
110	2 472	2472	2.472	2472	2472	2.672
199 3080 2.472 2.472 32.2	0.000 2.472 9.2	2472	+ 000 2 472 0 0	2472	2472	2.672
100 000 2 442 2 472 7 7 7 7 7 7 7 7	0.000	0.000	0000 2 472 0 0 0 000	0.007 2.472 0.0 0.0	0.000	0.000 2.472 5.2 9.000
199 3080 2.472 2.472 32.2	0.000 2.472 0.0 0.000 2.472 0.0	0.000 2.472 0.0 0.00 2.472 0.0	* 000 2 472 0 0 0 000 2 472 0 0 0 000	0.000 2.472 0.0 0.0 0.0 0.0 0.0	0.000 2.472 7.7 0.000 2.472 0.000 2.472 0.0	0.000 2.472 5.2 9.000 2.472 5.2
	A) regards 1594.4 1594.4 1594.4 1594.4 1595.5 445.1 2457.5 445.1 2457.5 2457.5 2597.5 2507					

DRY-BACK


SUPERPAVE MIXTURE PROPERTIES


JOB 0 ROUTE 0	MIX NO.	#VA	LUEI	LOT NO.	0	-	
SUBLOT			×				
DATE							
AASHTO T 209	A2 required	when T85 a	bsorption >2	.0% on any	aggregate fr	action.	
TECHNICIAN							
A - Wt. of sample.	1.594.4						
A2=Wt. of sample (dry-back):							
D - Wt. of flask filled with water:	7472.2						
X = A + D (A2 used in lieu of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0.0
E = Wt. of flask filled with water and sample:	8421.5						
Y = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472

SUPERPAVE MIXTURE PROPERTIES

JOB0 ROUTE0	MIX NO.	#VALU	JEI	LOT NO.	0		
SUBLOT							
DATE							
AASHTO T 209 Rice Gmm	A2 required v	hen T85 ab	sorption >2	.0% on any a	aggregate fra	ction.	
TECHNICIAN INCO UNIT							
A = Wt. of sample:	1594.4						
A2=Wt. of sample (dry-back):							
D = Wt. of flask filled with water:	7472.2						
X = A + D (A2 used in lieu of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0.0
E = Wt. of flask filled with water and sample:	8421.5						
Y = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472
AASHTO T 166							
TECHNICIAN							
MOLDING TEMPERATURE							
A = Weight of sample in air:	4867.8						
B = Weight of sample in water: SPEC. 1	2801.9						
C = Weight of surface dry sample:	4880.4						
Gmb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air:	4899.1						
b - Weight of sample in water.	2814.5						
C = Weight of surface dry sample:	4911.9						
Gmb = BULK SP. G. = A / (C-B)	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
TECHNICIAN							
MoDOT TM54 (NUCLEAR)							
SAMPLE WEIGHT							
BACKGROUND							
COUNTS							
GAUGE % AC							
AASHTO T 308 (IGNITION)	5.05						
	5.35						
NUCLEAR OR IGNITION % MOISTURE Pb	0.12						
% AC BY IGNITION OR NUCLEAR	5.2						
% AC BI IGNITION OR NOCLEAR	5.2						
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
C = Gsb (Job Mix)	2.557	2.557	2.557	2.557	2.557	2.557	2.557
D = Ps = Percent Agg. in mix	94.8	100.0	100.0	100.0	100.0	100.0	100.0
$VMA = 100 - (B \times D / C)$	13.3	100.0	100.0		100.0	100.0	
$Va = 100 \times ((A - B) / A)$			100.0	100.0			100.0
	5.4	100.0		100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA * 100	59	0	0	0	0	0	0
AASHTO T 166							
TECHNICIAN							
A = Weight of sample in air: COTES	1255						
B = Weight in water:	710						
C = Weight of surface dry sample:	1260						
	2.202	0.000	0.000	0.000	0.000	0.000	0.000
Gmm = MAX. SPECIFIC GRAVITY (T209)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
THICKNESS	02.0	0.0	0.0	0.0	0.0	0.0	0.0
SUBLOT	1010010101010101010101010101010101010101						
	L						
FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN							
TECHNICIAN							
A = Weight of sample in air:							
B = Weight in water:							
C = Weight of surface dry sample:							
Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Gmm = MAX. SPECIFIC GRAVITY (T209)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
% COMPACTION OF CORE = 100 x (Gmc / Gmm)		0.0	0.0	0.0	0.0	0.0	0.0
THICKNESS							
SUBLOT							

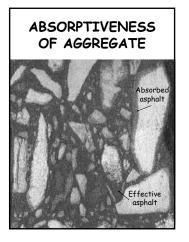
Additio R 35 A = Gmm (FIELD)	2472	2.472	2.472	2.472	2.472	2.672	2.472
B = Gmb (FIELD) (Avg.)	2.339	0.000	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)	2.557	2.557	2.557	2.557	2.557	2.557	2.557
D = Ps = Percent Agg. in mix VMA = 100 - (B X D / C)	94.8	100.0	900.0	100.0	100.0 100.0	100.0	100.0
VMA = 100 - (B X D / C) Va = 100 X ((A - B) / A)	12.3	100.0	100.0	100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA	54	0	100.0	0000	0	100.0	100.0
A - Weight of sample in air. B - Weight in watch of sample: C - Weight of surface dry sample: One - CORE JEPICIPIC GRAVITY = A / (C - B) Ones - UAKL SPECIFIC GRAVITY (7209) So COMPACTION OF CORE = 100 x (Gmc / One THICKNESS SUBLOT	(255 710 (360 2.282 2.472 3) 92.3	0.000 2.472 0.0	0.000 2.472 0.0	0.000 2.472 0.0	0.000 2.472 0.0	0.000 2.472 0.0	0.000 2.472 0.0

SPREADSHEET CALCULATIONS

AASHTO R 35							
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
B = Gmb (FIELD) (Avg.)	2.339	0.000	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)	2.557	2.557	2.557	2.557	2.557	2.557	2.557
D = Ps = Percent Agg. in mix	94.8	100.0	100.0	100.0	100.0	100.0	100.0
VMA = 100 - (B X D / C)	13.3	100.0	100.0	100.0	100.0	100.0	100.0
Va = 100 X ((A - B) / A)	5.4	100.0	100.0	100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA	59	0	0	0	0	0	0

AASHTO T 166

TECHNICIAN


A = Weight of sample in air:

B = Weight in water:

C = Weight of surface dry sample:

Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) % COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT

92.3	0.0	0.0	0.0	0.0	0.0	0.0
2.472	2.472	2.472	2.472	2.472	2.472	2.472
2.282	0.000	0.000	0.000	0.000	0.000	0.00
1260						
710						
1255						

COMMON TESTING ERRORS

- Not allowing specimen to cool to proper temperature.
- Over-manipulating the specimen, producing broken, uncoated particles
- Not having a manometer connected directly to the pycnometer
- Not maintaining the proper level of vacuum.
- Not breaking up sample completely
- Not agitating sample enough
- Agitating sample too much 56

COMMON TESTING ERRORS, cont'd.

- If the specimen was too warm when placed in the pycnometer: after the vacuum step, if stirring is done, aggregate may be broken.
- Not placing the lid in the same position each time.
- Not sufficiently drying the outside of the pycnometer before weighing.

COMMON TESTING ERRORS, cont'd.

- Allowing entrapped air bubbles in pycnometer
 Net performing the dry
- Not performing the dryback procedure for highly absorptive aggregates
- Not calibrating the pycnometer often enough
 Not maintaining proper
- water temperatures

58

COMMON TESTING ERRORS, cont'd.

- Use of a dry towel may wick water out of the pycnometer hole.
- Not using approximately the same size specimen each time.
- Not changing vacuum level at proper rates

Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt (HMA): AASHTO T 209-19

This test method shall be used to determine the maximum specific gravity (G_{mm}) of uncompacted asphalt mixtures.

<u>APPARATUS</u>	MINIMUM SAMPLE SI	<u>ZE (MoDOT)</u>
	NOM. MAX SIZE (in.)	SAMPLE (g)
Balance	1	2500
Container (pycnometer)	3/4	2000
Thermometers	1/2	2000
Vacuum Pump/System	3/8	2000
Water Bath	#4	2000

PROCEDURE

Sample Preparation and Agitation

1. Dry the paving mix to a constant weight (mass repeats within 0.1%) at a temperature of $105 \pm 5^{\circ}$ C. This drying step shall be combined with any warming of the sample necessary to prepare it for separation.

NOTE: The drying of the mix to constant weight prior to separation may be waived provided AASHTO T 329 shows the moisture content to be less than 0.1%. If the drying step is waived due to T 329 results, this fact must be documented and included in the T 209 results.

- 2. Separate the particles of the paving mix by hand. A small trowel can be used, but care must be taken not to fracture the mineral aggregate. Continually work the mix while, ultimately, cooling to room temperature. The particles of the fine aggregate portion should not be larger than ¹/₄" at the completion of the separation step. Periodically, shake the pan back and forth to bring the larger clumps to the top.
- 3. Determine and record the weight of the empty pycnometer (without the lid).
- 4. When the specimen is at room temperature, place and level the sample in the pycnometer.
- 5. Determine and record the combined weight of the specimen and pycnometer.
- 6. Subtract the weight of the pycnometer from the combined weight of the specimen and pycnometer.
- 7. Record the net dry sample weight (A).
- 8. Add sufficient water at a temperature of approximately 25°C (77°F) to cover the sample completely (≈1 inch).
- 9. Wet O ring of vacuum lid and secure lid on pycnometer (use vacuum grease if necessary to obtain a good seal).

- 10. Gradually increase the vacuum and hold 27.5 ± 2.5 mm Hg (3.7 ± 0.3 kPa) absolute vacuum for 15 ± 2 minutes.
- 11. Agitate the pycnometer and contents using mechanical or manual agitation during the vacuum period. Mechanical agitation is accomplished using a shaker device while manual agitation entails vigorously shaking the pycnometer at intervals of about 2 minutes.

Mass Determination: Weigh in Air Method:

- 1. At the end of the 15 ± 2 minute vacuum period, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage).
- 2. Immediately start a 10 ± 1 minute time period. The requirement is to obtain the final weight of the pycnometer, completely filled, within this second time period. It is suggested that the timer be set for 9 minutes. Since the pycnometer is to be placed back in the water bath to bring it and its contents back to $25 \pm 1^{\circ}$ C, this will allow 2 minutes after the timer goes off to obtain the final weight.
- 3. Slowly submerge the pycnometer in the $25 \pm 1^{\circ}$ C water bath, being careful not to expose the sample to the air.
- 4. Place the capillary lid on the pycnometer ensuring the removal of all air bubbles inside the pycnometer while retaining as many fines as possible.
- 5. When the timer goes off, carefully remove the pycnometer from the bath. Dry off the exterior of the pycnometer. Add water to the lid weephole to ensure that the pycnometer is full. Dry off the exterior of the pycnometer again.
- 6. Zero the balance, then obtain and record the combined weight of pycnometer and contents (E).
- 7. Completely empty the pycnometer and re-submerge the empty pycnometer in the $25 \pm 1^{\circ}$ C water bath.
- 8. Again, check for air bubbles clinging to the inside of the pycnometer and the bottom of the capillary lid prior to placement on the pycnometer.
- 9. Leave it in the water bath for 10 ± 1 minutes of immersion.
- 10. Remove the pycnometer and dry off the exterior. Add water to the weephole with an eyedropper until seepage occurs around the lid. Dry off the exterior again and obtain the total weight of the pycnometer filled with water (D).

Mass Determination: Weigh in Water Method:

A weigh-in-water station should be available that includes a water bath suitable for immersion of the suspended container with its deaerated sample, an overflow outlet for maintaining a default water level, a method for controlling or monitoring water temperature, a balance with a weigh-below capability, and some type of suspended platform on which the pycnometer/flask can be supported while submerged in the water bath. The platform and rod/wires that connect the platform to the balance should displace a minimum amount of water.

- Prepare and vacuum sample as described earlier. After 15 ± 2 minutes of agitation and vacuum at the specified level, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage) then disassemble apparatus.
- 2. The temperature of the water bath should be adjusted to and maintained at $25 \pm 1^{\circ}$ C, the water level shall be at its default level (full, but not overflowing), then the weigh-in-water system balance shall be zeroed out (tared).
- 3. Suspend the pycnometer (without the lid) and deaerated sample in the water bath and determine the combined weight (C) after 10 ± 1 minutes of immersion.
- 4. After recording the combined weight (C), immediately remove the pycnometer from the water bath, completely remove the sample from the pycnometer, and then, without delay, obtain the mass of the empty pycnometer (B) after 10 ± 1 minutes of immersion.

Note: It is important that every weight determination begins by returning the water level to its default position; i.e. the water has just stopped dripping from the overflow.

CALCULATIONS

Weigh in Air Method: Calculation of maximum specific gravity is performed in accordance with AASHTO T 209-19, Section 12.1.3.

$$G_{mm} = \frac{A}{A+D-E}$$

Where:

- G_{mm} = maximum theoretical specific gravity (reported to three decimal places)
- A = mass of oven-dry sample in air, (gm)

D = mass of pycnometer filled with <u>water</u>, (gm)

E = mass of pycnometer filled with <u>water + sample</u>, (gm)

Weigh in Water Method: Calculation of maximum specific gravity for this method is performed in accordance with AASHTO T 209-19, Section 12.1.2.

$$G_{mm} = \frac{A}{A+B-C}$$

Where:

G_{mm} = maximum theoretical specific gravity (reported to three decimal places)

A = mass of oven-dry sample in air, (gm)

C = mass of <u>sample + pycnometer</u> in water, (gm)

B = mass of <u>pycnometer</u> in water, (gm)

MAXIMUM SPECIFIC GRAVITY: G_{mm} AASHTO T 209

PROJECT	ROUTE	MIX NO
LOT NO	SUBLOT	TECHNICIAN
	EQUIREMENT: MIX MOISTU	
1) Results fro OR	m T 329: Moisture Content (%	/o) =
2) Mass repe	ats within 0.1% [percent loss	< 0.1% (based on 2 nd wt. per interval)]
	Pan weight (g):	
	itial sample + pan weight (g):	
	$F_0 - P_{MC}$ = Initial sample weight	nt (g):
	<u>ing Interval (DI)</u> 	
-	st DI sample + pan weight (g):	
	$F_1 - P_{MC} = 1^{st} DI sample weight$	
	$V_0 - W_1 = 1^{st}$ Loss in weight (g	
(L ₁ / W	/ ₁) × 100 = 1 st Percent loss (%	b):
<u>2nd Dry</u>	<u>/ing Interval (DI)</u>	
$T_2 = 2^{r}$	nd DI sample + pan weight (g):	
W ₂ = T	$F_2 - P_{MC} = 2^{nd}$ DI sample weig	ht (g):
$L_2 = W$	$V_1 - W_2 = 2^{nd}$ Loss in weight (g	g):
(L ₂ / W	/ ₂) × 100 = 2 nd Percent loss (%	6):
<u>3rd Dry</u>	ring Interval (DI)	
$T_3 = 3^{r}$	^d DI sample + pan weight (g):	
$W_3 = T$	$F_3 - P_{MC} = 3^{rd}$ DI sample weigh	ht (g):
$L_3 = W$	$V_2 - W_3 = 3^{rd}$ Loss in weight (g	ı):
(L ₃ / W	V_3) × 100 = 3 rd Percent loss (%	ó):
4 th Dry	<u>ing Interval (DI)</u>	
$T_4 = 4^{t}$	^h DI sample + pan weight (g):	
W ₄ = T	$F_4 - P_{MC} = 4^{th} DI sample weight$	ht (g):
$L_4 = W$	$V_3 - W_4 = 4^{th}$ Loss in weight (g):
(L ₄ / W	V_4) × 100 = 4 th Percent loss (%	ó):

"DRY-BACK" PROCEDURE: REQUIRED WHEN ANY COARSE AGGREGATE FRACTION HAS AN ABSORPTION GREATER THAN 2.0%.

Procedure complete when percent loss < 0.05% based on 2^{nd} wt. per interval [mass repeats within 0.05%]

P _{DB} = Pan weight (g):	
T ₀ = Initial sample + pan weight (g):	
$W_0 = T_0 - P_{DB}$ = Initial sample weight (g):	
<u>1st Drying Interval (DI)</u>	
T ₁ = 1 st DI sample + pan weight (g):	
$W_1 = T_1 - P_{DB} = 1^{st} DI sample weight (g):$	
$L_1 = W_0 - W_1 = 1^{st}$ Loss in weight (g):	
(L ₁ / W ₁) × 100 = 1 st Percent loss (%):	
2 nd Drying Interval (DI)	
T ₂ = 2 nd DI sample + pan weight (g):	
$W_2 = T_2 - P_{DB} = 2^{nd} DI \text{ sample weight (g):}$	
$L_2 = W_1 - W_2 = 2^{nd}$ Loss in weight (g):	
$(L_2 / W_2) \times 100 = 2^{nd}$ Percent loss (%):	
<u>3rd Drying Interval (DI)</u>	
T ₃ = 3 rd DI sample + pan weight (g):	
$W_3 = T_3 - P_{DB} = 3^{rd}$ DI sample weight (g):	
$L_3 = W_2 - W_3 = 3^{rd}$ Loss in weight (g):	
$(L_3 / W_3) \times 100 = 3^{rd}$ Percent loss (%):	
4 th Drying Interval (DI)	
T ₄ = 4 th DI sample + pan weight (g):	
$W_4 = T_4 - P_{DB} = 4^{th}$ DI sample weight (g):	
$L_4 = W_3 - W_4 = 4^{th}$ Loss in weight (g):	
$(L_4 / W_4) \times 100 = 4^{th}$ Percent loss (%):	
5 th Drying Interval (DI)	
T ₅ = 5 th DI sample + pan weight (g):	
$W_5 = T_5 - P_{DB} = 5^{th} DI sample weight (g):$	
$L_5 = W_4 - W_5 = 5^{th}$ Loss in weight (g):	
$(L_5 / W_5) \times 100 = 5^{th}$ Percent loss (%):	

SPECIFIC GRAVITY DETERMINATION: NO "DRY-BACK" PROCEDURE

S = Weight of oven-dry sample & empty flask (g):	
P = Weight of empty flask (g):	
A = S – P = Weight of oven-dry sample (g):	
Weigh-in-air Method	
D = Weight of flask filled with water (g):	
X = A + D (g):	
E = Weight of flask filled with water & sample (g):	
Y = X - E(g):	
Gmm = A / Y	
Weigh-in-water Method	
C = Weight of flask & sample under water (g):	
B = Weight of flask under water (g):	
Q = C - B (g):	
Z = A - Q (g):	
Gmm = A / Z	

SPECIFIC GRAVITY DETERMINATION: WITH "DRY-BACK" PROCEDURE

A = Weight of oven-dry sample (g):

A2 = Weight of surface-dry sample (g):

Weigh-in-air Method

D = Weight of flask filled with water (g):

X = A2 + D(g):

E = Weight of flask filled with water & sample (g):

Y = X - E(g):

Gmm = A / Y

Weigh-in-water Method

C = Weight of flask & sample under water (g):

B = Weight of flask under water (g):

Q = C - B (g):

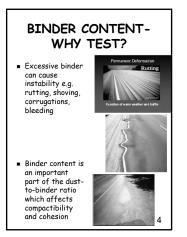
MODULE 8

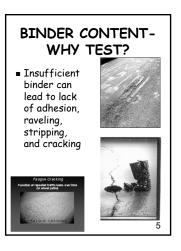
ASPHALT CONTENT IGNITION OVEN METHOD T 308

12-28-06 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 2-26-10 Revision 2-16-11 Revision 3-2-12 Revision 2-26-13 Revision 12-18-13 Revision 12-29-14 Revision 2-5-15 Revision 12-9-15 Revision 3-2-16 Revision 12-28-16 Revision 1-18-18 Revision 12-12-18 Revision 2-8-19 Revision 3-15-19 Revision 12-17-19 Revision 1-30-20 Revision

MODULE 8			
ASPHALT CONTENT IGNITION OVEN METHOD T 308			
12-28-06 Revision			
1-2-09 Revision			
4-22-09 Revision			
11-18-09 Revision			
2-26-10 Revision			
2-16-11 Revision			
3-2-12 Revision			
2-26-13 Revision			
12-18-13 Revision			
12-29-14 Revision			
2-5-15 Revision			
12-9-15 Revision			
3-2-16 Revision			
12-28-16 Revision			
1-18-18 Revision			
12-12-18 Revision			
2-8-19 Revision			
3-15-19 Revision			
12-17-19 Revision			
1-30-20 Revision			

AASHTO T308


Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Oven Method

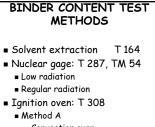

SCOPE

3

Background

- Binder Content Role in QC/QA
- Sampling
- Test procedure
- Field verification
- Oven verification

AASHTO TEST METHODS & SPECIFICATIONS

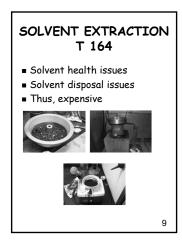

- R 97 Sampling Hot Mix
 R 47 HMA Sample Splitting
 T 329 Moisture Content of Hot Mix
- T 308 Binder Content Ignition Oven
- T30 Sieve Analysis of Residue R 96 Installation, Operation, and Maintenance of Ignition Furnaces

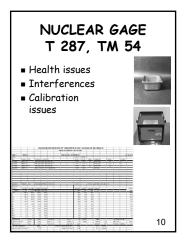
Equipment

- Ignition Furnace
- Basket assembly
- Oven (110 ± 5 C)
- Balance
- Safety Equipment: face shield, gloves, long-sleeved jacket, protective basket cage

7

8




■Convection oven ■Infrared oven

Method B

Method A: internal scale
Method B: no internal

scale

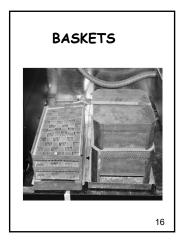
IGNITION OVEN T 308 Method A: • more convenient, bioben lab production

higher lab production rates

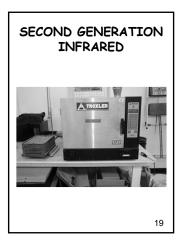
METHOD "A"

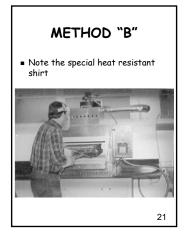
11

- ■Convection oven (NCAT)
- Infrared oven:
 First generation
 Second generation (NTO)


HEAT TRANSFER


- Convection: heat warms the air, which warms the sample
- Infrared: electromagn etic energy waves directly heat the sample





IGNITION OVEN

Method B: no internal scale

 lower oven cost; less operational problems

TYPES OF METHODS In Missouri

- NCAT oven vast majority
- Nuclear a few
- \blacksquare Low radiation nuclear 1
- First generation infrared ignition oven - 1
- Second generation infrared ignition oven - 1

22

MATCHING AGGREGATE TYPE TO BINDER TEST METHOD Dolomite: Nuclear

- Low radiation nuclear
- All other: convection or infrared ignition ovens

SCOPE

Background

- Binder Content Role in QC/QA
- Sampling
- Test procedure
- Field verification
- Oven verification

24

Mix Design & Mix Acceptance

25

26

- Contractor designs mix & submits target binder content to MoDOT
- MoDOT approves and sets JMF target binder %

Binder Content Role

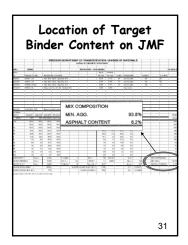
- Mix design & acceptance
- Field verification of mix

CONTENT

Binder content of mix

- Binder content of RAP
- Aggregate gradation

28


% BINDER

- Design (target) binder content is determined during mix design and verified/approved by MoDOT
- May have to be adjusted in the field resulting in a new target binder content:
 - Different aggregate sources
 Significant change in % of aggregate sources
 - Different oven

29

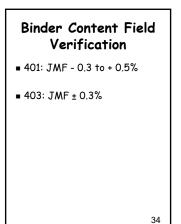
Binder Role

 Binder content is a pay factor in 403 projects

- Background
- Binder Content Role in QC/QA Sampling
- Test procedure
- Field verification
- Oven verification

32

33



■ 403: roadway

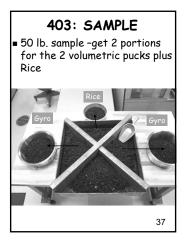
1/30/2020

Location of Target Binder Content on JMF

								ANSPOR								
						AS	SPHALTIC C	ONCRETE T	YPE SP125	1B						
DA TE =	10/29/03						CONTRAC	CTOR = MY B	USINESS							SP125 03-1
IDENT.									BULK	APPAR.						
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATI	ЛО				SP. GR.	SP. GR.	%ABS	FORMATIO	N	LEDGES	% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone Dia	Deep. M.O.				2.515	2.713	2.9	Jet City Dol	D.	5-8	25	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dol		5-8	25	
35JSJ003	1002MSM		/ Hard Rock						2.480	2.761	4.0	Jet City Dol		5-8	10	<u> </u>
30CAJ016	1002HLHL			, 0	e. General, N	10			2.303	2.303	1.0	Hyd. Lime				
000/0010	TOOLITE		/ 111009 2111	000. #2, 01					2.000	2.000		riya. Einio				
																-
																-
																+
								· · · · ·								+
					i 14	IX C	CAL	POSI	TIOI	L D						-
36DLJ016	1015ACPG	7022	/ Black Aspl	halt Product										0°F		+
MATERIAL	TOTSACI O	.1022	/ Diack Aspi										_			
IDENT #	35JSJ001	35JSJ002	25 19 1002	30CA J016	- M	IN. A	٩GG					- 93	3.8%			COME
03016	3/4"		MAN SAND					•								GRA
1 1/2"	100.0	100.0	100.0	100.0				CON	ITEN	IT.		6	5.2%			100.
1"	100.0	100.0	100.0	100.0	P	<u> 560</u>		<u>vor</u>		<u> </u>						100.
3/4"	100.0	100.0	100.0	100.0									<u> </u>			100
1/2"	97.6		100.0	100.0	L				58.6	12.0	26.0	2.0		J		98.
3/8"	83.8	96.1		100.0					58.6		26.0					
3/8 #4	31.8	35.0	100.0 99.9	100.0					19.1	11.5 4.2	26.0					89. 51.
#4	7.0	8.0	82.0	100.0					4.2	4.2						
#8 #16	2.6		40.7	100.0					4.2	0.4	10.6					28.
#10	2.6		26.6	100.0					1.0	0.4	6.9					14.
#50	1.6		13.5	100.0					1.0	0.3	3.5					6.
#100	1.5		5.4	100.0					0.9	0.2	1.4					4
#200	1.5		4.2	99.0				70.0	0.9	0.2	1.1		-	-//		
LABORATORY		Gmm =	2.405		% VOIDS =	4		TSR =	95	TSR Wt.		Nini =	9		MIX COMPOSITION	
CHARACTERIS	1	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.	93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	4610			Nmax =	205	$ \rightarrow \ /$	ASPHALT CONTENT	6.29
CALIBRATION			90004			MASTER		ACK CNT. =	2196			A1 =	-5.234741			
	GE SER. NO.	-	770				SAMPLE	E WEIGHT =	7200			A2 =	3.436895			

LOOSE MIX: 403

Volumetric/%Binder Sample


- Sampling Frequency: ■ QC: one per *sublot*
 - QA: one per 4 sublots-"independent sample"

 - QA: once per day test QC
 "retained sample". This may be omitted on days when independent QA sample is taken, if confident and "favorable comparison" exists between QA's QC split and QC (within 0.1%)

35

Loose Mix: 401

- QC: binder content-every 1000 tons. If less than 1000 tons per day, test at least once; RE may waive testing if less than 200 tons per day
- QA: one independent sample every 4 QC tests
- QA: Retained QC sample split: once per 5 days

IGNITION OVEN SPECIMEN SIZE						
Mix	NMS in.	Specimen Size g				
SP048 & BP-3	#4	1200-1700				
SP095	3/8	1200-1700				
SP125 & BP-1 & BP-2	1/2	1500-2000				
SP190 & Bit Base	3/4	2000-2500				
SP 250	1	3000-3500				
		40				

IGNITION OVEN SPECIMEN SIZE

 Large specimens of fine mixes tend to result in incomplete ignition

SCOPE

- Background
- Binder Content Role in QC/QA
- Sampling
- Test procedure
- Field verification
- Oven verification

42

Corrections

 Binder content test procedure

IGNITION OVEN BASICS

43

44

45

- % Binder: loss in mass of specimen
- Problem: other materials also burn off
 moisture

∎aggregate

TEST PROCEDURE

- Corrections
- Binder content test procedure

1/30/2020

BINDER CONTENT CORRECTIONS

Moisture

- Aggregate burn loss
- Temperature effects on weighing

46

MOISTURE CORRECTION

- Moisture in mix will burn off, too.
- This will count as binder unless corrected
- Correction:
- Dry mix to a constant mass at 110 ± 5 C prior to testing
- "Aging"—must still verify that constant mass has been achieved

Or

 Determine moisture content of mix (AASHTO T 329), subtract it from the apparent binder content
 47

AASHTO T 329-15• Temperature now:
• Within the JMF mixing
temperature range
• If unavailable, use 325 ±25 F• Initial drying time is 90 ± 5 minutes• Moisture is now calculated based on
dry weight of HMA $MC = \left[\frac{M_{I(wet)} - M_{I(dry)}}{M_{I(dry)}}\right] X100$ MC = % moisture
 $M_{(dry)}$ = initial mass of mix, wet
 $M_{f(dry)}$ = final mass of mix, dry

Rounding

- When calculating, round to nearest 0.01% for moisture content, binder content, and C_f
- When comparing to specification, round to nearest binder content 0.1%

49

MOISTURE DATA SHEET							
MOISTURE	AASH	IX ASPHALT (HMA) by O' TO T 329-15 n correction purposes)	VEN METHOD				
Project No.	Job No.	Route	County				
Technician	Date	Sublot No.	Mix No.				
Oven Temp.	Time in	Time out	Interval				
		Sample:	Sample:				
Pan wt. (g)		340					
Mix + pan wt., moist (g)	= (W _{wit})	1840					
Mix + pan wt., dry (g) [T	rial 1]	1839					
Mix + pan wt., dry (g) [T	rial 2]	1838					
Mix + pan wt., dry (g) [T		1838					
%Moisture = Www = Wo Wey = par	^{iy} ×100						
NOTE: All weights to ne	NOTE: All weights to nearest 0.1 gram and % moisture to nearest 0.01%						
			50				

MOISTURE TESTING FREQUENCY: Several per Day

- High RAP/RAS mixtures especially prone to moisture
- Rainy weather
- "Warm mix"
- New aggregate
- If plant operator reports burning more fuel to maintain temperature
- Fluctuating volumetrics or binder contents
- Watering piles per DNR

MOISTURE DATA SHEET

MOISTURE CONTENT OF HOT MIX ASPHALT (HMA) by OVEN METHOD AASHTO T 329-15 (for ignition oven correction purposes)						
Project No.	Job No.	Route	County			
Technician Date		Sublot No.	Mix No.			
Oven Temp. Time in		Time out	Interval			
		Sample:	Sample:			
Pan wt. (g)		340				
Mix + pan wt., moist (g)	= (W _{wet})	1840				
Mix + pan wt., dry (g) [T	rial 1]	1839				
Mix + pan wt., dry (g) [T	rial 2]	1838				
Mix + pan wt., dry (g) [T	rial 3] = (W _{dry})	1838				
$\label{eq:Moisture} \hline \begin{tabular}{l} \end{tabular} \$	^y 100					

NOTE: All weights to nearest 0.1 gram and % moisture to nearest 0.01%

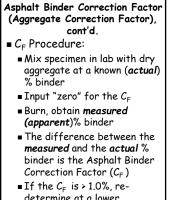
MOISTURE TESTING FREQUENCY: Less Often

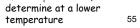
Dry weather

 Same stockpiles No moisture when tested

BINDER CONTENT CORRECTIONS

52

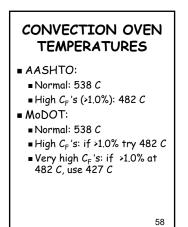

53


Moisture

Aggregate burn loss Temperature effects on weighing

Asphalt Binder Correction Factor (Aggregate Correction Factor)

- To correct for loss of mass during the mix ignition due to aggregate burn-off
- Determined during mix design by mix designer (usually QC)
- Re-determined if mix design changes (e.g. >5% change in stockpiled aggregate proportions)
- Re-determined if a different oven is used (QA or QC)



Definitions

M = mass (g)

- M_{i(dry)} = mass of mix before burning, dry already
- Mf = final mass of mix after burning (binder and some aggregate burned off)
- (M_{i(dry)} M_f) = binder & aggregate burned off
- Magg = initial unburned mass of just the aggregate, dry
- (M_{i(dry)} M_{i(agg}))= mix mass minus aggregate mass is the mass of binder, initially

Asphalt Binder Correction Factor (Aggregate Correction Factor), cont'd. ■ Lab-produced sample (dry)				
$C_f = Measured - Actual$				
■ Math:				
$C_{f} = \left[\frac{M_{i(d\gamma)} - M_{f}}{M_{i(d\gamma)}}\right] - \left[\frac{M_{i(d\gamma)} - M_{i(ogg)}}{M_{i(d\gamma)}}\right]$				
 The difference is the aggregate mass loss The <i>Measured</i> binder content can be from the oven ticket 				
 The Actual binder content can be from a bench scale 				
 If the C_F is > 1.0%, re-determine at a lower 				
temperature 57				

Use of Cf

- Before production, when C_f is the unknown:
- Cf=Measured content-Actual content During production, when Actual content is *unknown*:

Actual = Measured content - Cf

Number of Replicate Specimens

- Use two.
- If the difference in measured asphalt contents is > 0.15%, test 2 more replicates.
- For the four replicates, discard the high and low results.

60

Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet							
ASPHALT CONTENT IGNITION METHOD (AASHTO T 308:10) METHOD A Aggregate Correction Factor [As phak Binder Correction Factor] Determination							
Sample	Lab No	Date	Inita	ls			
Replicate	1	2	3	4			
Test Temperature	538	538					
Tare (basket, etc.) Mass (g)	3000	3000					
Total Dry Mass (g)	5000	5005					
Initial Dry Specimen Mass (g)	2000	2005					
Loss in Weight (g)	125	128					
%AC, measured = M	6.25	6.28					
%AC, actual = A	6.00	6.01					
$96AC_{diff}\left(M_{1}-M_{2}\right)$	0.03	> 0.15%? #	so, 2 more r	eplicates			
C _F = M - A	0.25	0.27					
C _F , average		0.3	28				

Asphalt Binder (Aggregate) Correction Factors

- Anecdotal: Infrared runs ~0.05% higher than convection oven
- AMRL Proficiency samples are comparable

Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A

Aggregate Correction Factor [Asphalt Binder Correction Factor] Determination

Sample	Lab No	Date	eInitia	ls
Replicate	1	2	3	4
Test Temperature	538	538		
Tare (basket, etc.) Mass (g)	3000	3000		
Total Dry Mass (g)	5000	5005		
Initial Dry Specimen Mass (g)	2000	2005		
Loss in Weight (g)	125	126		
%AC, measured = M	6.25	6.28		
%AC, actual = A	6.00	6.01		
$%AC_{diff} (M_1 - M_2)$	0.03	> 0.15%? If	so, 2 more re	eplicates
$C_F = M - A$	0.25	0.27		
C _F , average		0.2	26	

RAP Aggregate Correction Factor

(Asphalt Binder Correction Factor) ■ Follow TM-77:

- Assumes aggregate C_F for RAP aggregate is same as C_F for virgin aggregate
- Follow the standard procedure as if there was no RAP, i.e., use only the virgin aggregate, and only the binder content associated with the virgin aggregate portion when fabricating the specimen
- So, the Cf from the virgin materials test is used as the Cf for the whole mix

64

65

BINDER CONTENT CORRECTIONS

- Moisture
- Aggregate burn loss
- Temperature effects on weighing

CONVECTION OVEN: TEMPERATURE COMPENSATION FACTOR

- Material "weighs" differently at elevated temperatures
- Mass loss shown on the oven printout must be corrected
- Oven calculates and prints the "Temperature Correction Factor (TCF)" for the particular test run
- TCF = apparent loss in weight due to heating

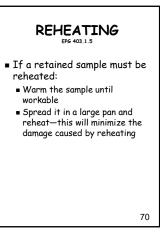
USE OF TEMPERATURE CORRECTION FACTOR

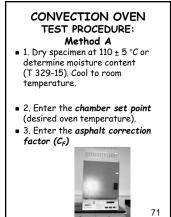
- When determining the Aggregate Correction Factor, if the oven printout is used for determination of the Measured Asphalt Content, include the Temperature Correction Factor (TCF)
- If all weighing is performed outside of the oven and specimen is cooled to room temperature, do not use the TCF

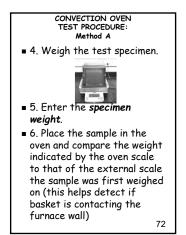
67

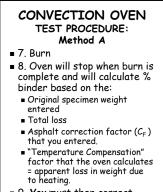
68

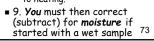
69

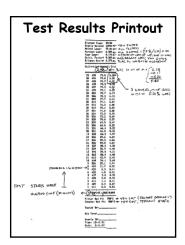

Second Generation Infrared oven

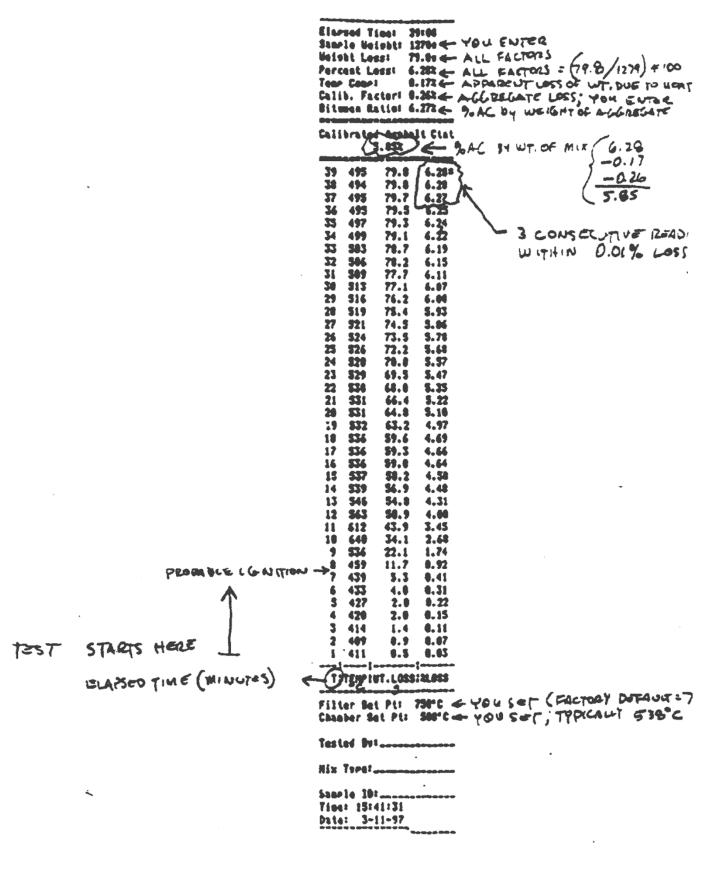

- No Temperature Correction Factor
- Scale is better insulated from the chamber

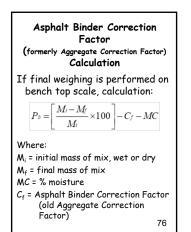

TEST PROCEDURE


- Corrections
- Binder content test procedure


1/30/2020






ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Reproducing Oven Ticket Values						
*If w _i = wet Project No.	Job No.	Route	County			
Technician	Date	Sublot No.	Mix No.			
Empty Basket As	sembly Weight (g), [T _a]		3000			
Basket Assembly	+ Wet (or dry) Sample 1	Neight (g), [T]	4270			
Wet (or dry) Sam						
Loss in Weight (g), [L] (from tape)					
Total % Loss, [PL:	= (L / W _i) x100]					
Temperature Corr	pensation (%), [C _{1c}] (fr	om tape)				
% AC, uncorrecte						
Aggregate Correc	tion (Calibration) Factor	(%), [C ₁] (from tape)				
Calibrated %AC (from ignition oven tape), $[P_{total}=P_{tot}-C_{d}]$						
% Moisture Conte	-0.13					
% AC, corrected (by weight of mix), [P _b =	P _{bcal} = MC]*				

Test Results Printout

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Reproducing Oven Ticket Values

Revised 12-9-15						
*If w _i = wet Project No.	Job No.	Route	County			
Technician	Date	Sublot No.	Mix No.			
Empty Basket Assembly	Empty Basket Assembly Weight (g), [T _e]					
Basket Assembly + Wet	Basket Assembly + Wet (or dry) Sample Weight (g), [T _i]					
Wet (or dry) Sample We	eight (g), [W _i = (T _i - T _e)]					
Loss in Weight (g), [L]((from tape)					
Total % Loss, [P _L = (L / V	V _i) x100]					
Temperature Compensa	ation (%), [C _{tc}] (from tape	2)				
% AC, uncorrected, [P _{bt}	% AC, uncorrected, $[P_{bu} = P_L - C_{tc}]$					
Aggregate Correction (C	Aggregate Correction (Calibration) Factor (%), $[C_f]$ (from tape)					
Calibrated %AC (from i						
% Moisture Content, [M		-0.13				
% AC, corrected (by we	% AC, corrected (by weight of mix), $[P_b = P_{bcal} - MC]^*$					

Example Manual Method

Moisture = 0.05%

- $\bullet C_{\rm f} = 0.22\%$
- Initial wet mass = 5400 g
- Final burned mass (after cooling to room temperature)
 = 5256 g

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Manual Weighing Method						
Project No.	Job No.	Route	County			
Technician	Date	Sublot No.	Mix No.			
Empty Basket Ass	embly Weight (g), [T _e]		3000			
Initial Basket Asse	mbly + Wet (or dry) Sa	ample Weight (g), [T]	5400			
Initial Wet (or dry)	Initial Wet (or dry) Sample Weight (g), [W ₁ = (T ₁ - T _a)]					
Final Basket Asse	mbly + Burned Sample	Weight (g), [T-]	5256			
Loss in Weight (g)	. [L= T _i - T _i]		144			
% Loss, [P _L = (L / \	6.00					
Aggregate Correc	tion (Calibration) Facto	r (%), [C ₁]	-0.22			
Calibrated %AC, [$P_{bcal} = P_L - C_d$		5.78			
% Moisture Conte	-0.05					
% AC, corrected (by weight of mix), [P _b =	P _{bcal} =MC]*	5.73			
∎ *If	non-dried spec	cimen was used (w	n = wet) 78			

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Manual Weighing Method

Project No.	Job No.	Route	County			
Technician	Date	Sublot No.	Mix No.			
Empty Basket Assemb	ly Weight (g), [T _e]		3000			
Initial Basket Assembly	Initial Basket Assembly + Wet (or dry) Sample Weight (g), [T _i]					
Initial Wet (or dry) Sam	nple Weight (g), [W _i	= (T _i - T _e)]	2400			
Final Basket Assembly	r + Burned Sample	Weight (g), [T _f]	5256			
Loss in Weight (g), [L=	T _i - T _f]		144			
% Loss, [P _L = (L / W _i) x	% Loss, [P _L = (L / W _i) x100]					
Aggregate Correction (Aggregate Correction (Calibration) Factor (%), [C _f]					
Calibrated %AC, [P _{bcal}	5.78					
% Moisture Content, [N	-0.05					
% AC, corrected (by w	5.73					

If non-dried specimen was used (w: = wet)

TEST PROCEDURE Method B

1. Weigh out specimen.

- 2. Burn for about 45 minutes.
- 3. Remove, cool, weigh.
- 4. Burn for another 15 minutes.
- 5. Remove, cool, weigh.
- 6. Keep repeating until 2 consecutive mass weighings do not change by > 0.05%.

■ 7. Subtract moisture %.

79

Common Testing Errors/Source of Non-Comparison/Early Shut-off

 Starting test when oven is cold: incomplete burn; can affect TCF

- Neglecting to push "Start" (binder burns but is not recorded)
- Not cleaning oven & vents often enough
- Using vent pipe less than 4 in, diameter (NTO clogs more quickly)

80

81

Common Testing Errors/Source of Non-

Comparison/Early Shut-off

- Asphalt correction factor (C_F) not used
- Not cleaning baskets
- Allowing scale plate or support tubes to rub
- Not spreading specimen out
 Not tearing off ticket before opening oven door
- Allowing door to not latch correctly
- Not correcting for moisture (e.g. when plant speed increases, etc)

Common Testing Errors/Source of Non-Comparison/Early Shut-off

- Using an oversize specimen
 Not using the same size
- specimen for asphalt correction factor (C_F) determination and all production tests
- Using a plant-made specimen instead of a lab-made specimen for (C_F) determination
- Not double-checking specimen weight on oven scale against exterior scale weight

Common Testing Errors/Source of Non-Comparison/Early Shut-off

- Materials used for (C_F) determination not the same as project materials
- Inaccurate asphalt contents used for (C_F) determination
- QA & QC starting with different temperature specimens
- Door left open too long between loadings
 83

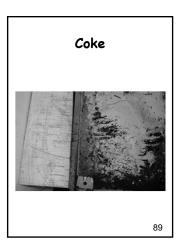
Common Testing Errors/Source of Non-Comparison/Early Shut-off

- Wrong chamber set point
- Wrong burn profile
- Weighing on bench balance
- when specimen is hot

OPERATIONAL PROBLEMS

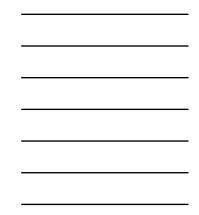
 Oven won't shut itself off it's OK to manually shut off as long as 3 consecutive readings show less than 0.01% loss and the sample appears to be completely burned (EPG 403.1.5)

85


86

Premature Burn Stop

- Vibrations
- Basket or strap up against wall or top of chamber
- Clogged port
- Used U.S. date, not European date (1998-2000 NCAT models)

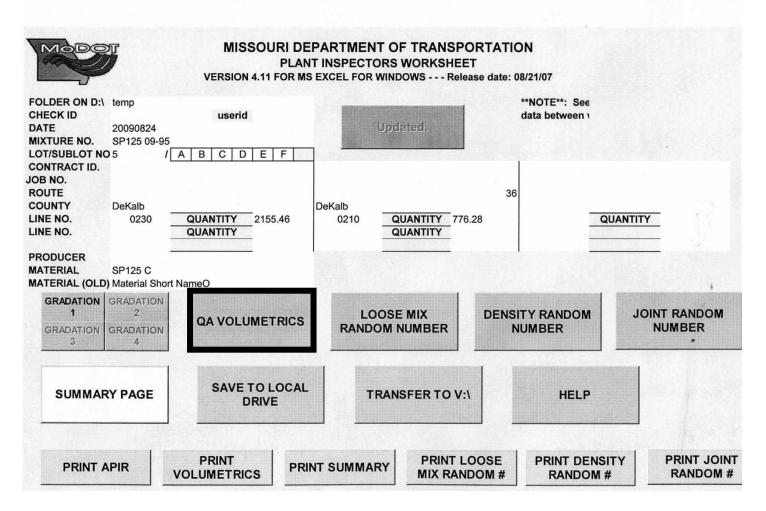


SCOPE

Background

- Binder Content Role in QC/QA
- Sampling
- Test procedure
 Field verification
- Oven verification

		0DOT ADSH		
	PLANT	ARTMENT OF TRANSPO INSPECTORS WORKSHEET IXCEL FOR WINCOWS Release	ee date: 06/21/07	APW/4.11 (211)
FOLDER ON D.1. tump CHECK ID DATE 20000824 WIXTURE NO. SP125 05-05 LOT/SUBLOT NO 5 / CONTRACT ID. CONTRACT ID.	userid A B C O E F	Upstreed	"NOTE": See data between 1	
ADUTE COUNTY Dukuto LINE NO. 0230 LINE NO. PRODUCER MATERAL 0P125 C	GUANTITY 2155.45 GUANTITY	G210 QUANTITY 775.		ANTITY
MATERIAL (OLE) Material Sho MATERIAL (OLE) Material Sho MATERIAL (OLE) Material Sho Material Constants Constants 3 4	GA VOLUMETRICS	LOOSE MIX RANDOM NUMBER	DENSITY RANDOM NUMBER	JOINT RANDOM
SUMMARY PAGE	SAVE TO LOCAL DRIVE	TRANSFER TO VA	HELP	
PRINT APIR	PRINT PRINT VOLUMETRICS	T SUMMARY PRINT LC MIX RAND	OSE PRINT DENSI OM # RANDOM #	PRINT JOIN RANDOM
				91



JOB 0 ROUTE 0	MIX NO.	mun.	10	LOT NO.	0		
SUBLOT		1			_		
DATE AMENTO Y 209							
TECHNICIAN	A2 required a	Pen 185.40	morphon 12	Cris on any a	Ala a sure a	non T	
A = WL of sample:	1594.4						
A2=WL of sample (dry-back):	1004.4						
D = Wit, of flask filled with water:	74722		_		_		
X = A + D (A2 used in lieu of A for dry-back)	9066-6				++	0.0	
E = WL of flask filled with water and sample: Y = X - E	8421.5						
Gmm = MAX. SPECIFIC GRAVITY = A / Y	2.472	0.0	0.0	2.472	2.472	2.472	2.472
AABHTO T 166							
TECHNICIAN MOLDING TEMPERATURE					-	_	-
MOLDING TEMPERATURE A = Weight of sample in air	4947.6	-	-			-	
B = Weight of sample in water: smpc. s	2901.9	-					
C = Weight of surface dry sample:					_	_	
Gmb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	4.000	0.000	0.000	
A = Weight of sample in air: B = Weight of sample in water: SPEC. 2	4000.1				-	_	
D = Weight of sample in water: 5PEU. 2 C = Weight of surface dry sample:	2014.0	-			-	-	-
C = Weight of surface dry sample: Omb = BLEK SP. G. = A / (C-B)	2 331	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
COUNTS GAUGE % AC	2		_	-		-	
GAUGE % AC	-						
anuse was anuse was nuclear or particle s most take	1 5.91						
GAUGE % AC GAUGE % AC GAUGE % AC MACLES & CONTINUE Ignition over	1 5.91						
DALUGE W. AG DALUGE WAC WALLEAR OR SMATCH WALLEAR OR SMATCH % MODSTURE % AC BY IGNATION OR NUCLEAR	0.12 6.2	142	142	2.02	2.472	2.621	2.472
CALOF 19.40 CALOF 19.40 CALOF 19.40 NO.CLAN OR INFLOR 19.40 BY IGNITION OR NUCLEAR COMPANY OF THE OFFICE 19.40 BY IGNITION OR NUCLEAR COMPANY OF THE OFFICE A - Ome (FIELD) 9.50 CM (FIELD) 9.50 CM (FIELD)	5.39 0.12 5.2 2.472 2.399	2.472	2.472	2.472	2.472	2.472	2.472
ALLOF 19.40 JANOT 19.40 CALUE 19.40 NUCLEAR OF INFORM NUCLEAR OF INFORM NUCLEAR OF INFORM NUCLEAR OF INFORM NUCLEAR OF INFORM 0 - Other (PELD) (Way.) 0 - Other (PELD) (Way.) 0 - Other (PELD) (Way.) 0 - Other (PELD) (Way.)	2.472 2.539 2.557	2.557	2.557	2.667	2.557	0.000	0.000
DALAGE 19 AG GAUGE 19 AG GAUGE 19 AG SAUCE 19 AG 19 AG	5.39 0.12 5.2 2.472 2.399 2.692 2.692 2.692	2.567	2.557	2.667	2.557	2.557	2.557
Address Add Address Address Address Address Address Address Standard Francisco Standard Francisco St	2472 2399 2497 2399 2497 948 933	0.000 2.557 100.0 100.0	0.000 2.557 9.00.0	0.000 2.557 100-0 100-0	0.000 2.557 530-0 530-0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0
DALAGE 19 AG GAUGE 19 AG GAUGE 19 AG SAUCE 19 AG 19 AG	5.39 0.12 5.2 2.472 2.399 2.692 2.692 2.692	2.567	2.557	2.667	2.557	2.557	2.557
	2.472 2.359 2.452 2.359 2.359 2.359 2.359 2.457 04.6 13.3 6.4	0.000 2.557 100.0 100.0 100.0	0.000 2.557 930.0 930.0 930.0	0.000 2.567 NOO-0 NOO-0 NOO-0	0.000 2.557 530-0 530-0 530-0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
Action 14: A diagram Constrained Action 14: A diagram Lgnition over Action 14: A diagram Lgnition over Action 14: A diagram Action 14: A diagram	2.472 2.259 2.599 2.599 2.599 2.599 2.440 1.3.3 6.4 64	0.000 2.557 100.0 100.0 100.0	0.000 2.557 930.0 930.0 930.0	0.000 2.567 NOO-0 NOO-0 NOO-0	0.000 2.557 530-0 530-0 530-0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
Altority & Ad Section (Section) Altor (Section) Gamma (Section) Machine (Section) Section (Section) Altor (Section) Section)	1 5.35 0.12 6.2 2.472 2.539 2.452 2.452 0.453 0.45	0.000 2.557 100.0 100.0 100.0	0.000 2.557 930.0 930.0 930.0	0.000 2.567 NOO-0 NOO-0 NOO-0	0.000 2.557 530-0 530-0 530-0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
ALLOSE XA CONTRACTOR ACCOUNT AND CONTRACT ACCOUNT AND CONTRACTOR ACCOUNT AND CONTRACTOR ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT AC	5.35 0.12 5.2 2.472 2.472 2.492 0.44 n 1.3.3 5.4 0.12 0.	0.000 2.557 100.0 100.0 100.0	0.000 2.557 930.0 930.0 930.0	0.000 2.567 NOO-0 NOO-0 NOO-0	0.000 2.557 530-0 530-0 530-0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
ALLOSE XA CONTRACTOR ACCOUNT AND CONTRACT ACCOUNT AND CONTRACTOR ACCOUNT AND CONTRACTOR ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT AC	1 5.35 0.12 0.52 2.422 2.4	0.000 2.557 100.0 100.0 0 0.000	0.000 2.557 0.00 0 0.000 0 0.000	0.000 2.567 100.0 100.0 0 0	0.000 2.557 500.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
And a fragment of the second s	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
Another Same Mental Same And Same Same Same Same Same Same Same Same	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000	0.000 2.557 0.00 0 0.000 0 0.000	0.000 2.567 100.0 100.0 0 0	0.000 2.557 500.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0.00 0.000	0.000 2.557 100.0 100.0 0.000 0.000
And a fragment of the second s	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
A constraint of the second of	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
A second	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
A construction of the second o	1 5.95 0.12 6.2 2.42	0.000 2.557 100.0 100.0 0 0.000 2.472	0.000 2.557 580.0 590.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
A construction of the second s	1 5.951 0 12 5 237 2 427 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	0.000 2.557 100.0 100.0 0.000 2.472 0.0	0.000 2.557 586.0 580.0 580.0 500.0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 400.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0	0 000 2 000 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 2.472
A service and a	1 5.991 2.292 2.292 2.292 2.292 2.292 2.492	0.000 2.557 100.0 100.0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 500.0 500.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 000-0 000-0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.000 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.507 100.0 100.0 0.000 2.472 6.0
A series of the	1 5.991 2.292 2.292 2.292 2.292 2.292 2.492	0.000 2.557 100.0 100.0 0.000 2.472 0.0	0.000 2.557 586.0 580.0 580.0 500.0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.557 400.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0	0 000 2 000 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2.507 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0

Binder Portion						
TEDROAM MOT THIS RALERY BANKER BROAT COUNTS		93				

MoDOT SPREADSHEET

APIW 4.11 12/17/200

SUPERPAVE MIXTURE PROPERTIES

JOB 0 ROUTE 0				LOT NO.			
SUBLOT							
DATE							
AASHTO T 209	A2 required w	hen T85 ab	sorption >2.	0% on any a	ggregate frac	ction.	
TECHNICIAN A = Wt. of sample:	1504.4						
A = Wt. of sample. A2=Wt. of sample (dry-back):	1594.4						
D = Wt. of flask filled with water:	7472.2						
X = A + D (A2 used in lieu of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0.0
E = Wt. of flask filled with water and sample:	8421.5						
Y = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
3mm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472
AASHTO T 166 FECHNICIAN							
MOLDING TEMPERATURE							
A = Weight of sample in air:	4867.8						
B = Weight of sample in water: SPEC. 1	2801.9						
C = Weight of surface dry sample:	4880.4						
Smb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air:	4899.1						
B = Weight of sample in water: SPEC. 2	2814.5						
C = Weight of surface dry sample:	4911.9						
Gmb = BULK SP. G. = A / (C-B)	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
FECHNICIAN MoDOT TM54 (NUCLEAR)							
BACKGROUND Nuclear gage							
COUNTS							
GAUGE % AC	1						
AASHTO T 308 (IGNITION)							
AASHTO T 308 (IGNITION)	5.35						
AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION Ignition oven	[
AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE	0.12						
ASHTO T 308 (IGNITION) GAUGE %AC JUCLEAR OR IGNITION 6 MOISTURE	[
AASHTOT 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR ASHIOR 35	0.12	2.472	2.472	2.472	2.472	2.472	2.472
ASHTOT 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR (ASHTOR 35 A = Gmm (FIELD)	0.12	2.472	2.472	2.472	2.472	2.472	<u>2.472</u> 0.000
ASHTOT 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR (ASHTOR 35 A = Gmm (FIELD) 3 = Gmb (FIELD) (Avg.)	0.12						
ASHTOT 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) 3 = Gmb (FIELD) (Avg.) C = Gsb (Job Mix)	0.12 5.2 2.472 2.339	0.000	0.000	0.000	0.000	0.000	0.000
AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix	0.12 5.2 2.472 2.339 2.557	0.000	0.000 2.557	0.000 2.557	0.000 2.557	0.000	0.000 2.557
ASHTOT 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) 3 = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C)	0.12 5.2 2.472 2.339 2.557 94.8	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2:557 100.0	0.000 2.557 100.0
The second seco	0.12 5.2 2.472 2.339 2.557 94.8 13.3	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0
Tashto T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
Tashto T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA MASHTO T 166 TECHNICIAN	0.12 5.2 2.339 2.557 94.8 13.3 5.4 59	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
Table T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix VMA = 100 - (B X D / C) VA = 100 X ((A - B) / A) VFA = (VMA-Va) / VMA AASHTO T 166 FECHNICIAN A = Weight of sample in air:	0.12 5.2 2.339 2.557 94.8 13.3 5.4 59	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
Tashto T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /A = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA VASHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA AASHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 100.0 0	0.000 2:557 100.0 100.0 0	0.000 2.557 100.0 100.0 0
The formation of the second state of the seco	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0 0.000	0.000 2:557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000
ASHTO T 308 (IGNITION) SAUGE %AC JUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) B Gmb (FIELD) C Gsb (Job Mix) D P S = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA A SHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
SAUGE %AC JUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR CAC BY IGNITION OR NUCLEAR CAC BY IGNITION OF CORE = 100 x (Gmc / Gmm) CAC BY IGNITION OF CORE = 100 x (Gmc / Gmm)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0 0.000	0.000 2:557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000
SASHTO T 308 (IGNITION) SAUGE %AC JUCLEAR OR IGNITION A MOISTURE A C BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) B Gmb (FIELD) C Gsb (Job Mix) D P S = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA A SHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
SAUGE %AC JUCLEAR OR IGNITION SAUGE %AC JUCLEAR OR IGNITION SOLUCE A C BY IGNITION OR NUCLEAR A C BY IGNITION OR NUCLEAR A SHIO R35 A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA A SHIO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
ASHTO T 308 (IGNITION) GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHTO R 35 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 0 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: 5 = Weight of Surface dry sample: 6 = CORE SPECIFIC GRAVITY (T209) 6 = COMPACTION OF CORE = 100 x (Gmc / Gmm) 7 HICKNESS 5 UBLOT 0 = 2 ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
ASHTO T 308 (IGNITION) GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHTO R 35 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 0 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: 5mc = CORE SPECIFIC GRAVITY = A / (C - B) 5mm = MAX. SPECIFIC GRAVITY = A / (C - B) 5mm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) 7HICKNESS 5UBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
ASHTO T 308 (IGNITION) GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHTO R 35 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 0 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: 8 = Weight of sample in air: 8 = Weight of sample in air: 8 = Weight of sample in air: 9 = Weight of sample in air: 9 = Weight in water:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
ASHTO T 308 (IGNITION) GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHTO R 35 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 0 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight in water: 2 = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: 3 = Weight in water: 2 = Weight of surface dry sample:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0
ASHTO T 308 (IGNITION) GAUGE %AC JUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 0 = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA VASHTO T 166 TECHNICIAN A = Weight of sample in air: 8 = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) % COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT TOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: 8 = Weight in water: C = Weight of sample in air: 8 = Weight of sample in air: 9 = Weight of surface dry sample: 9 = Weight of surfac	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 0.000	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0
ASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA WASHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) % COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of sample in air: B = Weight of sample in air: B = Weight of sample in air: C = Weight of sample in air: B = Weight in water: C = Weight of sample in air: B = Weight of sample in air: C = Weight of sample in air: B = Weight of sample i	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472
AASHTO T 308 (IGNITION)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 0.000	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0

Binder Portion

TECHNICIAN MoDOT TM54 (NUCLEAR) SAMPLE WEIGHT BACKGROUND COUNTS GAUGE % AC AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR

***************		********	 	

5 25			 	
5.35			 	
0.12				
5.2				

MODULE CONTENT

- Binder content of mix
- Binder content of RAP
- Aggregate gradation

94

95

RAP Binder Content

- Per Spec 403.2.6, RAP binder content must be determined
- QC: 1 per 4 sublots
- QA: 1 per project
- T164 (solvent extraction)
 Can use T308 (ignition) if a correction factor is determined which is the difference between T164 & T308 (best to use your own oven when T164 is determined by another lab)

RAP & RAS

- Some contractors stockpile RAP & RAS, prepare (grind) it, and sample it.
- Send sample to a commercial lab to have extractions run (T164), obtain binder content & gradation
- This is what is submitted to MoDOT during mix design
- During production, RAP is sampled and ignition oven used to get binder content & gradation

MODULE CONTENT

Binder content of mix

Binder content of RAP

Aggregate gradation

97

GRADATION SAMPLES

- MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample.
- An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock.
- RAP gradation in the field is determined with ignition oven

98

RAS Gradation

- Not recommended to use T308 on RAS (too dangerous)
- Fan will suck fines out
- Use extraction to get gradation or use the standard gradation

RAS Gradation

 Ground to min Gradation from extraction, or table: 	
Sieve Size	% Passing
3/8"	100
#4	95
#8	85
#16	70
#30	50
#50	45
#100	35

#200

GRADATION SAMPLES

25

100

- When determining the aggregate (gradation) correction factor (AGCF), prepare a aggregate blank (no binder) specimen.
- Do a washed gradation analysis (T 30) of the blank
- Do a washed gradation analysis of the burned HMA specimen (T 30)

101

GRADATION SAMPLES Plus #200 Portion

- Determine a difference for each sieve, each replicate: (%-#4)blank - (%-#4)burned , replicate #1
- (%-#4)_{blank} (%-#4)_{burned}, replicate #2 Calculate the average difference for that sieve (#4) = AGCF for #4
- If the difference on any sieve exceeds the allowable (see below), then each sieve must have its AGCF applied to each sieve result.
- Allowable differences: ∎ <u>≥</u> #8: ± 5.0%
 - ≥ #200 to < #8: ± 3.0%

■ <u>≺</u>#200

± 0.5%

GRADATION SAMPLES Passing the #200 Portion

 If only the #200 sieve exceeds the limit, apply the AGCF only to the #200 sieve

103

		E	xa	mpl	e		
Sieve	Rep# 1	Rep# 2	Blank	Rep# 1 Diff	Rep# 2 Diff	Avg Diff= AGCF	Allow able
1"	100.0	100.0	100.0	0,0	0,0	0.0	±5.0
3 "	100.0	100.0	100.0	0,0	0,0	0.0	±5.0
1 <u>1</u> "	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72,1	70,4	1,1	-1.7	-0,3	±5.0
#4	52,1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32,7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2,2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1,1	1,5	±3.0
#200	6.8	7.4	7.1	0,3	-0,3	0.0	±0.5
Rep#	#4 sieve 1: 53.9- 2: 53.9	52,1 = 1					
Avg diff = 0.1							
Comp	are to ±	5.0 OK					104

SCOPE

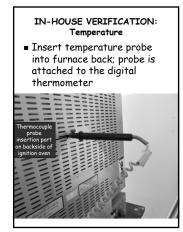
- Background
- Binder Content Role in QC/QA
- Sampling
- Test procedure
- Field verification
- Oven verification

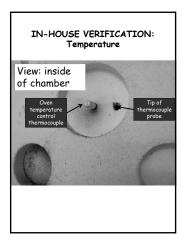
Example

Sieve	Rep# 1	Rep# 2	Blank	Rep# 1 Diff	Rep# 2 Diff	Avg Diff= AGCF	Allow able
1"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
<u>3</u> "	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
$\frac{1}{2}$ "	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5

For #4 sieve:

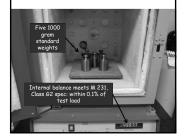
Rep#1: 53.9-52.1 = 1.8


Rep#2: 53.9-55.6 = -1.7


Avg diff = 0.1

Compare to ±5.0 OK

IN-HOUSE VERIFICATION: Temperature • Equipment


Calibration

Follow Owner's Manual

 In "calibration" mode, enter the digital thermometer reading

IN-HOUSE VERIFICATION: Internal Balance

- Balance should be checked at ≥ 5 points throughout the range of use
 Example: try nominal 5000g (these masses are Class 5, have a 0.050g tolerance)
- Balance requirement: 0.1% of 5000 is 5g
 5000-4997.7 = 2.3 < 5 g OK

Balance Calibration

- Refer to operator's manual
- For calibration, get into "calibration" mode, use an 8000g weight on the ceramic plate

Conventional	vs. Infrared
Conventional (NCAT)	Infrared (NTO)
Chamber temperature	Burn profile
240 v	120 or 240 v
Ceramic filter or afterburner	none
Reports burn time to the nearest minute	Reports burn time to the nearest second (thus is not an indication of operator interference)
Asterisk at end of machine stop	No asterisk
	114

Conventional	vs. Infrared
Conventional (NCAT)	Infrared (NTO)
Fan starts when "Start" is pressed	Fan does not start when "Start" is pressed: good for RAP/RAS- won't suck out fines; Bad: odors
	Reduced emissions, but still requires venting
	Requires cleaning more often
	No Temperature Compensation Factor
	115

SUMMARY

- 1. Sample loose mix every sublot (QC) or every 4 sublots (QA).
 2. Obtain specimen from quartered sample.
 3. Specimen size is tied to NMS of gradation.
 4. Burn
 5. Loss of mass is the total of burned off binder, water, & aggregate.
 6. Subtract the loss of aggregate & moisture.
 7. Remains of the HMA burned specimen may be used for checking gradation.
 RAP binder content required

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Asphalt Binder Correction Factor (C_F) Determination (formerly "aggregate correction factor")

- 1. Run a butter mix through the mixing equipment.
- 2. For a given mix, prepare two asphalt binder correction factor (C_F) specimens at the design asphalt content using oven dry aggregate. It is recommended that the C_F and field verification specimen sizes be the same.
- 3. Obtain the tare weight of the baskets, pan, and lid.
- 4. Place the hot mix into the sample basket. If the mix has cooled, oven dry at $110 \pm 5^{\circ}$ C to constant mass prior to placing in the basket. Spread the mix in the basket, being careful to keep the mix away from the sides. Allow at least $\frac{3}{4}$ " clearance.
- 5. Test (burn) the specimens as discussed in "Test Procedure."
- 6. If the difference between the measured binder contents of the two replicate specimens is more than 0.15%, test two more specimens. Discard the high and low values.
- 7. Calculate the C_F by determining the difference between the actual and measured asphalt binder contents [Actual %AC Measured %AC] for each sample, and averaging the two differences. The "Actual %AC" is the amount weighed out in the batching process, expressed as a percent by weight of the mix.
- If the C_F exceeds 1.0%, MoDOT Standard Specification Section 403.19.3.1.1 modifies AASHTO T 308-18 in the following manner:
 - A. According to AASHTO T 308-18, if the C_F exceeds 1.0% at the typical chamber temperature of 538°C (1000°F), lower the chamber temperature to 482 ± 5°C (900 ± 8°F). If the C_F determined at this lower temperature is less than or equal to 1.0%, use that C_F for subsequent testing on that particular mix.
 - B. However, according to MoDOT Standard Specification Section 403.19.3.1.1, if the C_F determined at 482 ± 5°C (900 ± 8°F) exceeds 1.0%, lower the chamber temperature to 427 ± 5°C (800 ± 8°F). Use the C_F obtained at 427°C even if it exceeds 1.0%.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Asphalt Binder Correction Factor (C_F) Determination

Sample	_Lab No	Date_	Initials	i
Replicate	1	2	3	4
Test Temperature				
Tare (basket, etc.) Mass (g)				
Total Dry Mass (g)				
Initial Dry Specimen Mass (g)				
Loss in Weight (g)				
%AC, measured = M				
%AC, actual = A				
$%AC_{diff}$ (M ₁ – M ₂)		> 0.15%? If	so, 2 more re	eplicates
$C_F = M - A$				
C _F , average				

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Specimen size: Use the following table. It is recommended that the field verification specimen size be the same as the correction factor specimen size.

NMS (mm)	Sieve Size	Minimum Specimen Size* (g)
4.75	#4	1200
9.5	3/8"	1200
12.5	1/2"	1500
19.0	3/4"	2000
25.0	1"	3000
37.5	1 1⁄2"	4000

*Specimen sizes shall not be more than 500g greater than the minimum.

POSSIBLE SETTING CHANGES

- 1. To change the Stability Threshold:
 - A. With oven off, press the "Calibration Factor" key while simultaneously pressing the Power Switch "on."
 - B. Enter new Stability Threshold value. Observe the Percent Loss window for the new value. Maximum allowable = 0.02.
 - C. Press the Power Switch "off" then "on" to return oven to normal operation.
- 2. To change filter (afterburner) temperature (750°C typically):
 - A. Press #5 key while simultaneously pressing the Power Switch "on."
 - B. Enter new temperature.
 - C. Press "Enter."
 - D. New setpoint will be displayed.

MAINTENANCE

- To check to see if the venting system is clogged, use the "Lift Test" procedure while the oven is at room temperature. With the power on, initiate a test (push "Start" button) without anything in the oven chamber. The blower fan will turn on. Watch the balance display. The display should read between -4 and -6 grams if the venting is adequate.
- 2. Burn accumulated soot out of the chamber by running the testing procedure at an elevated temperature without a sample.

TEST PROCEDURE

- 1. To change setpoint (furnace) temperature (538°C is typical):
 - A. Press "Temp"
 - B. Enter new setpoint
 - C. Press "Enter"
 - D. Press "Temp" again to verify new setpoint
- 2. To change the Asphalt Binder Correction Factor (C_F):
 - A. Press "Calib. Factor"
 - B. Enter new C_F
 - C. Press "Enter"
 - D. Press "Calib. Factor" again to verify
- 3. Preheat the oven to the setpoint, typically 538°C.
- 4. If the moisture content will not be determined, oven-dry the specimen at $110 \pm 5^{\circ}$ C to a constant mass.
- 5. Weigh the empty basket, etc. on an external scale to the nearest gram.
- 6. Place half the sample in the bottom basket and the other half in the top. Keep the specimen at least ¾" away from the basket sides. For larger samples, some operators make a hole in the middle of the mix.
- 7. Cool the loaded assembly to room temperature.
- 8. Weigh the loaded assembly. Calculate the mass of the specimen.

- 9. Press the "Weight" key and enter the specimen mass. Press "Enter."
- 10. Press the "Weight" key again to verify specimen mass entry.
- 11. Press the "0" (zero) key to tare the internal balance.
- 12. Don your clean gloves, safety face shield, and safety attire.
- 13. Carefully load the specimen into the oven by inserting the basket until the handle tines touch the back of the oven. Make sure the basket is centered and is not touching the walls. Shut the door.
- 14. Observe the internal scale reading. The displayed value should check with the external scale value of basket assembly + dry specimen within ± 5 grams.
- 15. Press the "Start/Stop" key to initiate the ignition procedure.
- 16. When weight loss stabilizes (the change in %AC readings will not exceed 0.01% for three consecutive minutes), the oven will automatically end the test and print out the results. Depending on the oven setup, an alarm may sound and one may have to press the "Start/Stop" key to unlock the door.
- 17. Remove the printed results before opening the door as the tape is heatsensitive.
- 18. Again don the safety gear, open the door, and remove the basket and mount it on the cooling plate. Cover with the cooling cage and allow to cool to room temperature.
- 19. Determine and record the final mass of the specimen, M_f.
- 20. From the total % loss, the oven will automatically subtract the C_F and the Temperature Compensation to give the %AC (by weight of mix). The %AC by weight of aggregate is the "Bitumen Ratio."
- 21. Check for unburned asphalt (coke). If present, start with a new specimen.

NOTE: Read the manufacturer's manual for additional information on safety and more detailed instructions on maintenance and operation.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Manual Weighing Method

Project No.	Job No.	Route	County
Technician	Date	Sublot No.	Mix No.
Empty Basket Asse			
Initial Basket Assen			
Initial Wet (or dry) Sample Weight (g), $[W_i = T_i - T_e]$			
Final Basket Assembly + Burned Sample Weight (g), [T _f]			
Loss in Weight (g), [L= T _i - T _f]			
% Loss, [P _L = (L / W _i) x100]			
Aggregate Correction (Calibration) Factor (%), [C _f]			
Calibrated %AC, $[P_{bcal} = P_L - C_f]$			
% Moisture Content	i, [MC]		
% AC, corrected (by weight of mix), $[P_b = P_{bcal} - MC]$			

Ignition Ovens Forms.doc (11-24-06;12-28-06;12-12-08;3-9-10;12-14-10;4-14-11; 12-18-13; 4-22-15;12-9-15; 12-28-16; 12-26-18)

MODULE 9 Tensile Strength Ratio (TSR)

Resistance to Compacted Asphalt Mixtures to Moisture Induced Damage AASHTO T 283

> 9-21-06 1-29-07 11-9-07 4-24-08 5-13-09 5-14-09 11-18-09 11-17-10 1-19-11 1-23-15 2-26-13 4-23-15 3-6-18 2-19-19

MODULE 9 Tensile Strength Ratio (TSR)	-
Resistance to Compacted Asphalt Mixtures to Moisture Induced Damage AASHTO T 283	
$\begin{array}{c} 9\text{-}21\text{-}06\\ 1\text{-}29\text{-}07\\ 11\text{-}9\text{-}07\\ 4\text{-}24\text{-}08\\ 5\text{-}13\text{-}09\\ 5\text{-}14\text{-}09\\ 11\text{-}18\text{-}09\\ 11\text{-}18\text{-}09\\ 11\text{-}17\text{-}10\\ 1\text{-}19\text{-}11\\ 1\text{-}23\text{-}15\\ 2\text{-}26\text{-}13\\ 4\text{-}23\text{-}15\\ 3\text{-}6\text{-}18\\ 2\text{-}19\text{-}19\end{array}$	

AASHTO T283 Tensile Strength Ratio (TSR)

Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

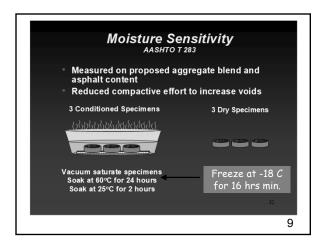
Why are we concerned with Moisture Sensitivity?

 Stripping will result if the bond is broken between the asphalt cement and aggregate.

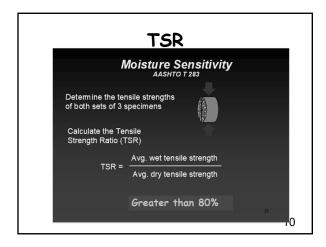
4

- Resulting in pavement:
 - ■Rutting
 - Shoving
 - Raveling
 - Cracking

<section-header><section-header><text>


AASHTO TEST METHODS & SPECIFICATIONS

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyro operation
- T 166 Bulk Sp Gravity of gyro pucks
- T 209 Max Sp Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity
- R 47 HMA Sample Splitting
- D 3549 Thickness of Specimens


7

What is <u>T</u>ensile <u>S</u>trength <u>R</u>atio?

- Moisture Sensitivity of Asphalt Mixtures
- Affects the structural integrity of a mixture.
- Based on the ratio of the tensile strength of a set of conditioned to a set of unconditioned specimens expressed as a %.

TYPICAL TEST RESULTS Range in initial mix design: 40-95+ %

11

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

TSR Role

- Mix design/acceptance
- Field Verification of mix

13

Non-Moisture Sensitive

- The intent is for Superpave and Plant mix be *non-moisture-sensitive*
 - Superpave- must be proven through TSR testing
 - Plant mix- may be required to be proven through TSR testing

14

Section 401: BB and BP Mixes

- 401.2.1 (Standard Spec): During mix design, TSR required when PI exceeds 3 for any individual aggregate fraction with 10% or more passing the #30 sieve
- 401.9 (Standard Spec): During production QA checks PI once per project: if for an individual aggregate fraction the PI > 2 points above mix design value, TSR is required

Section 401: BB and BP Mixes, cont'd.

- Engineering Policy Guide 401.2.3: Additional TSR testing is warranted if: in the field, if the PI of the fine aggregate fractions has significantly increased or the overall quality of the aggregate has changed
- If a source has a history of stripping, MoDOT may require TSR testing during design and/or production

MIX DESIGN ACCEPTANCE

- TSR ≥ 70% for **BB** and **BP** mixes
- TSR > 80% for Superpave mixes

17

TSR Role

- Mix design/acceptance
- Field Verification of mix

SUPERPAVE TSR PAY ADJUSTMENT		
TSR	% of Contract price	
≥90	103	
75-89	100	
70-74	98	
65-69	97	
<65	Remove	

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

20

Sampling Field TSR QC/QA

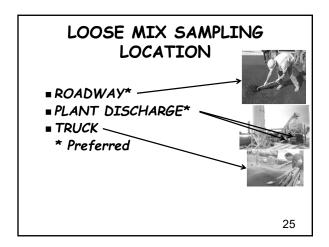
- During production, loose mix samples will be taken and quartered as described in EPG Section 403.1.5
- QC has the option of taking loose mix samples from any point in the production process.
- QA samples should be taken from the same point as the QC, although not at the same time

LOOSE MIX: TSR Sample

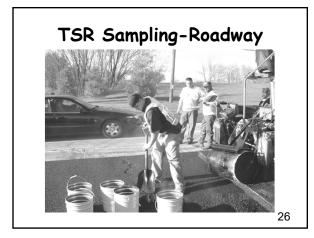
■ QC: 1 per 10,000 tons

- QA: 1 per 50,000 tons or one per mix (combination of projects)
 [contract with several projects with same mix, totaling < 50,000 tons)
- Random locations by spec (not enforced)

22

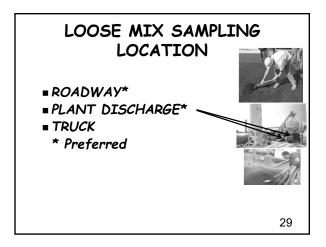

SAMPLING: QC

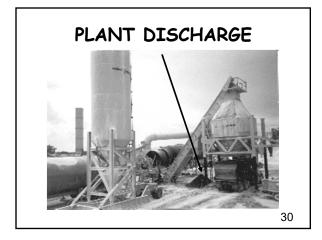
- QC gets their own TSR sample plus a retained sample for QA
- Depth: full depth of the course (if roadway sample)

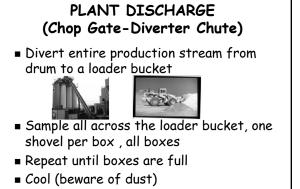

23

SAMPLING: QA

 QA gets their own "independent" ~250 lb sample, retain 125 lbs



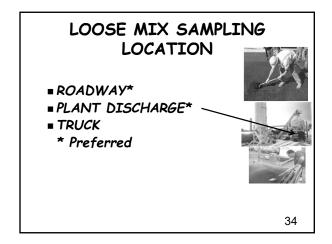



CAUTION

- Filling one bucket at a time may render different characteristics bucket-tobucket---better to place one shovelful per bucket at a time
- Should recombine and quarter

Close boxes

31

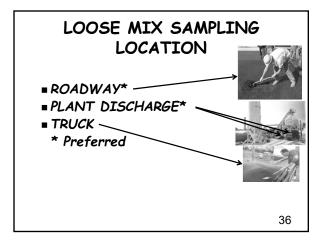

PLANT DISCHARGE (Chop Gate-Diverter Chute), cont'd.

- Re-heat material
- Mix all boxes
- Quarter with templates
- Remove quarters to 4 buckets
- Quarter each bucket
- Pull one puck from each quarter

32

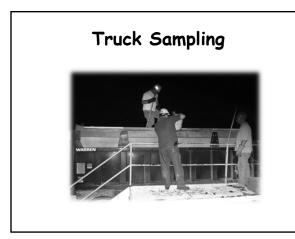
TSR SAMPLING DIVERTER CHUTE

 Contamination issues from diesel used to clean the area

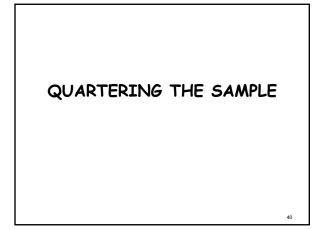


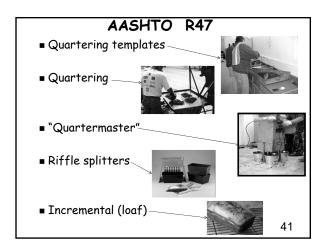
"Mini-stockpile"

- About 2 tons sampled from silo discharge into a truck
- Dumped
- Back dragged



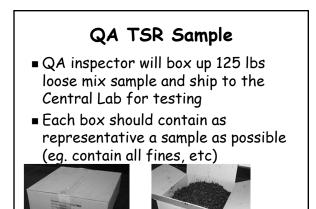
- Sampled into, say, 4 buckets or boxes
- Back at lab, material is combined, mixed, and quartered, combined into 2 piles
- 4 pucks sampled from each pile





CAUTION


- Possible segregation in truck bed
- Sampling methods (eg. length of arms) limit the position of sampling in the truck bed→ non-representative sample
- Safety issues
- Don't leave sample boxes uncovered at this location—may get contaminated with dust and overspray of release agent



- Central Lab will determine the TSR puck weight to be used from testing one of the boxes
- Central Lab will combine the remaining samples and go through the splitting procedure
- So, field tech needs to know how "Central Lab" will handle (combine) the boxes

QA TSR Sample

 Field QA should also retain a 125 Ibssample (Do not send to Central Lab unless asked for. Discard only after issues of favorable comparison between QC and QA have been determined)

46

TSR BOX INFO

- Site Manager ID number
- Mix number
- G_{mm} from sublot taken (QC or QA)
- Specimen weight QC is using

47

SCOPE

- Background
- TSR Role in QC/QA
- Sampling
- Test procedure
- Field verification

TSR TEST PROCEDURE

- Determine TSR puck weights
- Compact pucks, run specific gravity
- Run Rice specific gravity
- Calculate air voids
- Break dry pucks
- \blacksquare Condition wet pucks
- Break wet pucks
- Calculate TSR
- Inspect conditioned pucks

49

DURING MIX DESIGN In Addition to Field Verification Steps (One extra day for lab mix at front end)

- Mixture prepared in lab
- After mixing, place mixture in a pan (one specimen per pan) and cool at room temperature for 2.0 ± 0.5 hrs
- Place in oven on perforated shelf (or on spacers) at 60±3° C for 16 ± 1 hrs

50

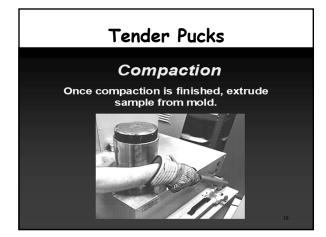
PROCEDURE

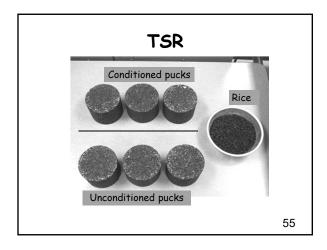
 The following slides relate to TSR testing of *field* samples and to labmixed samples after the first day

DAILY PROCEDURE-Outline

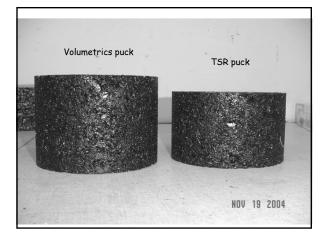
Day 1:

- Sample, quarter, heat to compaction temperature ± 3°C [for lab-mixed, heating time is 2 hr ± 10 min.]
- Compact pucks, store at room temperature 24±3hr
 Run Rice gravity

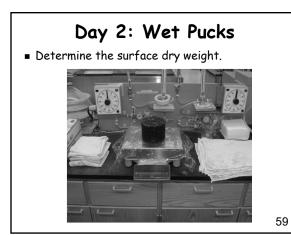

Day 2:

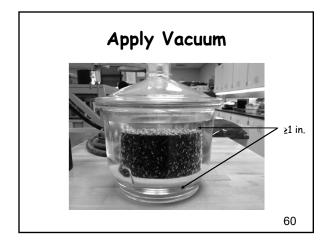

- Determine G_{mb} of pucks
- Calculate air voids
- Group into two sets of 3
- Saturate the Wet set
- Put Wet set into freezer
- Start air drying of Dry set (24±3hr)

DAILY PROCEDURE Outline, cont'd.


- Day 3:
 - Test Dry set
 - Start high temperature conditioning of Wet set
- Day 4:
 - Test Wet set
 - Calculate TSR

53




Puck Characteristics

- 95 ± 5 mm tall
- 7.0 ± 0.5% air voids (6.0% SMA)
- Difficult to determine amount of material to place in mold to achieve both requirements
- Is trial & error, so need plenty of material, make more than 6 pucks

VACUUM SATURATION Wet Pucks

- Permissible range: 70-80%
- Pre-calculate partially saturated puck weights at 70 and 80%
- By iteration, progressively vacuum & weigh at intervals until puck weight is in the permissible weight range

% SATURATION, Cont.

- If the saturation is less than 70%, re-vacuum at 26" mercury vacuum for 1 minute. Slowly remove vacuum. Let puck set in water for 5-10 minutes (if this is omitted, QA & QC may not compare)
- Check saturation
- Repeat as necessary
- If the saturation is greater than 80%, puck is considered destroyed and must be discarded.

61

COMPARISON: QC TO QA

- **TSR** -favorable comparison is when QA and QC results are within 10% of each other.
- If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.
- If difference is >10%, initiate dispute resolution
- QC and QA retained samples should be kept for extended periods

2/19/19

Need for Extra Material

- One or more pucks not at proper (desired) air voids
- Exceeded 80% saturation & puck discarded
- Tender puck disintegrated during handling (low number of gyrations)
- Sample lost in delivery
- Sample contaminated & discarded

64

Need for Extra Material

- QC/QA didn't compare and need to run again
 - Sample/specimens not marked
 - Sample prematurely discarded
 - Initial sample used up, need retained sample

MODULE 10A

QUALITY LEVEL ANALYSIS

PAY FACTORS

11-24-06 Revision 11-9-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 12-18-13 Revision 12-29-14 Revision 2-5-15 Revision 12-9-15 Revision 3-2-16 Revision 12-28-16 Revision 3-6-18 Revision 12-12-18 Revision 3-15-19 Revision 12-17-19 Revision

MODULE 10A
QUALITY LEVEL ANALYSIS
PAY FACTORS
11-24-05 Revision 11-9-07 Revision 12-20 Revision 4-22:09 Revision 11-17-10 Revision 11-17-10 Revision 3-212 Revision 12-13-13 Revision 12-3-15 Revision 12-3-15 Revision 12-3-16 Revision 3-6-18 Revision 3-15-19 Revision 3-15-19 Revision

PAY FACTORS

- What % of the lot is within spec limits?
- Pay Factors are based on this

SPEC LIMITS						
Factor	Spec Limit					
Air voids	4.0 ± 1.0 %					
VMA	-0.5 to +2.0% applied to min. design VMA:					
Binder content	12.0, 13.0, 14.0 Design ± 0.3 %					
Density Density (SMA)	94.5 ± 2.5 % ≥ 94.0 %					
L	3					

PAY FACTORS

- Pay factors (PF's) are numbers that you multiply times the contract unit price to adjust for quality.
- PF's are either incentives or disincentives.

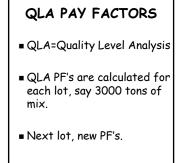
4

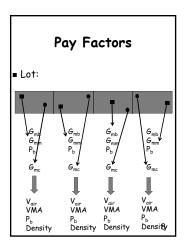
5

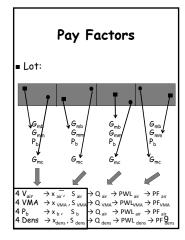
6

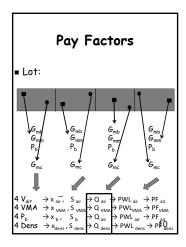
PAY FACTORS

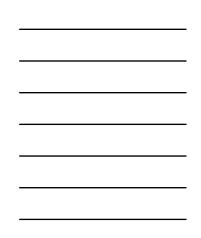
 Incentive: PF is over 100%
 Say unit price is \$43.50 per ton and PF is 105% on a 4000 ton lot: adjusted price is:

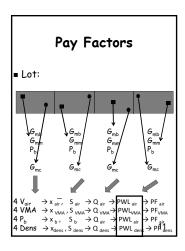

(1.05-1.00)(\$43.50)(4000)=\$8700

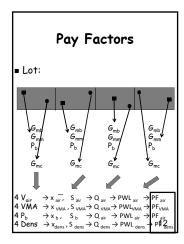

PAY FACTORS, cont'd.

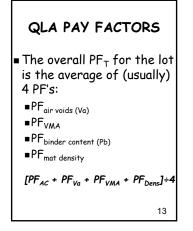

 Disincentive:PF is less than 100%:

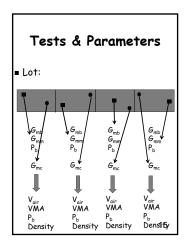

■ Say PF=80%


Adjusted price= (0.80-1.00)(\$43.50)(4000) = -\$34,800



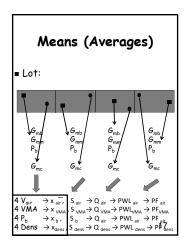






QLA PAY FACTORS

- Each sublot is sampled (50 lbs loose mix behind the paver and 1 core sample from the compacted mat).
- Each loose mix sample is tested for air voids,VMA, and binder content.
- Each core is tested for density.
- There must be at least 4 sublots per lot.



- So now, for a given lot, you have 4 air void values, 4 VMA's and so forth.
- Average the 4 values of each test parameter.

■ Average = "mean" (X)

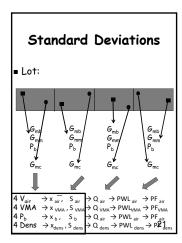
16

QLA PAY FACTORS

 Calculate the variability of the 4 values of each parameter, say, air voids.

 The measure of variability is called the "standard deviation" (5).

STANDARD DEVIATION
Standard deviation:
$ = S = \sqrt{\{\Sigma[(x_i - \overline{x})^2] \div (n-1)\}} $
x _i =each test value x=mean n=number of test values (usually= number of sublots)


19

20

QLA PAY FACTORS

So now you have the average (mean) and standard deviation for air voids, for VMA, for binder content, and for density for a certain lot:

 $\begin{array}{l} \overline{X}_{air}, \quad S_{air} \\ \overline{X}_{VMA}, \quad S_{VMA} \\ \overline{X}_{AC}, \quad S_{AC} \\ \overline{X}_{dens}, \quad S_{dens} \end{array}$

QLA PAY FACTORS

PF's are based on the quality of the mix:

- how close to the target is the average value of the lot
- how much variability is there between the 4 sublot values (how large is the 5)
- So, to get a high pay factor, you want low variability--you want CONSISTENCY!

22

CONSISTENCY OF MIX

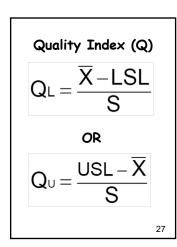
- Consistent gradation
- Consistent baghouse fines feed
- Consistent binder content
- Consistent temperature
- Consistent cleanliness:
 Low deletereous materials
- High sand equivalentConsistent construction
- operations

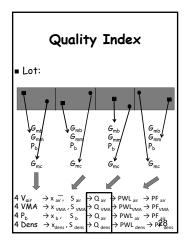
23

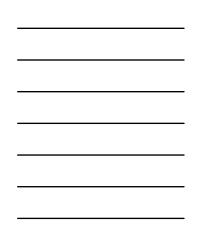
QLA PAY FACTORS

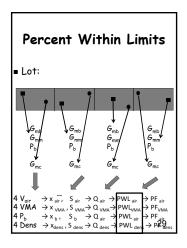
- QLA PF's are part of the overall statisticallybased Quality Level Analysis (QLA) program as specified in Section 403, Standard Specs.
- Samples must be obtained in a random (unbiased) manner.

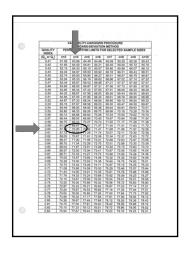
QLA PAY FACTORS


 PF's are based on how much of the lot is within the spec limits=
 "Percent Within Limits (PWL)"


25


26


QLA PAY FACTORS


- The PWL for each test parameter (e.g. air voids) is calculated for each lot:
 PWL_{air}
 - PWL_{vma}
 - PWL_{AC}
 - ■PWL_{dens}
- PWL's are based on the average and standard deviation of each lot's data (say, the 4 sublots).

										1	
						- C					
\bigcirc		v				PROCE					
\bigcirc						N METH					
	QUALITY	PER		ITHIN LI	MITS FC	OR SELE	CTED SA	MPLE S	IZES		
	INDEX										
	(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
	0.41	61.56	63.66	64.46	64.86	65.09	65.25	65.36	65.43		
	0.42	61.85	64.00	64.81	65.21	65.45	65.60	65.72	65.79		
	0.43	62.15	64.33	65.15	65.57	65.80	65.96	66.07	66.15		
	0.44	62.44	64.67	65.50	65.92	66.16	66.31	66.43	66.51		
	0.45	62.74	65.00	65.84	66.27	66.51	66.67	66.79	66.87		
	0.46	63.04	65.33	66.18	66.62	66.86	67.02	67.14	67.22		
	0.47	63.34	65.67	66.53	66.96	67.21	67.37	67.49	67.57		
	0.48	63.65	66.00	66.87	67.31	67.56	67.73	67.85	67.93		
	0.49	63.95	66.34	67.22	67.65	67.91	68.08	68.20	68.28		
	0.50	64.25	66.67	67.56	68.00	68.26	68.43	68.55	68.63		
	0.51	64.56	67.00	67.90	68.34	68.61	68.78	68.90	68.98		
	0.52	64.87	67.33	68.24	68.69	68.95	69.12	69.24	69.32		
	0.53	65.18	67.67	68.58	69.03	69.30	69.47	69.59	69.67		
	0.54	65.49	68.00	68.92	69.38	69.64	69.81	69.93	70.01		
	0.55	65.80	68.33	69.26	69.72	69.99	70.16	70.28	70.36		
	0.56	66.12	68.66	69.60	70.06	70.33	70.50	70.62	70.70		
	0.57	66.44	69.00	69.94	70.40	70.67	70.84	70.96	71.04		
N	0.58	66.75	69.33	70.27	70.73	71.00	71.17	71.29	71.38		
	0.59	67.07	69.67	72.61	71.07	71.34	71.51	71.63	71.72		
	0.60	67.39	70.00	70.95	71.41	71.68	71.85	71.97	72.06		
	0.61	67.72	70.32	71.28	71.74	72.01	72.11	72.30	72.39		
	0.62	68.05	70.67	71.61	72.08	72.34	72.37	72.63	72.72		
	0.63	68.37	71.00	71.95	72.41	72.68	72.63	72.97	73.06		
	0.64	68.70	71.34	72.28	72.75	73.01	72.89	73.30	73.39		
	0.65	69.03	71.67	72.61	73.08	73.34	73.15	73.63	73.72		
	0.66	69.37	72.00	72.94	73.41	73.67	73.55	73.95	74.04		
	0.67	69.71	72.33	73.27	73.73	73.99	73.95	74.28	74.36		
	0.68	70.05			74.06		74.35	74.60	74.69		
	0.69	70.39	73.00	73.93	74.38	74.64	74.75	74.93	75.01		
	0.70	70.73	73.33	74.26	74.71	74.97	75.15	75.25	75.33		
	0.71	71.08	73.66	74.59	75.03	75.29	75.46	75.57	75.64		
	0.72	71.44	74.00	74.91	75.35	75.61	75.78	75.88	75.96		
	0.73	71.79	74.33	75.24	75.68	75.92	76.09	76.20	76.27		
	0.74	72.15	74.67	75.56	76.00	76.24	76.41	76.51	76.59		
	0.75	72.50	75.00	75.89	76.32	76.56	76.72	76.83	76.90		
	0.76	72.87	75.33	76.21	76.63	76.87	77.03	77.14	77.21		
	0.77	73.24	75.67	76.53	76.95	77.18	77.34	77.44	77.51		
	0.78	73.62	76.00	76.85	77.26	77.50	77.64	77.75	77.82		
	0.79	73.99	76.34	77.17	77.58	77.81	77.95	78.05	78.12		
	0.80	74.36	76.67	77.49	77.89	78.12	78.26	78.36	78.43		
	0.81	74.75	77.00	77.81	78.20	78.42	78.56	78.66	78.72		
	0.82	75.15	77.33	78.12	78.51	78.72	78.86	78.95	79.02		
	0.83	75.54	77.67	78.44	78.81	79.03	79.16	79.25	79.31		

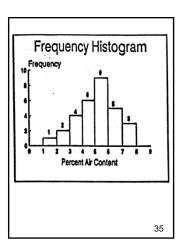
BASIS FOR PWL'S

• No matter what you are testing, if you keep sampling and testing batch after batch of the "same stuff" you will not get the same answer each time. There will be some variability due to variability in the material, sampling methods, and testing procedures.

31

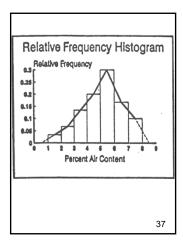
32

EXAMPLE


- Let's say we sample 30 batches of concrete, all supposedly the same mix design, and we check air content.
- Attached are the results.

Freque	ncy Ta	ble fo	r Air C	Conten
Class Limits	Class Midpoint	Tally	Frequency	Relative Frequency
1.0-2.0	1.5	I	1	0.033
2.0 - 3.0	2.5	YI.	2	0.067
3.0 - 4.0	3.5	////	4	0.133
4.0 - 5.0	4.5	,,,,,,,	6	0.2
5.0 - 6.0	5.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	0.3
6.0 - 7.0	6.5	1111	5	0.167
7.0-8.0	7.5	11	3	0.1
8.0 - 9.0	8.5		0	0

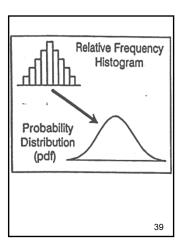
EXAMPLE


- As we can see, there is a higher frequency of test values tending to cluster around 5.5%
- The % air content vs. frequency of certain test results can be plotted on a histogram.

34

EXAMPLE

- The "relative frequency" of each air content interval can be computed; e.g. 9 is 30% of all 30 data values.
- We can connect the tops of the histogram bars to form a rough curve.



PROBABILITY

- Relative frequency histogram data can also be expressed by "probability distributions".
 "Probability" is defined as a measure of chance.
- The sum of all probabilities of all of the possible outcomes is 100%

38

 The sum of all relative frequencies is 100%.

PROBABILITY

• A second example involves a set of data that includes 200 concrete strength tests.

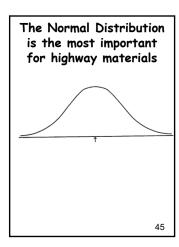
40

Frequency Histogram Rel. Freq. 10.25 Frequency 24% 50 N = 200 40 0.2 30 0.15 20 0.1 10 1.06 ٥ 3600 4000 4400 4800 5200 5800 6000 Compressive Strength (pst) 41

PROBABILITY

- As shown, 24% of the tests were between 4800 and 5000 psi.
- If we set the total area under the histogram to be equal to 100%, then 24% of the area under the curve would represent test values between 4800 and 5000 psi.
- The area under the curve represents probability.
 42

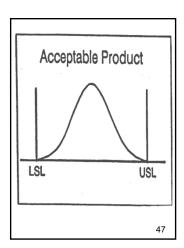
PROBABILITY


 Another way of saying it is if a single test result is randomly selected, there is a 24% probability that it is between 4800 and 5000 psi.

43

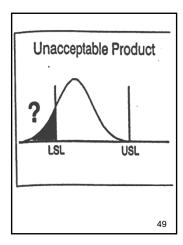
44

PROBABILITY


- The most common probability curve that has a peak in the center and is symmetrical is called a "Normal Distribution".
- Usually, highway materials test results tend to be normally distributed.

USL and LSL

- When producing materials, we would like 100% of all the material to be within the specifications. Usually, we have a target value and we place a tolerance around it, e.g. target asphalt content ± 0.3%.
- Lower Spec Limit (LSL)= Target value - 0.3%
- Upper Spec Limit (USL)= Target value + 0.3%

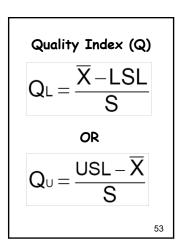

46

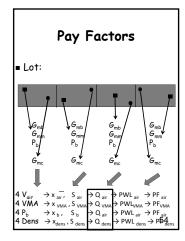
PERCENT WITHIN LIMITS

- When the average ("mean") of the test data for the lot is close to the LSL or USL, and if there is a large variability in the data, it is likely that some of the material is outof-spec.
- We would like to estimate the percent of the total material that is out (or, how much is in-spec), and let the payment for material reflect this fact.

12/17/19

- So, we need to calculate the area (probability) under the curve that is between the USL and the LSL.
- This is called the "Percent Within Limits (PWL)"

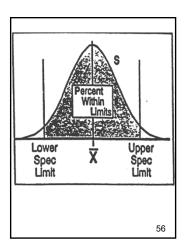

50


PERCENT WITHIN LIMITS

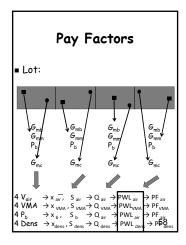
- Every set of test results (every lot) will result in a different probability distribution, therefore a different curve.
- It is difficult to calculate the area (probability) under each curve.
- There is a method to convert any curve to a standard curve, with various areas under the curve already worked out.

- The areas under the standard curve (probabilities) are published in a table called the "Quality Index " table.
- To obtain the probability value from the Q-table, you must use your curve's statistical characteristics: mean (x) and standard deviation (5) to calculate Q.

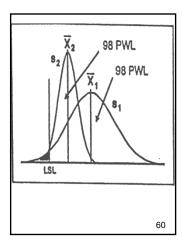
52



12/17/19


• First you get the area (probability) under the curve above the LSL, then the area (probability) below the USL, then combine them for the total area under the curve between the USL and the LSL. This is the **Total Percent Within Limits**.

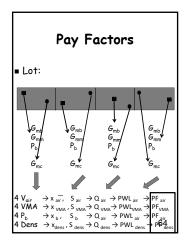
55

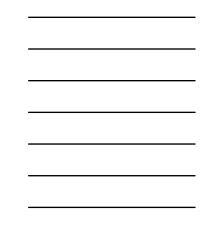


PERCENT WITHIN LIMITS

- Knowing the Q_L, enter the Q-table and obtain the corresponding PWL_L (percent of the area above the LSL)
- Likewise, knowing the Q_U, enter the Q-table and obtain the corresponding PWL_U
- Combine the 2 PWL's:
- $PWL_{\tau}=(PWL_{U}+PWL_{L})-100$

- Let's examine 2 different operations.
- Lot 2's mean is crowding the Lower Spec Limit much closer than the data in lot 1, but there is much less variability in the data of lot2. The area (probability) in the lefthand tail is equal under both curves. 59


- So, even though lot 2's mean was lower than that of lot 1, lot 2 had the same PWL because it had less variability (taller, more slender curve).
- The smaller the standard deviation, the more slender the curve.
- This illustrates that consistency of results is very important.


61

QLA PAY FACTORS

- For each lot, each test parameter (air voids, VMA, binder content, density) will have its own curve (based on 4 or more sublot test values).
- A separate PF for each test parameter will be calculated, as follows.

62

QLA PAY FACTORS The PF's for each test parameter are then averaged to obtain the total PF_T: For the traveled way: [PF_{AC}+ PF_{Va}+ PF_{VMA}+ PF_{Dens}] ÷ 4

For non-integral shoulders:

 $[\mathsf{PF}_{\mathsf{AC}} + \mathsf{PF}_{\mathsf{Va}} + \mathsf{PF}_{\mathsf{VMA}}] \div 3$

EQUATIONS: V _n = G _{ini} = G _{ini} × 1	00 P.=100-P.	$VMA = 100 - \left[\frac{G_{ee} \times P_{e}}{G_{e}}\right]$
VFA = <u>VMA - V</u> _A	100 Density = $\frac{G_{m}}{G_{mn}}$	< 100
MEAN: R=	<u>,</u> 	
		Therefore: $R = \frac{X_1 + X_2 + X_3}{3}$
STANDARD DEVI	ATION: $s = \sqrt{\frac{\sum_{j=1}^{n} (x_i - \overline{x})^j}{n-1}}$	-
Therefore:	$s = \sqrt{\frac{(x = \overline{x})^2 + (x = \overline{x})}{2}}$	$(x_{1} - x_{2})^{2}$
USL = Target + To	lerance LSL = Ta	arget – Tolerance
$Q_{1} = \frac{USL - \overline{X}}{8}$		
PWL; = (PWL; +)	^o WL _i) = 100	
Pay Factor (PF):	IF: PWL1 < 70%	THEN: PF = 2(PWLr) - 50
	$\text{IF: PWL}_1 \geq 70\%$	THEN: PF = 0.50(PWL ₁) + 55
QA to QC Compar	ison:	
100	$(a = 2(s)] \le QA_{ang} \le [QC]$	es + 2(s)]
[
OUTLIERS:	side: $t = \frac{X_{max} - \overline{X}}{2}$	

EQUATIONS:
$$V_a = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$$
 $P_s = 100 - P_b$ $VMA = 100 - \left[\frac{G_{mb} \times P_s}{G_{sb}}\right]$ $VFA = \frac{VMA - V_a}{VMA} \times 100$ Density = $\frac{G_{mc}}{G_{mm}} \times 100$ $\underline{MEAN:}$ $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ Example: n = number of samples = 3Therefore: $\overline{x} = \frac{x_1 + x_2 + x_3}{3}$ STANDARD DEVIATION: $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$ Therefore: $s = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2}{2}}$ USL = Target + ToleranceLSL = Target - Tolerance $Q_U = \frac{USL - \overline{x}}{s}$ $Q_L = \frac{\overline{x} - LSL}{s}$ PWL_T = (PWL_U + PWL_L) - 100THEN: PF = 2(PWL_T) - 50IF: PWL_T \ge 70\%THEN: PF = 0.50(PWL_T) + 55

QA to QC Comparison:

$$[QC_{avg} - 2(s)] \le QA_{avg} \le [QC_{avg} + 2(s)]$$

OUTLIERS:

Highside:
$$t = \frac{x_{max} - \overline{x}}{s}$$

Lowside: $t = \frac{\overline{x} - x_{min}}{s}$

QLA PAY FACTORS

 So, back to our original example, if the average of the 4 test parameter PF's is 105%, then the contract price of \$43.50 per ton per 4000 ton lot is adjusted by:

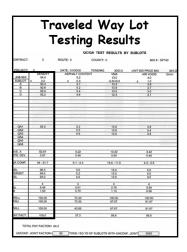
(1.05-1.00)(4000)(\$43.50)=\$8700

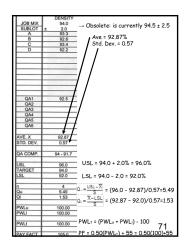
■ The maximum PF is 105%.

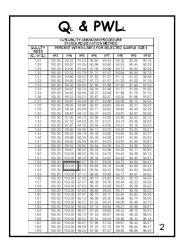
67

68

EXAMPLE


- See handout of MoDOT spreadsheet
- The Q table is in Section 403, Standard Specifications
- Note: density is now 94.5 ± 2.5%


ONTRACT.		0/10 00	ATV.0	W014 (\$P10)	Lore: 5
80.4CT	2 00ADTV 14.3 12 13 13 14 14 14 12 12 12 12 12 12 12 12 12 12	All (1999) 100 Alles (Contest 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	546 Bend Vala 45-10 103 103 103 103 103 103	ANT ME PARE (MA) ANT AND AN ANT AND AN ANT AND AN ANT AND AN ANT AND AN ANT AND AN ANT AND AND AND ANT AND AND AND AND ANT AND	6.0 10 100 100 100 100 100
333333	83	B B	00 00 00	8	
64. s 19. 00v	8.0 1.0	132 148	0.8 1.9	1.42 0.00	GC THE LATA"
94.00 0 97.	91-917 963	0.0	10.112	0.0	194 % 713 Pig Adustrant (Sec 403.2310 863
Ror .	12			10 10	Value of Adjustment
	10	10	28	- 12	* TSR seads and pay adjustment for sumage
87	10.0	PL33 T5.30	22	22.2 F.0	5,001 tors or hadkin hersof. This is applied separate from the PMI, pay adjustment.
	100.30	418	8.0	1.07	


MoDOT Pay Factor Spreadsheet

Pay Factor 5.01 7/6/200

CONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : S	P190	LOT # : 5	Sample ID 0
PROJECT:		DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45.00	% AC 5 % MA 94	.2 .8
	DENSITY	ASPHALT CONTI		AIR VOIDS	Gmm	REMARKS	
JOB MIX	94.0	5.2	13.0	4.0			
	± 2.0	± 0.3	-0.5/+2.0	± 1.0			
A	93.3	5.7	13.3	3.9			
В	92.6	5.2	13.8	3.7			
С	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
					1000 N		
QA1	92.5	5.2	13.0	3.8			
QA2		5.5	13.8	3.4			
QA3		5.6	13.0	3.8			
QA4							
QA5							· · · · · · · · · · · · · · · · · · ·
QA6							
						QC TSR DAT	A*
AVE. X	92.87	5.22	13.22	3.42			
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
						Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
						Pay Adjustment (Sec 403.23.5)	98.0
USL	96.0	5.5	15.0	5.0			
TARGET	94.0	5.2	13.0	4.0			
LSL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
n	4	4	4	4		Contractor Lab	Contractor Laboratory
Qu	5.49	0.61	2.78	3.59			
QI	1.53	0.70	1.13	0.95		 TSR results and pay adjustment for 	
						represented based on requirement of	
PWLu	100.00	70.33	100.00	100.00		10,000 tons or fraction thereof. This	
PWLI	100.00	73.33	87.67	81.67		separate from the PWL pay adjustme	ent.
PWLt	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			
	AL PAY FACTOR=		D OF SUBLOTS WITH UNCON	F. JOINT 3000		TOTAL \$ VALUE OF ADJUSTMEN	T\$21,330.00

Traveled Way Lot Testing Results

QC/QA TEST RESULTS BY SUBLOTS

CONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : SP190			
PROJECT:	0	DATE: 01/00/00	TONS/MG 3000.0	UNIT BID P	RICE MIX	\$45.00	
	DENSITY	ASPHALT CONT			VOIDS	Gmm	
JOB MIX	94.0	5.2	13.0		4.0	C	
SUBLOT	± 2.0	± 0.3	-0.5/+2.0		1.0		
A	93.3	5.7	13.3		3.9		
В	92.6	5.2	13.8		3.7		
С	93.4	5.4	13.5		3.0		
D	92.2	4.6	12.3		3.1		
QA1	92.5	5.2	13.0		3.8		
QA2		5.5	13.8		3.4		
QA3		5.6	13.0		3.8		
QA4							
QA5							
QA6							
AVE. X	92.87	5.22	13.22	3	3.42		
STD. DEV.	0.57	0.46	0.64	().44		
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3	8 - 2.5		
JSL	96.0	5.5	15.0		5.0		
FARGET	94.0	5.2	13.0		4.0		
_SL	92.0	4.9	12.5		3.0		
1	4	4	4		4		
Qu	5.49	0.61	2.78	3	8.59		
וכ	1.53	0.70	1.13	C	.95		
PWLu	100.00	70.33	100.00	10	00.00		
PWLI	100.00	73.33	87.67		1.67		
PWLt	100.00	43.66	87.67	8	1.67		
DAVIEACE	105.0	07.0	00.0				

TOTAL PAY FACTOR= 84.2

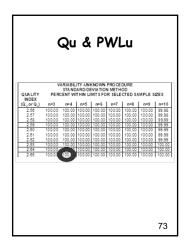
105.0

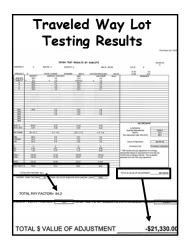
AY FACT.

UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

98.8

95.8


37.3


JOB MIX SUBLOT A B C D	$\begin{array}{c} \hline \text{DENSITY} \\ 94.0 \\ \pm & 2.0 \\ \hline 93.3 \\ 92.6 \\ 93.4 \\ 92.2 \\ \hline 92.2 \\ \hline \end{array} \rightarrow Obsolete: is currently 94.5 \pm 2.5 \\ Ave = 92.87\% \\ Std. Dev. = 0.57 \\ \hline \end{array}$
QA1 QA2 QA3 QA4 QA5 QA6	92.5
AVE. X STD. DEV.	92.87 0.57
QA COMP.	94 - 91.7
USL TARGET LSL	$\begin{array}{r} 96.0 \\ 94.0 \\ 92.0 \\ 1.51 = 94.0 - 2.0 = 92.0\% \end{array}$
n Qu Ql	$\frac{4}{5.49} Q_{U} = \frac{USL - \overline{X}}{S} = (96.0 - 92.87)/0.57 = 5.49$
PWLu PWLI	$\frac{1.53}{Q_L} = \frac{\overline{X} - LSL}{S} = (92.87 - 92.0)/0.57 = 1.53$ $\frac{100.00}{100.00}$
PWLt	$\frac{100.00}{100.00} PWL_{t} = (PWL_{u} + PWL_{l}) - 100 71$
PAY FACT.	105.0 PF = 0.50(PWLt) + 55 = 0.50(100)+55

QL & PWLL

VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD											
QUALITY INDEX	PER	CENT WI	THIN LI	MITS FC	RSELE	CTED SA	MPLE S	ZES			
$(\mathbf{Q}_{U} \text{ or } \mathbf{Q}_{L})$	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10			
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19			
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38			
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58			
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78			
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96			
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15			
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33			
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52			
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70			
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87			
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04			
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22			
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39			
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56			
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72			
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88			
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05			
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21			
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37			
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52			
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67			
1.48	100.00	99.33	95.80	94.84	94.39	94.12	93.95	93.83			
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98			
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13			
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27			
1.52	100.00	100.00	P 6.57	95.51	95.02	94.73	94.54	94.41			
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54			
1.54	100.00	100.00	6.94	95.84	95.33	95.02	94.83	94.68			
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82			
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95			
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08			
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20			
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33			
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46			
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58			
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70			
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81			
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93			
1.65	100.00	100.00	98.72	97.42	96.81	96.45	96.22	96.05			
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16			
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27			
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37			
1.69	100.00	100.00	99.22	97.90	97.27	96.90	96.65	96.48			

'2

UNCONFINED JOINT DEDUCTIONS

- Pay reduction applied to full width of lane for a given lot.
- The lowest adjustment factor (PF_{total} or the PAF for average unconfined joint density) will apply to the lot.
- Exception: If the PAF = 100% and the PF_{total} is over 100 (use the PF_{total})
- PF_{total} includes PF's for binder content, air voids, VMA, and density)

75

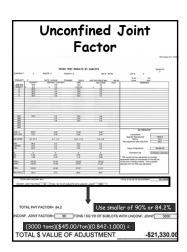
12/17/19

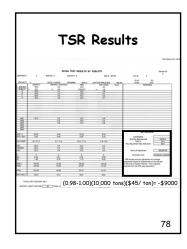
Qu & PWLu

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD												
QUALITY INDEX	PERC	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES											
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10					
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98					
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98					
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00					
2.64	100.00	2	100.00	100.00	100.00	100.00	100.00	100.00					
2.65	100.00	100.)	100.00	100.00	100.00	100.00	100.00	100.00					

Traveled Way Lot Testing Results

Pay Factor 5.01 7/6/200


0 DATE: 01/00/00 TONS/MG 3000.0 UNIT BID PRICE MIX \$45.00 % MA 94.8 DENSITY ASPHALT CONTENT VMA AIR VOIDS Gmm REMARKS 94.0 5.2 13.0 4.0	
94.0 5.2 13.0 4.0 2.0 ± 0.3 -0.5/+2.0 ± 1.0 93.3 5.7 13.3 3.9	
2.0 ± 0.3 -0.5/+2.0 ± 1.0 93.3 5.7 13.3 3.9 - - 92.6 5.2 13.8 3.7 - - 93.4 5.4 13.5 3.0 - - - 92.2 4.6 12.3 3.1 - - - - 92.2 4.6 12.3 3.1 - </td <td></td>	
93.3 5.7 13.3 3.9 92.6 5.2 13.8 3.7 93.4 5.4 13.5 3.0 92.2 4.6 12.3 3.1 92.5 5.2 13.0 3.8 5.6 13.0 3.8 92.5 5.5 13.8 3.4 5.6 13.0 3.8 0.57 0.46 0.64 0.44 QC TSR DATA* Quantity Represented 100	
93.4 5.4 13.5 3.0 92.2 4.6 12.3 3.1 92.2 4.6 12.3 92.2 4.6 12.3 92.2 4.6 92.2 4.6 92.2 4.6 92.5 5.2 92.5 5.2 92.5 5.5 92.5 5.5 92.5 5.5 92.6 13.0 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 5.22 92.87 92.87 92.87 92.87 92.87 92.87 92.87 92.87 92.9 92.9 92.9 92.9	
92.2 4.6 12.3 3.1 92.5 5.2 13.0 3.8 92.5 5.5 13.8 3.4 5.6 13.0 3.8 92.87 5.22 13.22 92.87 5.22 13.22 92.57 0.46 0.64 0.57 0.46 0.64 0.57 0.46 0.64	
92.5 5.2 13.0 3.8 92.5 5.5 13.8 3.4 5.6 13.0 3.8 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
5.5 13.8 3.4 5.6 13.0 3.8 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
5.5 13.8 3.4 5.6 13.0 3.8 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
5.5 13.8 3.4 5.6 13.0 3.8 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	1
5.6 13.0 3.8 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
QC TSR DATA* 92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
92.87 5.22 13.22 3.42 0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
0.57 0.46 0.64 0.44 Lots/Sublots Quantity Represented 100	
Quantity Represented 100	
	000.0
94 - 91.7 6.1 - 4.3 14.5 - 11.9 4.3 - 2.5 TSR %	72.0
Pay Adjustment (Sec 403.23.5) 98	98.0
96.0 5.5 15.0 5.0 04.0 6.2 42.0 4.0	
94.0 5.2 13.0 4.0 92.0 4.9 12.5 3.0 Value of Adjustment -\$9,0	000.00
4 4 4 Contractor Lab Contractor	or Laboratory
4 4 4 4 Contractor Lab Contractor 5.49 0.61 2.78 3.59 Contractor Contractor Contractor	Laboratory
1.53 0.70 1.13 0.95 * TSR results and pay adjustment for tonnage	
represented based on requirement of one test per	ar 👘
100.00 70.33 100.00 100.00 10,000 tons or fraction thereof. This is applied 100.00 73.33 87.67 81.67 separate from the PWL pay adjustment.	
100.00 43.66 87.67 81.67	
105.0 37.3 98.8 95.8	
TOTAL \$ VALUE OF ADJUSTMENT	-\$21,330.00
INT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000	
AL PAY FACTOR= 84.2	
AL \$ VALUE OF ADJUSTMENT -\$21,	


UNCONFINED JOINT DEDUCTIONS, cont'd.

- See Module 10a for application
- Example: for a given lot, if PF_{total} = 95% and PAF = 90%, the 90% controls the whole lot
- Example: for a given lot, if PF_{total} = 105% and PAF = 100%, the 105% controls the whole lot

76

403.23.6 and EPG 403.1.21

Unconfined Joint Factor

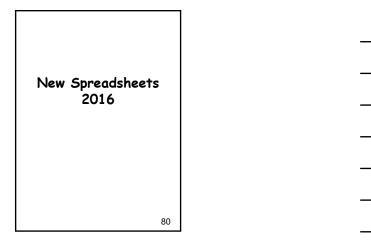
Pay Factor 5.01 7/6/200

0	BLOIS	ESULTS BY	QC/QA TEST			
MIX #: SP190 LOT #: 5	MIX # : SF		COUNTY: 0	ROUTE: 0	0	CONTRACT:
% AC 5.2 JNIT BID PRICE MIX \$45.00 % MA 94.8	NIT BID PRICE MIX	3000.0	0/00 TONS/MG	DATE: 01/00/0	0	PROJECT:
AIR VOIDS Gmm REMARKS	AIR VOIDS	VMA	LT CONTENT		DENSITY	
4.0		13.0	5.2 0.3		94.0 ± 2.0	JOB MIX SUBLOT
± 1.0 3.9		-0.5/+2.0 13.3	5.7		93.3	A
3.7		13.8	5.2		92.6	В
3.0		13.5	5.4 4.6		93.4 92.2	C
3.1	3.1	12.3	4.0	4.1	92.2	
3.8	3.8	13.0	5.2	5.	92.5	QA1
3.4	3.4	13.8	5.5			QA2
3.8	3.8	13.0	5.6	5.0		QA3 QA4
	010					QA4 QA5
						QA6
QC TSR DATA*	3.42	13.22	5.22	5.2	92.87	AVE. X
0.44 Lots/Sublots		0.64	0.46		0.57	STD. DEV.
Quantity Represented 10000.0	10.55				01 01 -	04.00110
4.3 - 2.5 TSR % 72.0 Pay Adjustment (Sec 403.23.5) 98.0	4.3 - 2.5	4.5 - 11.9	1 - 4.3	6.1 -	94 - 91.7	QA COMP.
5.0	5.0	15.0	5.5	5.5	96.0	USL
4.0		13.0	5.2		94.0	TARGET
3.0 Value of Adjustment -\$9,000.0	3.0	12.5	4.9	4.9	92.0	LSL
4 Contractor Lab Contractor Lab	4	4	4	4	4	n
3.59		2.78	0.61		5.49	Qu
0.95 * TSR results and pay adjustment for tonnage represented based on requirement of one test per	0.95	1.13	0.70	0.7	1.53	QI
100.00 10,000 tons or fraction thereof. This is applied	100.00	100.00	70.33	70.3	100.00	PWLu
81.67 separate from the PWL pay adjustment.	81.67	87.67	73.33	73.3	100.00	PWLI
81.67	81.67	87.67	43.66	43.6	100.00	PWLt
95.8	95.8	98.8	37.3	37.	105.0	PAY FACT.
-						
TOTAL \$ VALUE OF ADJUSTMENT\$21,					AL PAY FACTO	
INT 3000	NT 3000	WITH UNCONF	S / SQ YD OF SUBLOTS	DR= 90 TONS /	JOINT FACTO	UNCONF.
, Use smaller of 90% or 84.	Use s		84.2	FACTOR= 8	TAL PAY	тоі
YD OF SUBLOTS WITH UNCONF. JOINT		FONS / S	90	FACTOR=	F. JOINT	JNCONF
				to be a strengt the strengt.		
(0.842-1.000) =	0.842-	D/tor			(300	

TSR Results

		Q	C/QA TEST RESULTS E	BY SUBLOTS			Sample ID 0
CONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : SI	P190	LOT # : 5	
						% AC 5.	2
PROJECT:	0	DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45.00	% MA 94.	
	DENSITY	ASPHALT CONT	ENT VMA	AIR VOIDS	Gmm	REMARKS	
JOB MIX	94.0	5.2	13.0	4.0			
SUBLOT	± 2.0	± 0.3	-0.5/+2.0	± 1.0			
A	93.3	5.7	13.3	3.9			
B	92.6	5.2	13.8	3.7			
C	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
			2 MAR BALLARD MARK				
		a contra co					
		and the second sec					
					1.13.1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
QA1	92.5	5.2	13.0	3.8			
QA2	02.0	5.5	13.8	3.4			
QA3		5.6	13.0	3.8			
QA4		0.0	10.0	0.0			
QA5				8.3			
QA6				12			
						QU ISK DATA	4-
AVE. X	92.87	5.22	13.22	3.42		QU TOR DATA	•
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
			0101	0.11		Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
		0.1 4.0	1410 - 1110	4.0 - 2.0		Pay Adjustment (Sec 403.23.5)	98.0
USL	96.0	5.5	15.0	5.0		1 a) hajastinent (060 400.20.0)	00.0
TARGET	94.0	5.2	13.0	4.0			
LSL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
			5				
n	4	4	4	4		Contractor Lab	Contractor Laborato
Qu	5.49	0.61	2.78	3.59			
QI	1.53	0.70	1.13	0.95		TSR results and pay adjustment fo	r tonnage
						epresented based on requirement of	
PWLu	100.00	70.33	100.00	100.00		0,000 tons or fraction thereof. This	
PWLI	100.00	73.33	87.67	81.67		eparate from the PWL pay adjustme	
PWLt	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			

(0.98-1.00)(10,000 tons)(\$45/ ton)= -\$9000


TOTAL PAY FACTOR= 84.2

UNCONF. JOINT FACTOR= 90

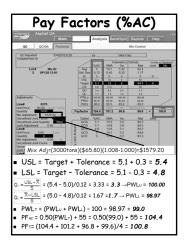
TONS

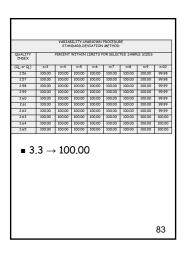
Pay Factor 5.01 7/6/200

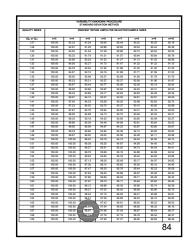
TSR Resu	ılts
QC TSR DATA	
Lots/Sublots	
Quantity Represented	10000.0
TSR %	72.0
Pay Adjustment (Sec 403.23.5)	98.0
Value of Adjustment	-\$9,000.00
 TSR results and pay adjustment for represented based on requirement of 10,000 tons or fraction thereof. This separate from the PWL pay adjustme 	tonnage one test per s applied
(0.02)(10,000 tons)(\$45/ tor	ı) = -\$9000
	79

"Asphalt	QA	"//	Analysis	/ QC
Asphalt QA	Main Qu	antity <mark>Anal</mark> y	r <mark>sis</mark> SendiSync R	eports Help
QC QCIQA			li.	Control
QC Imported 2/4	2016 6:28	by	Gien Cary	
QCLd# 2 Sample Records Imported 15/JMP/R659 • Average • Std Deviation • N = 5 (all QC)	Subiat %A QCA 5: QCC 41 QCD 5 QCC 5 QCC 5 0.12	1 142 1 148 8 136 141 138	Density Va Mat Joint 22 922 33 945 31 922 32 946 32 935 	OC hro Use in Only Particular No Yes No Yes No Yes No Yes
				81

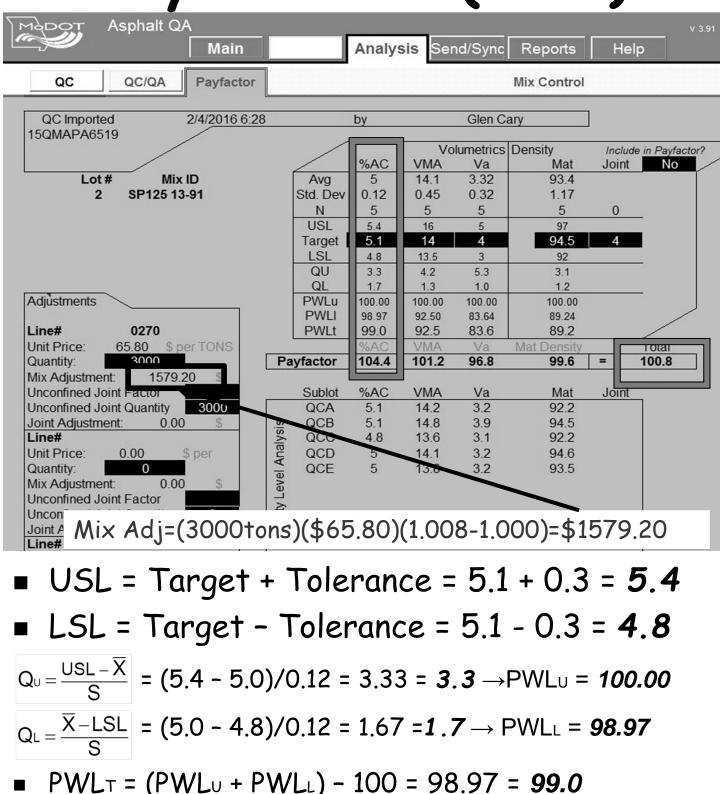
TSR Results


QC TSR DAT	A*
Lots/Sublots	
Quantity Represented	10000.0
TSR %	72.0
Pay Adjustment (Sec 403.23.5)	98.0
Value of Adjustment	-\$9,000.00
Contractor Lab	Contractor Laboratory
* TSR results and pay adjustment for	or tonnage
represented based on requirement o	f one test per
10,000 tons or fraction thereof. This	is applied
separate from the PWL pay adjustme	ent.


(0.02)(10,000 tons)(\$45/ ton) = -\$9000


"Asphalt QA" / Analysis / QC

5	MODOT Asphalt Q	A					_		v 3
		Main	Quar	ntity Ar	nalysis	Send/Syr	ic Repo	orts	Help
_	QC QC/QA						Mix Co	ontrol	
l	QC Imported	2/4/2016 6:28		by	0	Glen	Cary		
				Volumetric	CS	Density		QC Info	Use in
	QC Lot #	Sublot	%AC	VMA	Va		Joint	Only	Payfactor?
	2	QCA	5.1	14.2	3.2	92.2		No	Yes
		QCB	5.1	14.8	3.9	94.5		No	Yes
	Sample Records Imported:	QCC	4.8	13.6	3.1	92.2		No	Yes
		QCD	5	14.1	3.2	94.6		No	Yes
#1	15QMAPA6519	QCE	5	13.8	3.2	93.5		No	Yes
	- Average		5.0).12	14.1 0.45		93.4 1.17			


N = 5 (all QC)

Pay Factors (%AC)

- PF_{AC} = 0.50(PWL_T) + 55 = 0.50(99.0) + 55 = **104.4**
- PFT= (104.4 + 101.2 + 96.8 + 99.6)/4 = 100.8

■ 3.3 → 100.00

					PROCEDUR METHOD								
QUALITY INDEX		PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES											
$(Q_U \text{ or } Q_L)$	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10					
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98					
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98					
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99					
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00					
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00					
2.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00					

VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD											
	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES										
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10			
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19			
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38			
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58			
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78			
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96			
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15			
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33			
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52			
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70			
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87			
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04			
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22			
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39			
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56			
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72			
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88			
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05			
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21			
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37			
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52			
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67			
1.48	100.00	99.33	95.80	94.84	94.39	94.12	93.95	93.83			
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98			
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13			
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27			
1.52	100.00	100.00	96.57	95.51	95.02	94.73	94.54	94.41			
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54			
1.54	100.00	100.00	96.94	95.84	95.33	95.02	94.83	94.68			
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82			
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95			
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08			
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20			
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33			
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46			
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58			
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70			
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81			
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93			
1.65	100.00	100.00		97.42	96.81	96.45	96.22	96.05			
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16			
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27			
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37			
1.69	100.00	100.00		97.90	97.27	96.90	96.65	96.48			

SHOULDERS

- In the case of a nonintegral shoulder, there is no QLA pay factor for density.
- Thus, the total PF is the average of the PF's for binder content, air voids, and VMA.

85

11.0 PWL Determination Table.

VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PERC	CENT WI	THIN LI	MITS FO	R SELE	CTED SA		IZES	
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
0.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
0.01	50.28	50.33	50.36	50.37	50.37	50.38	50.38	50.38	
0.02	50.55	50.67	50.71	50.74	50.75	50.76	50.76	50.77	
0.03	50.83	51.00	51.07	51.10	51.12	51.13	51.15	51.15	
0.04	51.10	51.34	51.42	51.47	51.50	51.51	51.53	51.54	
0.05	51.38	51.67	51.78	51.84	51.87	51.89	51.91	51.92	
0.06	51.66	52.00	52.14	52.21	52.24	52.27	52.29	52.30	
0.07	51.93	52.33	52.49	52.57	52.62	52.65	52.67	52.69	
0.08	52.21	52.67	52.85	52.94	52.99	53.02	53.06	53.07	
0.09	52.48	53.00	53.20	53.30	53.37	53.40	53.44	53.46	
0.10	52.76	53.33	53.56	53.67	53.74	53.78	53.82	53.84	
0.11	53.04	53.66	53.91	54.04	54.11	54.16	54.20	54.22	
0.12	53.32	54.00	54.27	54.40	54.48	54.54	54.58	54.60	
0.13	53.59	54.33	54.62	54.77	54.86	54.91	54.95	54.99	
0.14	53.87	54.67	54.98	55.13	55.23	55.29	55.33	55.37	
0.15	54.15	55.00	55.33	55.50	55.60	55.67	55.71	55.75	
0.16	54.43	55.33	55.68	55.86	55.97	56.04	56.09	56.13	
0.17	54.71	55.67	56.04	56.23	56.34	56.42	56.47	56.51	
0.18	54.98	56.00	56.39	56.59	56.72	56.79	56.84	56.89	
0.19	55.26	56.34	56.75	56.96	57.09	57.17	57.22	57.27	
0.20	55.54	56.67	57.10	57.32	57.46	57.54	57.60	57.65	
0.21	55.82	57.00	57.45	57.68	57.83	57.91	57.98	58.03	
0.22	56.10	57.33	57.81	58.05	58.20	58.29	58.35	58.40	
0.23	56.39	57.67	58.16	58.41	58.56	58.66	58.73	58.78	
0.24	56.67	58.00	58.52	58.78	58.93	59.04	59.10	59.15	
0.25	56.95	58.33	58.87	59.14	59.30	59.41	59.48	59.53	
0.26	57.23	58.66	59.22	59.50	59.67	59.78	59.85	59.90	
0.27	57.52	59.00	59.57	59.86	60.03	60.15	60.22	60.28	
0.28	57.80	59.33	59.93	60.22	60.40	60.51	60.60	60.65	
0.29	58.09	59.67	60.28	60.58	60.76	60.88	60.97	61.03	
0.30	58.37	60.00	60.63	60.94	61.13	61.25	61.34	61.40	
0.31	58.66	60.33	60.98	61.30	61.49	61.62	61.71	61.77	
0.32	58.94	60.67	61.33	61.66	61.85	61.98	62.08	62.14	
0.33	59.23	61.00	61.68	62.01	62.22	62.35	62.44	62.51	
0.34	59.51	61.34	62.03	62.37	62.58	62.71	62.81	62.88	
0.35	59.80	61.67	62.38	62.73	62.94	63.08	63.18	63.25	
0.36	60.09	62.00	62.73	63.09	63.30	63.44	63.54	63.61	
0.37	60.38	62.33	63.08	63.44	63.66	63.80	63.91	63.98	
0.38	60.68	62.67	63.42	63.80	64.02	64.17	64.27	64.34	
0.39	60.97	63.00	63.77	64.15	64.38	64.53	64.64	64.71	
0.40	61.26	63.33	64.12	64.51	64.74	64.89	65.00	65.07	

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PER	CENT WI	THIN LI	MITS FO	R SELE	CTED SA	MPLE S	IZES		
(Q ₁₁ or Q ₁)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
0.41	61.56	63.66	64.46	64.86	65.09	65.25	65.36	65.43		
0.42	61.85	64.00	64.81	65.21	65.45	65.60	65.72	65.79		
0.43	62.15	64.33	65.15	65.57	65.80	65.96	66.07	66.15		
0.44	62.44	64.67	65.50	65.92	66.16	66.31	66.43	66.51		
0.45	62.74	65.00	65.84	66.27	66.51	66.67	66.79	66.87		
0.46	63.04	65.33	66.18	66.62	66.86	67.02	67.14	67.22		
0.47	63.34	65.67	66.53	66.96	67.21	67.37	67.49	67.57		
0.48	63.65	66.00	66.87	67.31	67.56	67.73	67.85	67.93		
0.49	63.95	66.34	67.22	67.65	67.91	68.08	68.20	68.28		
0.50	64.25	66.67	67.56	68.00	68.26	68.43	68.55	68.63		
0.51	64.56	67.00	67.90	68.34	68.61	68.78	68.90	68.98		
0.52	64.87	67.33	68.24	68.69	68.95	69.12	69.24	69.32		
0.53	65.18	67.67	68.58	69.03	69.30	69.47	69.59	69.67		
0.54	65.49	68.00	68.92	69.38	69.64	69.81	69.93	70.01		
0.55	65.80	68.33	69.26	69.72	69.99	70.16	70.28	70.36		
0.56	66.12	68.66	69.60	70.06	70.33	70.50	70.62	70.70		
0.57	66.44	69.00	69.94	70.40	70.67	70.84	70.96	71.04		
0.58	66.75	69.33	70.27	70.73	71.00	71.17	71.29	71.38		
0.59	67.07	69.67	70.61	71.07	71.34	71.51	71.63	71.72		
0.60	67.39	70.00	70.95	71.41	71.68	71.85	71.97	72.06		
0.61	67.72	70.33	71.28	71.74	72.01	72.11	72.30	72.39		
0.62	68.05	70.67	71.61	72.08	72.34	72.37	72.63	72.72		
0.63	68.37	71.00	71.95	72.41	72.68	72.63	72.97	73.06		
0.64	68.70	71.34	72.28	72.75	73.01	72.89	73.30	73.39		
0.65	69.03	71.67	72.61	73.08	73.34	73.15	73.63	73.72		
0.66	69.37	72.00	72.94	73.41	73.67	73.55	73.95	74.04		
0.67	69.71	72.33	73.27	73.73	73.99	73.95	74.28	74.36		
0.68	70.05	72.67	73.60	74.06	74.32	74.35	74.60	74.69		
0.69	70.39	73.00	73.93	74.38	74.64	74.75	74.93	75.01		
0.70	70.73	73.33	74.26	74.71	74.97	75.15	75.25	75.33		
0.71	71.08	73.66	74.59	75.03	75.29	75.46	75.57	75.64		
0.72	71.44	74.00	74.91	75.35	75.61	75.78	75.88	75.96		
0.73	71.79	74.33	75.24	75.68	75.92	76.09	76.20	76.27		
0.74	72.15	74.67	75.56	76.00	76.24	76.41	76.51	76.59		
0.75	72.50	75.00	75.89	76.32	76.56	76.72	76.83	76.90		
0.76	72.87	75.33	76.21	76.63	76.87	77.03	77.14	77.21		
0.77	73.24	75.67	76.53	76.95	77.18	77.34	77.44	77.51		
0.78	73.62	76.00	76.85	77.26	77.50	77.64	77.75	77.82		
0.79	73.99	76.34	77.17	77.58	77.81	77.95	78.05	78.12		
0.80	74.36	76.67	77.49	77.89	78.12	78.26	78.36	78.43		
0.81	74.75	77.00	77.81	78.20	78.42	78.56	78.66	78.72		
0.82	75.15	77.33	78.12	78.51	78.72	78.86	78.95	79.02		
0.83	75.54	77.67	78.44	78.81	79.03	79.16	79.25	79.31		

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PERO						MPLE S	IZES		
(Q or Q _.)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
0.84	75.94	78.00	78.75	79.12	79.33	79.46	79.54	79.61		
0.85	76.33	78.33	79.07	79.43	79.63	79.76	79.84	79.90		
0.86	76.75	78.66	79.38	79.73	79.92	80.05	80.13	80.19		
0.87	77.18	79.00	79.69	80.03	80.22	80.34	80.42	80.47		
0.88	77.60	79.33	80.00	80.33	80.51	80.63	80.70	80.76		
0.89	78.03	79.67	80.31	80.63	80.81	80.92	80.99	81.04		
0.90	78.45	80.00	80.62	80.93	81.10	81.21	81.28	81.33		
0.91	78.91	80.33	80.92	81.22	81.38	81.49	81.56	81.61		
0.92	79.37	80.67	81.23	81.51	81.67	81.77	81.84	81.88		
0.93	79.83	81.00	81.53	81.81	81.95	82.05	82.11	82.16		
0.94	80.29	81.34	81.84	82.10	82.24	82.33	82.39	82.43		
0.95	80.75	81.67	82.14	82.39	82.52	82.61	82.67	82.71		
0.96	81.27	82.00	82.44	82.67	82.80	82.88	82.94	82.97		
0.97	81.78	82.33	82.74	82.95	83.07	83.15	83.20	83.24		
0.98	82.30	82.67	83.04	83.24	83.35	83.42	83.47	83.50		
0.99	82.81	83.00	83.34	83.52	83.62	83.69	83.73	83.77		
1.00	83.33	83.33	83.64	83.80	83.90	83.96	84.00	84.03		
1.01	83.93	83.66	83.93	84.08	84.17	84.22	84.26	84.28		
1.02	84.53	84.00	84.22	84.35	84.43	84.48	84.51	84.53		
1.03	85.14	84.33	84.51	84.63	84.70	84.74	84.77	84.79		
1.04	85.74	84.67	84.80	84.90	84.96	85.00	85.02	85.04		
1.05	86.34	85.00	85.09	85.18	85.23	85.26	85.28	85.29		
1.06	87.10	85.33	85.38	85.44	85.49	85.51	85.53	85.53		
1.07	87.87	85.67	85.66	85.71	85.74	85.76	85.77	85.77		
1.08	88.63	86.00	85.95	85.97	86.00	86.01	86.02	86.02		
1.09	89.40	86.34	86.23	86.24	86.25	86.26	86.26	86.26		
1.10	90.16	86.67	86.52	86.50	86.51	86.51	86.51	86.50		
1.11	91.55	87.00	86.80	86.76	86.75	86.75	86.74	86.73		
1.12	92.95	87.33	87.07	87.01	87.00	86.99	86.98	86.96		
1.13	94.34	87.67	87.35	87.27	87.24	87.22	87.21	87.20		
1.14	95.74	88.00	87.62	87.52	87.49	87.46	87.45	87.43		
1.15	97.13	88.33	87.90	87.78	87.73	87.70	87.68	87.66		
1.16	100.00	88.66	88.17	88.03	87.96	87.93	87.90	87.88		
1.17	100.00	89.00	88.44	88.27	88.20	88.15	88.12	88.10		
1.18	100.00	89.33	88.70	88.52	88.43	88.38	88.35	88.32		
1.19	100.00	89.67	88.97	88.76	88.67	88.60	88.57	88.54		
1.20	100.00	90.00	89.24	89.01	88.90	88.83	88.79	88.76		
1.21	100.00	90.33	89.50	89.25	89.12	89.05	89.00	88.97		
1.22	100.00	90.67	89.76	89.48	89.35	89.26	89.21	89.17		
1.23	100.00	91.00	90.02	89.72	89.57	89.48	89.43	89.38		
1.24	100.00	91.34	90.28	89.95	89.80	89.69	89.64	89.58		
1.25	100.00	91.67	90.54	90.19	90.02	89.91	89.85	89.79		
1.26	100.00	92.00	90.79	90.41	90.23	90.12	90.05	89.99		

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PERC	CENT WI	THIN LI	MITS FO	R SELE	CTED SA	MPLE S	IZES		
(Q _{.1} or Q ₁)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19		
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38		
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58		
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78		
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96		
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15		
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33		
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52		
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70		
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87		
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04		
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22		
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39		
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56		
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72		
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88		
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05		
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21		
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37		
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52		
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67		
1.48	100.00	99.33	95.80	94.84	94.39	94.12	93.95	93.83		
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98		
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13		
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27		
1.52	100.00	100.00	96.57	95.51	95.02	94.73	94.54	94.41		
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54		
1.54	100.00	100.00	96.94	95.84	95.33	95.02	94.83	94.68		
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82		
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95		
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08		
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20		
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33		
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46		
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58		
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70		
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81		
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93		
1.65	100.00	100.00	98.72	97.42	96.81	96.45	96.22	96.05		
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16		
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27		
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37		
1.69	100.00	100.00	99.22	97.90	97.27	96.90	96.65	96.48		

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PER	CENT WI	THIN LI	MITS FO	R SELE	CTED SA	MPLE SI	ZES		
(Q _u or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
1.70	100.00	100.00	99.34	98.02	97.38	97.01	96.76	96.59		
1.71	100.00	100.00	99.43	98.13	97.48	97.11	96.86	96.69		
1.72	100.00	100.00	99.53	98.23	97.58	97.21	96.96	96.78		
1.73	100.00	100.00	99.62	98.34	97.69	97.31	97.05	96.88		
1.74	100.00	100.00	99.72	98.44	97.79	97.41	97.15	96.97		
1.75	100.00	100.00	99.81	98.55	97.89	97.51	97.25	97.07		
1.76	100.00	100.00	99.86	98.64	97.98	97.60	97.34	97.16		
1.77	100.00	100.00	99.91	98.73	98.07	97.69	97.43	97.25		
1.78	100.00	100.00	99.95	98.81	98.17	97.78	97.52	97.33		
1.79	100.00	100.00	100.00	98.90	98.26	97.87	97.61	97.42		
1.80	100.00	100.00	100.00	98.99	98.35	97.96	97.70	97.51		
1.81	100.00	100.00	100.00	99.06	98.43	98.04	97.78	97.59		
1.82	100.00	100.00	100.00	99.14	98.51	98.12	97.86	97.67		
1.83	100.00	100.00	100.00	99.21	98.58	98.19	97.93	97.75		
1.84	100.00	100.00	100.00	99.29	98.66	98.27	98.01	97.83		
1.85	100.00	100.00	100.00	99.36	98.74	98.35	98.09	97.91		
1.86	100.00	100.00	100.00	99.42	98.81	98.42	98.16	97.98		
1.87	100.00	100.00	100.00	99.48	98.87	98.49	98.23	98.05		
1.88	100.00	100.00	100.00	99.53	98.94	98.55	98.30	98.11		
1.89	100.00	100.00	100.00	99.59	99.00	98.62	98.37	98.18		
1.90	100.00	100.00	100.00	99.65	99.07	98.69	98.44	98.25		
1.91	100.00	100.00	100.00	99.69	99.13	98.75	98.50	98.31		
1.92	100.00	100.00	100.00	99.73	99.18	98.81	98.56	98.37		
1.93	100.00	100.00	100.00	99.77	99.24	98.87	98.62	98.44		
1.94	100.00	100.00	100.00	99.81	99.29	98.93	98.68	98.50		
1.95	100.00	100.00	100.00	99.85	99.35	98.99	98.74	98.56		
1.96	100.00	100.00	100.00	99.87	99.39	99.04	98.79	98.61		
1.97	100.00	100.00	100.00	99.90	99.44	99.09	98.84	98.67		
1.98	100.00	100.00	100.00	99.92	99.48	99.14	98.90	98.72		
1.99	100.00	100.00	100.00	99.95	99.53	99.19	98.95	98.78		
2.00	100.00	100.00	100.00	99.97	99.57	99.24	99.00	98.83		
2.01	100.00	100.00	100.00	99.98	99.60	99.28	99.05	98.88		
2.02	100.00	100.00	100.00	99.98	99.64	99.32	99.09	98.92		
2.03	100.00	100.00	100.00	99.99	99.67	99.37	99.14	98.97		
2.04	100.00	100.00	100.00	99.99	99.71	99.41	99.18	99.01		
2.05	100.00	100.00	100.00	100.00	99.74	99.45	99.23	99.06		
2.06	100.00	100.00	100.00	100.00	99.76	99.48	99.27	99.10		
2.07	100.00	100.00	100.00	100.00	99.79	99.51	99.30	99.14		
2.08	100.00	100.00	100.00	100.00	99.81	99.55	99.34	99.18		
2.09	100.00	100.00	100.00	100.00	99.84	99.58	99.37	99.22		
2.10	100.00	100.00	100.00	100.00	99.86	99.61	99.41	99.26		
2.11	100.00	100.00	100.00	100.00	99.88	99.64	99.44	99.29		
2.12	100.00	100.00	100.00	100.00	99.89	99.66	99.47	99.32		

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD										
QUALITY INDEX	PERC	CENT WI	THIN LI	MITS FO	R SELE	CTED SA	MPLE SI	ZES			
(Q ₁₁ or Q ₁)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10			
2.13	100.00	100.00	100.00	100.00	99.91	99.69	99.51	99.36			
2.14	100.00	100.00	100.00	100.00	99.92	99.71	99.54	99.39			
2.15	100.00	100.00	100.00	100.00	99.94	99.74	99.57	99.42			
2.16	100.00	100.00	100.00	100.00	99.95	99.76	99.59	99.45			
2.17	100.00	100.00	100.00	100.00	99.96	99.78	99.62	99.48			
2.18	100.00	100.00	100.00	100.00	99.97	99.80	99.64	99.50			
2.19	100.00	100.00	100.00	100.00	99.98	99.82	99.67	99.53			
2.20	100.00	100.00	100.00	100.00	99.99	99.84	99.69	99.56			
2.21	100.00	100.00	100.00	100.00	99.99	99.85	99.71	99.58			
2.22	100.00	100.00	100.00	100.00	99.99	99.87	99.73	99.61			
2.23	100.00	100.00	100.00	100.00	100.00	99.88	99.75	99.63			
2.24	100.00	100.00	100.00	100.00	100.00	99.90	99.77	99.66			
2.25	100.00	100.00	100.00	100.00	100.00	99.91	99.79	99.68			
2.26	100.00	100.00	100.00	100.00		99.92	99.80	99.70			
2.27	100.00	100.00	100.00	100.00	100.00	99.93	99.82	99.72			
2.28	100.00	100.00	100.00	100.00	100.00	99.94	99.83	99.73			
2.29	100.00	100.00	100.00	100.00	100.00	99.95	99.85	99.75			
2.30	100.00	100.00	100.00	100.00	100.00	99.96	99.86	99.77			
2.31	100.00	100.00	100.00	100.00	100.00	99.96	99.87	99.78			
2.32	100.00	100.00	100.00	100.00	100.00	99.97	99.88	99.80			
2.33	100.00	100.00	100.00	100.00	100.00	99.97	99.90	99.81			
2.34	100.00	100.00	100.00	100.00	100.00	99.98	99.91	99.83			
2.35	100.00	100.00	100.00	100.00	100.00	99.98	99.92	99.84			
2.36	100.00	100.00	100.00	100.00	100.00	99.98	99.93	99.85			
2.37	100.00	100.00	100.00	100.00	100.00	99.99	99.93	99.86			
2.38	100.00	100.00	100.00	100.00	100.00	99.99	99.94	99.87			
2.39	100.00	100.00	100.00	100.00	100.00	100.00	99.94	99.88			
2.40	100.00	100.00	100.00	100.00	100.00	100.00	99.95	99.89			
2.41	100.00	100.00	100.00	100.00	100.00	100.00	99.96	99.90			
2.42	100.00	100.00	100.00	100.00	100.00	100.00	99.96	99.91			
2.43	100.00	100.00	100.00	100.00	100.00	100.00	99.97	99.91			
2.44	100.00	100.00	100.00	100.00	100.00	100.00	99.97	99.92			
2.45	100.00	100.00	100.00	100.00	100.00	100.00	99.98	99.93			
2.46	100.00	100.00	100.00	100.00	100.00	100.00	99.98	99.94			
2.47	100.00	100.00	100.00	100.00	100.00	100.00	99.98	99.94			
2.48	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.95			
2.49	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.95			
2.50	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.96			
2.51	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.96			
2.52	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.97			
2.53	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.97			
2.54	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98			
2.55	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98			

	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD								
QUALITY INDEX	PERC	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES							
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98	
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98	
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
2.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	

Numbers in the body of this table are estimates of percent within limits (PWL) corresponding to specific values of Q, the QUALITY INDEX. For Q values less than zero, subtract the table value from 100.

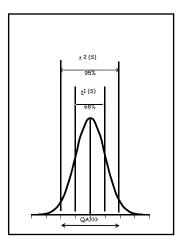
MODULE 10B QUALITY LEVEL ANALYSIS

FAVORABLE AND UNFAVORABLE COMPARISON

11-24-06 Revision 11-9-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 12-18-13 Revision 12-29-14 Revision 2-5-15 Revision 12-9-15 Revision 3-2-16 Revision 12-28-16 Revision 3-6-18 Revision 12-12-18 Revision 3-15-19 Revision 12-17-19 Revision

MODULE 10B
QUALITY LEVEL
ANALYSIS
ANAL/ SIS
FAVORABLE AND UNFAVORABLE COMPARISON
11-24-06 Revision
11-9-07 Revision
1-2-09 Revision 4-22-09 Revision
11-18-09 Revision
11-17-10 Revision
1-19-11 Revision
3-2-12 Revision
12-18-13 Revision
12-29-14 Revision 2-5-15 Revision
12-9-15 Revision
3-2-16 Revision
12-28-16 Revision
3-6-18 Revision
12-12-18 Revision
3-15-19 Revision
12-17-19 Revision

QUALITY LEVEL ANALYSIS


Pay Factor computation

 Favorable comparison between QC and QA results:

 Do QC's results represent the entire population of data from the lot? (does QA's result fit in with QC's)

 If not, add QA's result to QC's to include it in the population

2

QUALITY LEVEL ANALYSIS- Comparison of QA to QC Comparison of hotmix QA results to QC results: To consider the QC data to be valid (worthwhile), the QA result must be within 2 standard deviations of the QC mean (QC) for a lot: $[\overline{QC}-2(S)] \le QA \le [\overline{QC}+2(S)]$ Or within $\frac{1}{2}$ of the specification tolerance. Whichever is greater This applies to air voids, VMA, %AC, and mat density

4

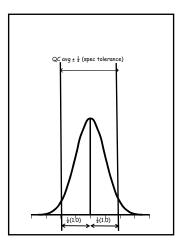
5

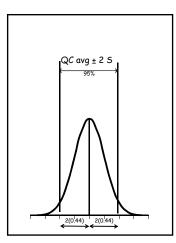
6

Comparison QA to QC-Example • For a certain lot, QC

results:

mean air voids = 3.43%standard deviation=0.44%

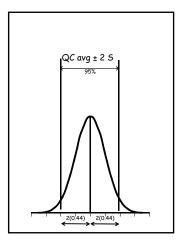

■ QA result is 3.8%

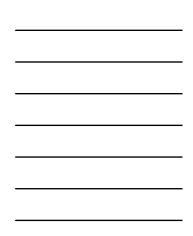

 Can the contractor's results be used for calculating the pay factor?

Comparison QA to QC-Example, cont'd.

First, should you use 2 (5) or $\frac{1}{2}$ the spec tolerance?

- Allowable range is -1.0% to + 1.0%, so the spec tolerance is 1.0%.
- Half of this is 0.5%.
- On the other hand
- 2(5)= 2(0.44)= 0.88



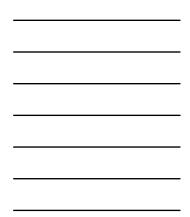


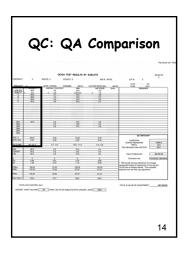
Comparison QA to QC-Example, cont'd.

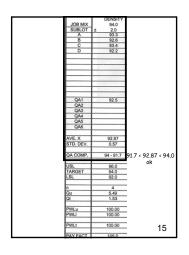
- Compared to 2(S)= 2(0.44)=
 0.88, the 0.88% is greater than the 0.5%, so the 0.88% should be used for evaluation.
- If this calculation had turned out to be less than 0.5%, the 0.5% would be used.

9

Comparison QA to QC-Example, cont'd. QC-2(5)=3.43-2(0.44)=2.6% QC+2(5)=3.43+2(0.44)=4.3% QA(3.8) lies within 2.6 to 4.3 Yes, use QC's results


EXAMPLE 2 HALF TOLERANCE


- VMA: allowable range is -0.5% to + 2.0%, so the spec tolerance is 1.25%.
- Half of this is 0.6%
- So to be valid, QA must be between ± 0.6% of the mean of the QC results for a given lot


12

11

HALF SPEC RANGE: EPG 403.1.21								
Parameter	Spec Tolerance (%)	½ Spec Tolerance (%)						
Air Voids	1.0	0.5						
Binder content	0.3	0.15						
Mat density	2.5	1.25						
VMA	-0.5 to 2.0 = 2.5 (1.25 each "side")	0.6						
		13						

12/17/19

QC: QA Comparison

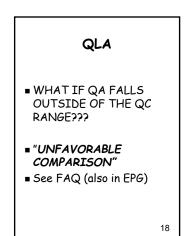
Pay Factor 5.01 7/6/200

		QC	QA TEST RESULTS I	BY SUBLOTS			Sample ID
ONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : S	P190	LOT # : 5	Ŭ
PROJECT	0	DATE: 01/00/00	TONS/MG 3000.0			% AC 5	
ERI MELLI		ASPHALT CONTE		UNIT BID PRICE MIX AIR VOIDS	\$45.00	% MA 94 REMARKS	
JOB MIX	94.0	5.2	13.0	4.0	Gmm	REMARKS	
SUBLOT ±		± 0.3	-0.5/+2.0	± 1.0			
A	93.3	5.7	13.3	3.9			
В	92.6	5.2	13.8	3.7			
С	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
					The second		
QA1	92.5	5.2	13.0	3.8			
QA2		5.5	13.8	3.4			
QA3		5.6	13.0	3.8			
QA4							
QA5							· · · · ·
QA6							
						QC TSR DAT	A*
AVE. X	92.87	5.22	13.22	3.42			
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
						Quantity Represented	10000.0
DA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
						Pay Adjustment (Sec 403.23.5)	98.0
JSL	96.0	5.5	15.0	5.0			
ARGET	94.0	5.2	13.0	4.0			
.SL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
	4	4	4	4		Contractor Lab	Contractor Laborator
λu	5.49	0.61	2.78	3.59			
וג	1.53	0.70	1.13	0.95		 TSR results and pay adjustment for represented based on requirement of 	
WLu	100.00	70.33	100.00	100.00		10,000 tons or fraction thereof. This	
PWLI	100.00	73.33	87.67	81.67		separate from the PWL pay adjustm	
PWLt	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			
AT FAUL	105.0	31.3	90.8	90.0			

TOTAL PAY FACTOR= 84.2

UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

JOB MIX SUBLOT A B C D	DENSITY 94.0 ± 2.0 93.3 92.6 93.4 92.2	
QA1 QA2 QA3 QA4 QA5 QA6	92.5	
AVE. X STD. DEV.	92.87 0.57	
QA COMP.	94 - 91.7	91.7 < 92.87 < 94.0
USL TARGET LSL	96.0 94.0 92.0	ok
n Qu Ql	4 5.49 1.53	
PWLu PWLI	100.00 100.00	
PWLt	100.00	15
PAY FACT.	105.0	

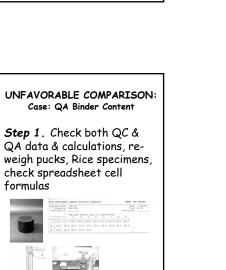

QC v	s QA C	ompar	ison: %	6AC
Asphalt C		ity Analysis Se	end/Sync Reports	Help
QC Imported	2/4/2016 6:28	by	Gien Cary]
QC Lot # 2 Average Two Std Deviations: <u>1/2 Spec Tolerance</u> QA Test <u>2C</u> Difference from QC Ave With 12 Spec Toleranc? With 12 Spec Toleranc?	SiAC VMA V 5 0.1 3.3 0.24 0.92 0.1 +i-0.15 25i+1 +i- 5.10 1.00 4 0.10 1.90 1.1 Yes 1/O 1/O	22 93.4 16 2.36 15 4-1.25 16 93.4 3 0 0 Yes	Joint #DIVI01 #DIVI01	Include QA in Paylactor? No Test
QC Sublot Sublot Difference	INA INA IN INA INA IN		#NA #NA	Designation QA2C*
= 0.10 = Within	Toleran ence (QA	ce=(½)(A - QCa Toleran	0.3) = 0 vg) = 5.10 nce = 0.1	. 15) - 5.00
 Within 	2 Std D	ev = 0.2	24? Yes	16

QUALITY LEVEL ANALYSIS - TSR SR -favorable

TSR -favorable comparison is when QA and QC are within 10% of each other.

If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.

If difference is >10%, initiate dispute resolution QC and QA retained samples should be kept for extened periods 17

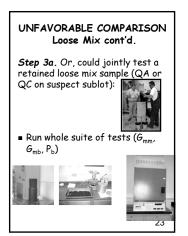


QC vs QA Comparison: %AC

Asphalt (QA	Qı	iantity	Analysis Se	end/Sync Re	eports Help
QC QC/QA	Payfac	tor			Mix	Control
QC Imported	2/4/2016 6:28			by		
_		'o'y metric	S	Dens	sity	
QC Lot # Average:	%AC 5	/MA 14.1	Va 3.32	Mat 93.4	Joint #DIV/0!	
Two Std Deviations: 1/2 Spec Tolerance:	0.24 +/- 0.15	0.92 .25/+1	0.66 +/- 0.5	2.36 +/- 1.25	#DIV/0!	Include QA in Payfactor?
QA Test: 2C	5.10	6.00	4.6	93.4	91.1	No
Difference from QC Avg	0.10	1.90	1.3	0	#DIV/0!	
Within 1/2 Spec Tolerance?	Yes	NO	NO	Yes		
Within Two Std Deviation?	Yes	NO	NO	Yes	#DIV/0!	Test
QC Sublot	#N/A	#N/A	#N/A	#N/A	#N/A	Designation QA2C*
Sublot Difference	#N/A	#N/A	#N/A	#N/A	#N/A	

- 2 Std Deviations = (2)(0.12) = 0.24
- $\frac{1}{2}$ Spec Tolerance= $(\frac{1}{2})(0.3) = 0.15$
- Difference (QA QCavg) = 5.10 5.00 = 0.10
- Within $\frac{1}{2}$ Spec Tolerance = 0.15? Yes
- Within 2 Std Dev = 0.24? Yes

Example: QA Pb is Suspect First Comparison			
Example 1- QA Pb.x	ls	Initial QA	results:
		Pb	4.1
		Gmm	2.472
Initial Comparison:		Gmb	2.381
Target Pb=	5.2	Gsb	2.634
QC	5.7	Va	3.7
	5.2	VMA	13.3
8	5.4		
	5.2		
QC avg	5.38		
QC S	0.24		
Range, lower	4.90		
Range,upper	5.85		
QA	4.1		
Fit?	no		
	unfavorable		



UNFAVORABLE CO Loose Mix co	
Step 2. If both QA & QC's data appear ok, for all 3 parameters (air voids, VMA, binder content), one solution is to add all of QA's independent results to the data sets, now:	
n = (4 + 1) = 5	
Re-run all 3 PWL analy	vses [Pb,
VMA, Va] (mean & S	are now
different)	
$Q_L = \frac{\overline{X} - LSL}{S}$	
New PWL	•
New PF	

Example: QA Pb is Suspect First Comparison

Example 1- QA Pb.xl	- QA Pb.xls Initial QA results:		results:	
			Pb	4.1
			Gmm	2.472
Initial Comparison:			Gmb	2.381
Target Pb=	5.2		Gsb	2.634
QC	5.7		Va	3.7
п	5.2		VMA	13.3
н	5.4			
п	5.2			
QC avg	5.38			
QC S	0.24			
Range, lower	4.90			
Range,upper	5.85			
QA	4.1			
Fit?	no			
	unfavorab	le		

QC Sets -run PWL's with QA include					
-run P					
	Pb5	VMA5	Va5		
n	5	5	5		
QĊ	5.7	13.3			
QC	5.2	13.8	3.7		
QĊ	5.4	13.5	3.0		
QC	5.2	12.3	3.1		
QA	4.1	13.3	3.7		
Avg, n=5	5.12	13.24	3.48		
s	0.61	0.56	0.40		
USL	5.5	15	-		
LSL	4.9	12.5	3		
Qu	0.63	3.12	3.78		
QL	0.36	1.31	1.19		
PWLu	71.95	100	100		
PWLL	62.73	92.03	88.97		
PWLt	34.68	92.03	88.97		
PF	19	101	99		

	/ORABLE Loose Mi		
loose r retaine = G _{mm} : = G _{mb} :	ble compo nix splits (ed) is defi within 0.00 within 0.010	(original v ined as: 5	
 If this original 	ithin 0.1% S step veri I I test re s sing the o	sults are	valid,
 If this original 	s step veri I l test re s	sults are	valid,
 If this origination or igination of the second secon	s step veri I test re s sing the o	sults are	valid,
 If this origination or igination of the second secon	step veri al test res sing the o QA	s ults are riginal res	valid , sults.
 If this origina keep u Step 3a: 	s step veri al test res sing the o QA Retained	sults are riginal res Original:	valid , sults. Close?
 If this origina keep u Step 3a: Pb 	s step veri al test res sing the o QA Retained 4.1	sults are riginal res Original: 4.1	valid , sults. Close? yes

Add QA P_b , VMA, Air Voids to QC Sets

Re-run PWL's with QA included

	Pb5	VMA5	Va5
n	5	5	5
QC	5.7	13.3	3.9
QC	5.2	13.8	3.7
QC	5.4	13.5	3.0
QC	5.2	12.3	3.1
QA	4.1	13.3	3.7
Avg, n=5	5.12	13.24	3.48
S	0.61	0.56	0.40
USL	5.5	15	5
LSL	4.9	12.5	3
Qu	0.63	3.12	3.78
QL	0.36	1.31	1.19
PWLu	71.95	100	100
PWLL	62.73	92.03	88.97
PWLt	34.68	92.03	88.97
PF	19	101	99
o choose to	o re-run Q/	A retained	split:

UNFAVORABLE COMPARISON Loose Mix cont'd.

- Favorable comparisons between loose mix splits (original vs. retained) is defined as:
 - G_{mm}: within 0.005
 - G_{mb}: within 0.010
 - P_b : within 0.1%
- If this step verifies that all 3
 original test results are valid, keep using the original results.

Step 3a:	QA		
	Retained	Original:	Close?
Pb	4.1	4.1	yes
Gmm	2.475	2.472	yes
Gmb	2.388	2.381	yes
			0.4

UNFAVORABLE COMPARISON Loose Mix cont'd. Add QA's independent results to the 3 data sets (Pb, VMA, Va), now n = (4 + 1) = 5 Re-run all 3 PWL analyses (this is shown in Step 2, previous slide 22) $Q_{L} = \frac{\overline{X} - LSL}{\overline{X}}$ S 25

UNFAVORABLE COMPARISON Loose Mix cont'd. Step 3b. Alternate outcome of Step 3a. If running the retained loose mix split shows the original to be invalid, substitute all results (Pb, Gmm, Gmb) from the retained split. Re-calculate Va and VMA. Now you have new QA test values for each parameter (air voids, VMA, binder content).

Step 3b: QA's Retained Pb Very Different			
Step 3b:	QA		
	Retained	Original:	Close?
Pb	5.3	4.1	no
Gmm	2.475	2.472	yes
Gmb	2.388	2.381	yes
Va	3.5	3.7	
VMA	14.1	13.3	
			27

Step 3b: QA's Retained Pb Very Different

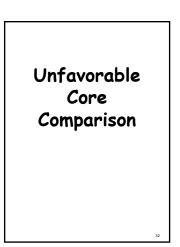
Step 3b:	QA		
	Retained	Original:	Close?
Pb	5.3	4.1	no
Gmm	2.475	2.472	yes
Gmb	2.388	2.381	yes
Va	3.5	3.7	
VMA	14.1	13.3	

	ABLE CO se Mix o	OMPARISON, cont'd.
	n the lot	r (Pb, VMA, comparison
	QA???	
<	•	
- 2 (5)	QC_{avg}	+ 2 5
■ If all 3 a these re (n = 4)		able, use re-run PWL
		28

Comparison Using QA Retained Sample Values			
	Pb	VMA	Va
QC	5.7	13.3	3.9
QC	5.2	13.8	3.7
QC	5.4	13.5	3.0
QC	5.2	12.3	3.1
QC avg	5.38	13.2	3.4
S	0.24	0.65	0.44
Range,lower	4.90	11.93	2.54
Range,upper	5.85	14.53	4.31
Retained QA	5.3	14.1	3.5
Fit?	yes	yes	yes
	favorable	favorable	favorable
			29

	1	- 1		
	(n Pb	= 4)	Va	
n	4	4	4	
QC	5.7	13.3	3.9	
QC	5.2	13.8	3.7	
QC	5.4	13.5	3.0	
QC	5.2	12.3	3.1	
Avg, n=4	5.38	13.2	3.4	
s	0.24	0.65	0.44	
USL	5.5	15.0	5.0	
LSL	4.9	12.5	3.0	
Qu	0.53	2.73	3.56	
QL	2.01	1.12	0.96	
PWLu	67.67	100	100	
PWLL	100	87.33	82	
PWLt	67.67	87.33	82	
PF	85	99	96	

Comparison Using QA Retained Sample Values


	Pb	VMA	Va
QC	5.7	13.3	3.9
QC	5.2	13.8	3.7
QC	5.4	13.5	3.0
QC	5.2	12.3	3.1
QC avg	5.38	13.2	3.4
S	0.24	0.65	0.44
Range, lower	4.90	11.93	2.54
Range,upper	5.85	14.53	4.31
Retained QA	5.3	14.1	3.5
Fit?	yes	yes	yes
	favorable	favorable	favorable

If All 3 Are Favorable, Use These Results to Re-run PWL

(n - A)

	(n	= 4)	
	Pb	VMA	Va
n	4	4	4
QC	5.7	13.3	3.9
QC	5.2	13.8	3.7
QC	5.4	13.5	3.0
QC	5.2	12.3	3.1
Avg, n=4	5.38	13.2	3.4
S	0.24	0.65	0.44
USL	5.5	15.0	5.0
LSL	4.9	12.5	3.0
Qu	0.53	2.73	3.56
QL	2.01	1.12	0.96
PWLu	67.67	100	100
PWLL	100	87.33	82
PWLt	67.67	87.33	82
PF	85	99	96

UNFAVORABLE COMPARISON, Loose Mix cont'd. Step 4. If QA vs QC comparison is still unfavorable, add QA's independent results (Pb, VMA, Va) to the 3 data sets, now n = (4 + 1) = 5 Re-run all 3 parameters' PWL analyses $Q_L = \frac{\overline{X} - LSL}{S}$ 31

Example: From I		e is Suspo mparison	ect
QC		93.3	
QC		92.6	
QC		93.4	
QC		92.2	
QC avg		92.9	
QC [°] S [°]		0.57	
Range,low	er	91.7	
Range,upp	er	94.0	
QA		91.2	
Fit?		no	
	ι	nfavorable	
			33

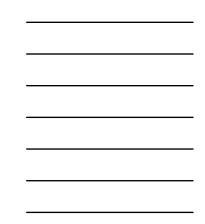
Example: QA Core is Suspect From First Comparison

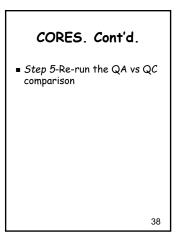
	93.3
	92.6
	93.4
	92.2
	92.9
	0.57
/er	91.7
per	94.0
	91.2
	no
unfavorable	
	Der

CORES

- Case: QA core is taken at the same location as one of the QC core sample locations
- Step 1-check core and G_{mm} data, etc.
- Step 2- There is no "retained QC" sample, so the QC core at the same location can function as a retained sample: QA & QC jointly should re-weigh QA and QC cores; if QC sample is comprised of more than 1 core, use the average of the QC cores. 34

CORES, cont'd.


- Step 3-Compare G_{mc}'s: QA to QC
- If G_{mc}'s are within 0.010, the QA core is verified, as is the QA % Density
- Add QA's % Density result to the QC % Density data set, now n = (4 + 1) = 5
- Re-run density PWL analysis


CORES, cont'd.

- Step 4- If the QA and QC G_{mc} 's do not compare, then average the QA and QC G_{mc} 's-call this the new QA G_{mc} . Re-compute the QA % Density.
- Also call this the new QC Gmc for the sublot. Re-compute the sublot's QC % Density
- Re-compute the lot's QC % Density average and standard deviation

36

Step 4: Gmc Comparison New QC %Density Average and Standard Deviation				
	QC Gmc	2.30)4	
	QA Gmc	2.25	54	
	Avg	2.27	79	
This is new QA Gmc, so %density = 92.4 (using QC Gmm, no QA Gmm from Lot Q) Also, this is new QC Gmc for subtic C so %Density=92.4 (using QC Gmm)				
	QC	93.3		
	QC	92.6		
	new QC	92.4		
	QC	92.2		
	new avg	92.63		
	new S	0.48	37	

		-run the omparison
QC		93.3
QC		92.6
new QC		92.4
QC		92.2
QC avg		92.63
QC S		0.48
Range, lov	ver	91.67
Range,up	per	93.58
QA		92.4
Fit?		yes
		favorable
		39

Step 4: Gmc Comparison New QC %Density Average and Standard Deviation

QC Gmc	2.304
QA Gmc	2.254
Avg	2.279

This is new QA Gmc, so %density = 92.4 (using QC Gmm, no QA Gmm from Lot C)

Also, this is new QC Gmc for sublot C, so %Density=

92.4 (using QC Gmm)

QC	93.3
QC	92.6
new QC	92.4
QC	92.2
new avg	92.63
new S	0.48

Step 5: Re-run the QA vs QC Comparison

QC		93.3
QC		92.6
new QC		92.4
QC		92.2
QC avg		92.63
QC S		0.48
Range, low	/er	91.67
Range,upp	per	93.58
QA		92.4
Fit?		yes
		favorable

Step 6: PWL Ana			
		%Density	
	n	4	
	QC	93.3	
	QC	92.6	
	new QC	92.4	
	QC	92.2	
	Avg, n=4	92.63	
	S	0.48	
	USL	97	
	LSL	92	
	Qu	9.14	
	QL	1.31	
	PWLu	100	
	PWLL	93.66	
	PWLt	93.66	
	PF	102	40
			40

Step 7: Still Non-Favorable Comparison

- Step 7-If QA vs QC comparison is not favorable, add QA's % Density into QC's % Density data set for the lot, re-compute the lot's average and standard deviation
- \blacksquare Re-run the PWL (n = 5)

Step 6: If Favorable, Run the PWL Analysis with New QC Data

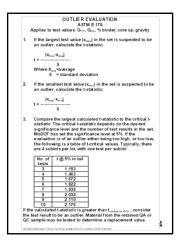
	%Density
n	4
QC	93.3
QC	92.6
new QC	92.4
QC	92.2
Avg, n=4	92.63
S	0.48
USL	97
LSL	92
Qu	9.14
QL	1.31
PWLu	100
PWLL	93.66
PWLt	93.66
PF	102

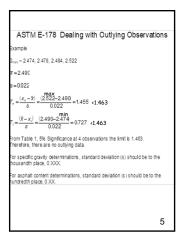
MODULE 10C QUALITY LEVEL ANALYSIS

MISCELLANEOUS

11-24-06 Revision 11-9-07 Revision 1-2-09 Revision 4-22-09 Revision 11-18-09 Revision 11-17-10 Revision 1-19-11 Revision 3-2-12 Revision 12-18-13 Revision 12-29-14 Revision 2-5-15 Revision 12-9-15 Revision 3-2-16 Revision 12-28-16 Revision 3-6-18 Revision 12-12-18 Revision 2-8-19 Revision 12-17-19 Revision

MODULE 10C
QUALITY LEVEL ANALYSIS
MISCELLANEOUS
11-24-05 Revision 11-9-07 Revision 3-22-09 Revision 11-18-09 Revision 11-18-109 Revision 3-2-12 Revision 12-8-13 Revision 12-8-13 Revision 2-9-15 Revision 3-2-9-14 Revision 3-2-9-14 Revision 3-2-9-14 Revision 3-2-9-14 Revision 3-2-14 Revision 3-2-18 Revision 3-2-18 Revision 3-2-18 Revision 3-2-18 Revision 3-2-18 Revision 3-2-18 Revision 3-2-18 Revision


RETAINED SAMPLES


- If a retained sample is to be tested:
- Reheat just enough to become workable-remove it from the container
- Spread in a pan(s) to heat quicker
- Quarter
- Run entire suite of tests

OUTLIERS

2

- Lot data may be examined for outliers via ASTM E 178
- Eligible tests:
 G_{mb}, G_{mc}, G_{mm}, P_b
 Process is somewhat moot with the advent of the retained split testing procedure now in place
- See example

DISPUTE ESCALATION

- Look at the QC/QA Checklist—is a hierarchy of resolution levels and associated time frames.
- Make decisions at lowest possible level

OUTLIER EVALUATION ASTM E 178

Applies to test values: G_{mm}, G_{mb}, % binder, core sp. gravity

1. If the largest test value (x_{max}) in the set is suspected to be an outlier, calculate the t-statistic:

2. If the smallest test value (x_{min}) in the set is suspected to be an outlier, calculate the t-statistic:

3. Compare the largest *calculated t-statistic* to the *critical t-statistic*. The *critical t-statistic* depends on the desired significance level and the number of test results in the set. MoDOT has set the significance level at 5%. If the evaluation is of an outlier either being too high, or too low, the following is a table of t-critical values. Typically, there are 4 sublots per lot, with one test per sublot:

No. of tests	t @ 5% in tail
3	1.153
4	1.463
5	1.672
6	1.822
7	1.938
8	2.032
9	2.110
10	2.176

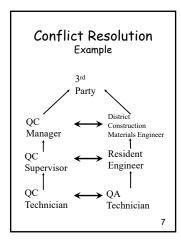
If the *calculated t-statistic* is greater than $t_{critical (\alpha = 5\%)}$, consider the test result to be an outlier. Material from the retained QA or QC sample may be tested to determine a replacement value.

ASTM E-178 Dealing with Outlying Observations

Example

G_{mm} – 2.474, 2.478, 2.484, 2.522

 $\bar{x} = 2.490$


s = 0.022

$$T_{n} = \frac{(x_{n} - \bar{x})}{s} = \frac{\max}{(2.522 - 2.490)} = 1.455 < 1.463$$
$$T_{1} = \frac{(\bar{x} - x_{1})}{s} = \frac{(2.490 - 2.474)}{0.022} = 0.727 < 1.463$$

From Table 1, 5% Significance at 4 observations the limit is 1.463. Therefore, there are no outlying data.

For specific gravity determinations, standard deviation (s) should be to the thousandth place, 0.XXX.

For asphalt content determinations, standard deviation (s) should be to the hundredth place, 0.XX.

PAY ADJUSTMENT FACTORS

- QLA Pay Factors
- TSR Pay Adjustment Factor (403.23.5)
- Density Pay Adjustment Factor [403.23.7.4.1(b)]
- Longitudinal Joint Pay Adjustment Factor [EPG]

8

Smoothness Pay Adjustment Factor

		CORING SUI	MMARY	
Where	Who	Core Location Determination	Coring Frequency	Pay Facto Type
Traveled Way	QC	Random	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	Pactor
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pa Adjustmen Factor
Longitudinal Joint, confined		Considered p	part of the traveled way	
	QC	Random Number	1 sample/sublot	Longitudina Joint Density Pa Adjustmen Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	3333	RE discretion	Density Pa Adjustmen Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/sublot	Density Pa Adjustmen Factor

CORING SUMMARY

Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	х. Х
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined		Considered p	part of the traveled way	/
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	????	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/ <u>sublot</u>	Density Pay Adjustment Factor

CoringSummary.doc (3-2-16)

TSR PAY ADJUSTMENT		
TSR	% of Contract price	
≥90	103	
75-89	100	
70-74	98	
65-69	97	
<65	Remove	
C0>	Remove	
	10	

DENSITY PAY ADJUSTMENT FACTOR		
% of Contract price		
100		
90		
85		
80		
75		
Remove & replace		

DENSITY PAY	LONGITUDINAL JOINT DENSITY PAY ADJUSTMENT FACTOR (PAF)	
Field Density, % of Gmm	% of Contract Unit Price	
90.0-96.0	100	
89.5-89.9 or 96.1-96.5	90	
89.0-89.4 or 96.6-97.0	85	
88.5-88.9 or 97.1-97.5	80	
88.0-88.4 or 97.6-98.0	75	
Below 88.0 or above 98.0	Remove & replace	
	12	

NON-INTEGRAL SHOULDERS & SMALL QUANTITIES

- Use the Density Pay Adjustment Table
- Use of the factors for non-integral shoulders is at the Resident Engineer's discretion

13

14

CONFINED LONGITUDINAL JOINT DENSITY EVALUATION

 Density in confined joints is handled with the traveled way coring. Required density is same as for the traveled way (94.5 ± 2.5%).

SMOOTHNESS PAY ADJUSTMENT		
Τα	ble 1 (>45 mph)	
IRI (in/mile)	% Contract Price	
40.0 or less	105	
40.1-54.0	103	
54.1-80.0	100	
80,1 or greater	100 after correction to 80.0	
	Correction = diamond grinding	
Τα	ble 2 (≤45 mph)	
IRI (in/mile)	% Contract Price	
70.0 or less	103	
	100	
70.1-125.0	100 6	
70.1-125.0 125.1 or greater	100 after correction to 125.0	

GRADATION SAMPLES

- MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample.
- An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock.
- RAP gradation in the field can be determined with ignition oven

16

17

REMOVE & REPLACE

- All lots with a PF_T < 50.0
 Any sublot with < 90.0 or >98.0% density
- Any sublot with < 2.5% air voids</p>
- If TSR < 65%
- If unconfined joint density is < 88.0% or > 98.0%
- Actual limits of removal up to the specified amount is at the RE's discretion

REMOVE & REPLACE

- If QA results fall below removal limits (density and/or air voids) but QC's results do not, and there is favorable comparison, the mix stays
- If QA results fall below removal limits (density and/or air voids) and favorable comparison is not achieved, initiate dispute resolution

REMOVE & REPLACE

 Replacement mix will be sampled & tested to calculate PWL

SUMMARY

- 1. Pay Factors (PF's) are multipliers of the contract price to adjust for quality.
- 2. New QLA PF's are calculated for each lot (say, 3000 tons).
- 3. PF's are based on the mean and standard deviation of the test results from a lot.

20

19

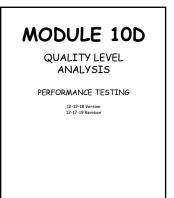
SUMMARY

- 4. The PF_T is the average of the PF's for V_a, VMA, P_b, density (traveled way).
- 5. Standard deviation is a measure of variability.
- 6. More variability, bigger standard deviation, wider and flatter curve, more chance of material being above or below the LSL or USL.

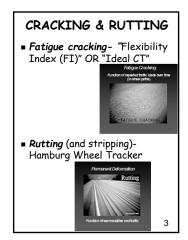
SUMMARY

- 7. PF's are based on PWL's-probability that a certain amount of material is within the LSL and USL.
- 8. PWL's are found in Q tables. Q's are calculated from the lot's mean and standard deviation.

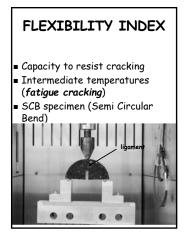
22

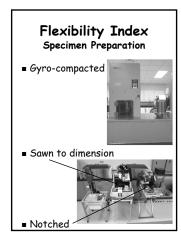

SUMMARY

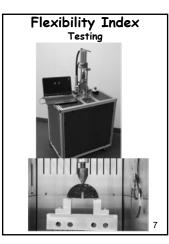
- 9. QA results must be within 2 standard deviations (or 1/2 of the specification tolerance, whichever is greater) of the QC results in order for QC results to be used to calculate PWL's.
- 10. Pay adjustment factor types include QLA, TSR, Density, and Smoothness.

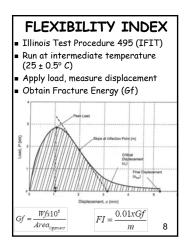

MODULE 10D QUALITY LEVEL ANALYSIS

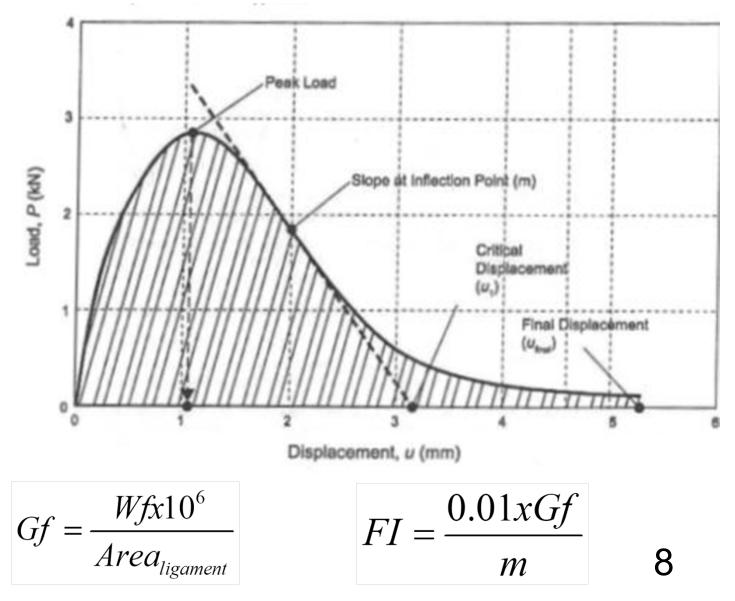
PERFORMANCE TESTING


12-12-18 Version 12-17-19 Revision

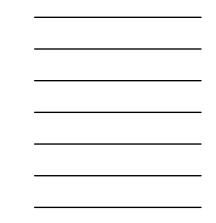




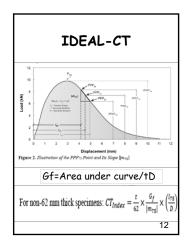




QC/QA 2018 Season

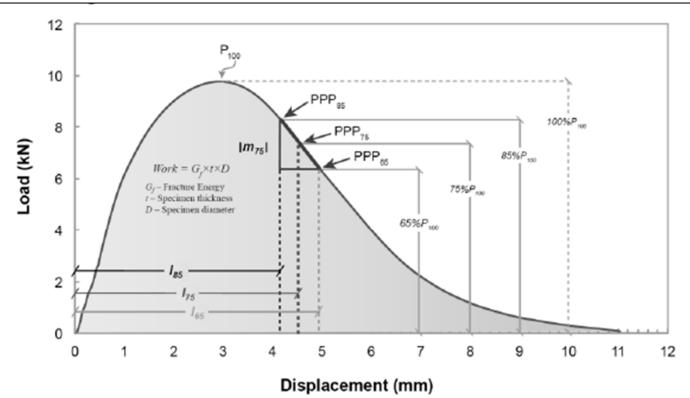
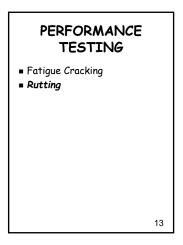
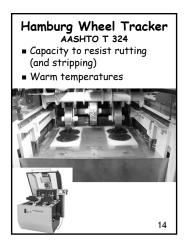

- QC: 1 per 10,000 tons
- QA: 1 per 10,000 tons
- 2% incentive if both tests are in
- 1% incentive if one test is in and the other is not deficient
- 0% incentive if either is deficient
- No disincentives
- Favorable comparison: QA and QC are within 30%

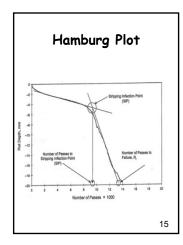
FLEXIBILITY INDEX


- Illinois Test Procedure 495 (IFIT)
- Run at intermediate temperature (25 ± 0.5° C)
- Apply load, measure displacement
- Obtain Fracture Energy (Gf)

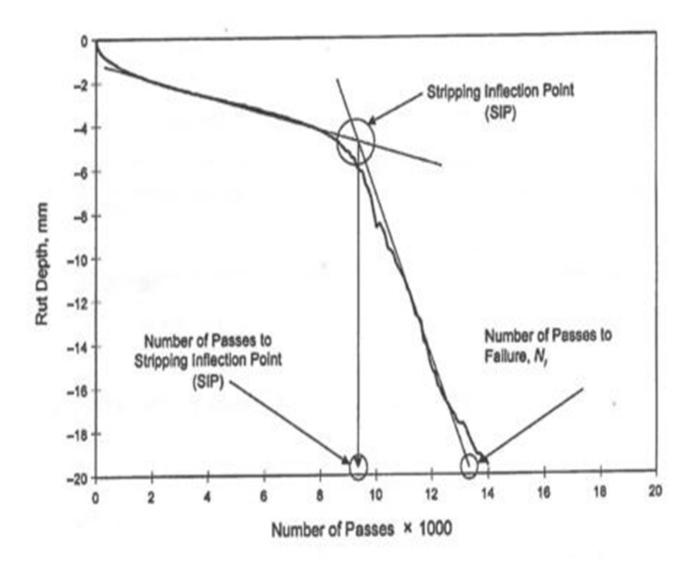
	Flexibility Index Job Special Provision 2018 Season			
401 BP Only	402	403 SMA	403 Non-SMA, NMAS <190 mm	% Pay
>5	>5	>20	>5	101
<2	٢2	×6	<2	Deficient
				10

IDEAL-CT

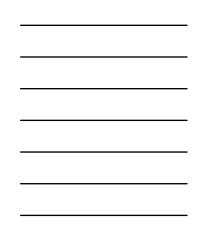





Figure 2. Illustration of the PPP₇₅ Point and Its Slope $|m_{75}|$

Gf=Area under curve/tD


For non-62 mm thick specimens:
$$CT_{Index} = \frac{t}{62} \times \frac{G_f}{|m_{75}|} \times \left(\frac{l_{75}}{D}\right)$$

Hamburg Plot



	Hamburg Wheel Tracker Job Special Provision 2018 Season			
401 BP Only (mm)	402 (mm)	403 SMA (mm)	403 Non-SMA, NMAS <190 (mm)	% Pay
<4	<4	<3	<3	101
>14	>16	>10	>10	Deficient
				17

QC/QA 2019 Season

- QC: 1 per 10,000 tons
- QA: 1 per 10,000 tons
- Up to 3% incentive for FI in range and Hamburg is <12.5 mm
- 2% disincentive for low FI
- No incentive for Hamburg
- Hamburg must meet spec
- 1% incentive for greater field density (94-97%)
- Favorable comparison: QA and QC are within 30%
 18

	20	19			
	Flexibility Index				
NMA5 < 190 I	nm	% of	Contract Price		
< 2.0			98		
2.0- 3.9			100		
4.0-7.9			102		
≥ 8.0			103		
	Ham	burg			
PG Grade, High Temperature, Contract Grade	Minimur Pas	n Wheel ses	Max. Rut Depth (mm)		
585-xx	50	00	12.5		
645-22	75	00	12,5		
64H-22	15,	000	12.5		
64V-22	20,	000	12.5		
			19		

Also in	this	20	19	JSP
<u>4.0 Design Cvrations</u> . The num accordance with Sec 403.4.5. At be lowered. Mintures having low minimum according to Sec 403.4 gyration level shall be in accorda	the option of the co vered gyrations shall .6.2 and a design ai	ntractor, the nu l have a minim r voids of betw	mber of gyn m VMA of	ations and air voids may 1.0% above the
	Design	Nataian		
	F	35		
	E	50		
	C	60	4	
	В	65		
<u>6.0 Elevated Density.</u> Subico has a result of 97% – 94% shall:				
				20

2020 SEASON
■ 10 projects ■ JSP

Also in this 2019 JSP

<u>4.0 Design Gyrations</u>. The number (N) of gyrations required for gyratory compaction shall be in accordance with Sec 403.4.5. At the option of the contractor, the number of gyrations and air voids may be lowered. Mixtures having lowered gyrations shall have a minimum VMA of 1.0% above the minimum according to Sec 403.4.6.2 and a design air voids of between 4.0% to 3.0%. The minimum gyration level shall be in accordance with the following:

Design	Natsian
F	35
E	50
С	60
В	65

6.0 Elevated Density. Sublots with a QC density test result which compares favorably with QA and has a result of 97% – 94% shall receive a 1% incentive based on bituminous mixture unit price.

- Up to 3% incentive for FI in range and Hamburg is <12.5 mm
- 2% disincentive for low FI
- No incentive for Hamburg
- Hamburg must meet spec
- 1% incentive for greater field density (94-97%)
- Favorable comparison: QA and QC are within 30% 22

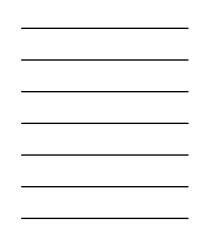
Incentive/Disincentive			
Flexibility Index OR Ideal CT Cracking Index			
FLEXIBILITY INDEX	Ideal CT	Percent of Contract Price	
NMAS <190	NMAS <190		
< 2.0	< 32	98%	
2.0 - 3.9	32 - 60	100%	
4.0 - 7.9	60 - 97	102%	
>8.0	> 97	103%	
		24	

2020 JSP

Superpave Performance Testing and Increased Density - JSP

1.0 Performance Testing. Quality Control (QC) testing for Flexibility Index and Hamburg Wheel Tracking will be required by the contractor at a frequency of 1/10,000 tons for the mainline pavement. The random testing location will be determined by the engineer. QC testing will be completed by the contractor at no cost to the commission. Incentive/disincentive payment will be calculated based upon the mixture cost for the tonnage represented by the sample, generally 10,000 tons. Incentive up to a maximum of 3% of the mixture item cost will be paid if the Flexibility Index results are within the incentive range and the Hamburg results are below 12.5mm. The engineer will also perform a set of tests at the 1/10,000 interval for Quality Assurance (QA). A favorable comparison will be achieved if the results for QA and QC are within 30%. In addition a 1% incentive is being offered for sublots with qualifying density results above 94%.

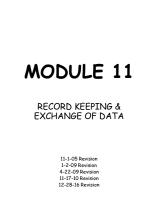
2.0 Flexibility Index (FI) Testing. The FI testing will be completed in accordance with Illinois Test Procedure 405 dated 01/01/16 available at <u>http://www.modot.org/business/contractor_resources/forms.htm</u> In lieu of the Flexibility Index, the Ideal CT may be substituted using the limits shown below. The Ideal CT shall be completed in accordance with ASTM D8225 when used.


FLEXIBILITY INDEX	Ideal CT	Percent of Contract Price	
NMAS <190	NMAS <190	Tercent of Contract Trice	
< 2.0	< 32	98%	
2.0 - 3.9	32 - 60	100%	
4.0 - 7.9	60 - 97	102%	
>8.0	> 97	103%	

<u>3.0 Hamburg Wheel Tracking</u>. Hamburg Wheel Track testing will be completed in accordance with AASHTO T324

PG Grade High Temperature *	Minimum Wheel Passes	Maximum Rut Depth (mm)
58S-xx	5,000	12.5
64S-22	7,500	12.5
64H-22	15,000	12.5
64V-22	20,000	12.5

*Determined by the binder grade specified in the contract.


Hamburg Rut Depth Requirements *Binder Contract Grade		
PG Grade	Minimum	Maximum
High	Wheel	Rut Depth
Temperature *	Passes	(mm)
585-xx	5,000	12.5
645-22	7,500	12.5
64H-22	15,000	12.5
64V-22	20,000	12.5

MODULE 11

RECORD KEEPING & EXCHANGE OF DATA

11-1-05 Revision 1-2-09 Revision 4-22-09 Revision 11-17-10 Revision 12-28-16 Revision

RECORD KEEPING Samples

- Contractor samples retained for the engineer:
 - clean covered containers
 - readily accessible
 - *ID'd: Job mix no., sampler, sample location, time & date sampled
- stored until test results accepted)
 QC gradation samples: retain the portion of the QC sample not tested after reducing the sample to testing size.

3

*All samples labeled

QC RECORD KEEPING

- *Record and maintain all test results
- *Up-to-date test results
- *Paper backup of results
 *Maintain printouts from
- gyro and binder content devices
- *Pay Factor records
- Maintain an inventory of major sampling, testing, & calibration equipment.

4

5

DOCUMENTS On Hand

■ *Job mix

- *QC plan
- *Current copies of all test method procedures

TEST EQUIPMENT & PLANT CALIBRATION/ VERIFICATION RECORDS

- Results of calibration
- Description of equipment calibrated
- Date of calibration
- Person calibrating
- Calibration procedure ID
- Next calibration due date
- ID of calibration device & trace ability of calibration

CAL	CALIBRATION		
Equipment	Req'ment	Interval (month)	
Gyro	Calibrate	12	
Gyro	Verify	Daily; when moved	
Gyro molds	Dimensions	12	
Thermometer	Calibrate	6	
Vacuum	Pressure	12	
Pycnometer	Calibrate	Daily	
Ignition oven	Verify	12 or when moved 7	

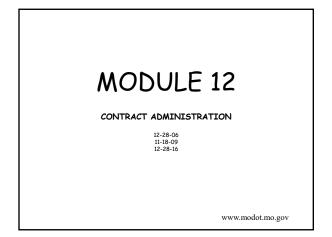
	ALTON	, Cont'd
Equipment	Req'ment	Interval (month)
Nuclear gage	Drift & stability	1
5hakers	Sieving thorough- ness	12
Sieves	Physical condition	6
Ovens	Verify settings	4
alances	Verify	12 or when moved
Timers	Accuracy	6

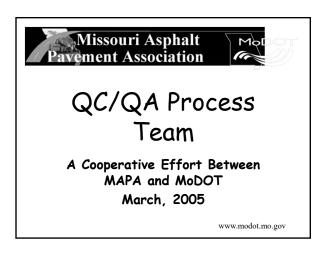
QC RECORDS

- Maintain 3 years from completion of project
- What:
 - test reports, including raw data

- calibrations
- technician training
- ∎ personnel

EXCHANGE OF DATA


- QC furnishes raw data (including gyro, and binder printouts) and test results to QA not later than the beginning of the next day following the test.
 QC data, control charts, etc., readily available to QA at all times
- times.
- QA raw data & results made available to QC no later than the next working day
 QA will make the QLA within 24 hours of receipt of the QC test results


Module 12

MODULE 12

CONTRACT ADMINISTRATION

12-28-06 11-18-09 12-28-16

Team Members

- Kyle Phillips
 Herzog Contractors
- Jennifer Breuer
 Superior-Bowen
- Bruce Loesch
- APAC-Missouri
 Steve Jackson
- Pace Construction
- Glen Graham
 Girardeau
- Contractors

- Gary Butterworth
 District 4
- Larry Brooks
 District 6
- Jim Preuss
- District 8Dennis Bryant
- Const. & Mat'ls.
 Jason Ewalt
- Const. & Mat'ls.
- Joe Schroer

∎ Const. & Mat'ls.

#1 Can I (MoDOT) direct a routine QC loose-mix sample to an area on the roadway that appears to have a mix problem?

4

#2 Am I (MoDOT) restricted to testing only the locations where the random samples fall?

5

#3 Can I direct my random QA test to an area on the roadway that looks like it may have a quality problem?

#5 Does it matter how I choose my random numbers?

8

#6 When should I give the random numbers to QC?

#7 The contractor is sampling mix directly out of the trucks and using the results to adjust the plant. Is that okay?

10

#8 Can't the "self tests" be used to tweak the plant in advance of the random test?

11

#9

The contractor doesn't want to give me the results of the "self-tests." Can I insist on getting them?

#10 Can "self-test" results be used to determine removal limits?

13

#11 There are test specimens in the field laboratory that I can't identify. I can't be there all the time to witness all the testing. How do I know that the correct samples are used to determine payment?

14

#12

My QA sample does not compare favorably with QC. QC says my testing is in error. Now what do I do?

#13

We have checked everything and it turns out that QA and QC test results are both valid. The results are still unfavorable. What does the contractor get paid?

16

#14(a) The plant is running smoothly, I have confidence in QC's testing and our comparisons are favorable. Do I need to continue running so many QA tests?

17

#14(b) What about the frequency of dry-back...Can we cut back if the results are consistent? #15 What constitutes a favorable comparison when running a QC split?

19

#16 I observe extra density core holes in the mat that I can't account for. Should I be concerned?

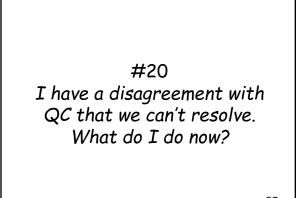
20

#17

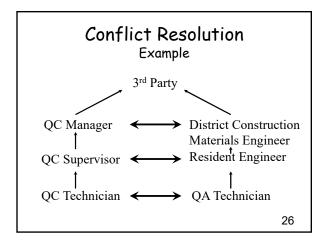
Can I take the joint density cores at the same longitudinal location as the random mat density samples or should I use a separate random number?

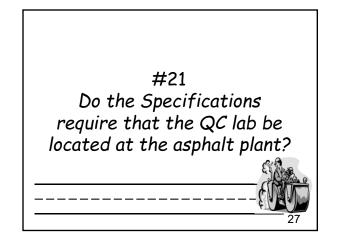
#18

Due to stage construction, less than 4 sublots in a particular lot have an unconfined joint. Should the deduction for low unconfined joint density apply to the entire lot?

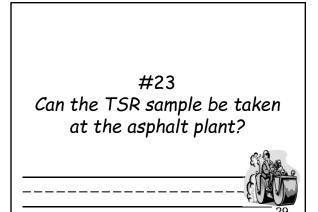

22

#19 What is this QC/QA project checklist that I'm hearing about?


23


Checklist Items

- Review QC Plan
- Random No. Method
- Sample
 Identification
- Location of QC Lab
 Disc Durch ask2
- Rice Dryback?
- Dispute Resolution
- Paperwork Sharing
- Pay Factor
- Spreadsheet Version
- Test Method Options
- Job Mix Approval
- Specifications to Review
- Anything Else Important to the Project

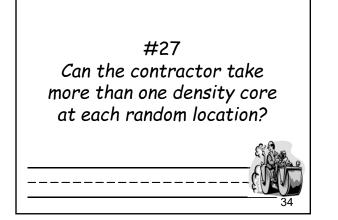


#22 My random QA test results indicate that the sublot that it fell within should be removed. The random QC results are above the removal limit. The comparison for the entire lot is favorable. What should I do?

#24

It seems to take an awfully long time getting results from my counterpart. Within what timeframe should I expect results?

#25(a) In a small quantity situation, is it necessary to remove and replace mixture that is out of the specification limits by only a small amount?



#25(b) The small quantity deduction is more punitive that if PWL were calculated. Is it an option to use PWL to calculate the deduction on a small quantity project?

#26

The contractor is using something called a notchedwedge to construct the longitudinal joint. Where is the unconfined joint density measured?

QC/QA Project Checklist

Review QC Plan:

• Method of generating, securing and providing random numbers for loose mix, density cores and tsr.

- Describe method of identifying samples.
- Where will QC lab be located?
- Is dryback necessary?

• **Dispute resolution chart** (be specific. Identify specific individuals by name and time limits for a resolution before escalating to the next level)

- How will paperwork be shared?
- What QLA version of the spreadsheet will be used?
- How will QC results be given to QA and QA to QC?

• What test methods will be used that are different from what is taught at UMR Level 2 training?

- Have Job Mixes been approved and/or transferred?
- Specifications to review:

403.5.2.1 Shoulder Density
403.5.2.3 Longitudinal Joint Density
403.13.2 Segregation
403.15 Compaction – rollers and temperature limits
403.15.2 Defective Mixture
403.15.4 Density Measurement – lift thickness and testing
403.17.3.1 Calibration schedule

- Miscellaneous
 - Discuss sample retention for both QC and QA
 - Field adjustments to Job Mix Formulas
 - Opportunity to witness each other's loose mix samples
 - Handling of density samples marking and chain-of-custody

SECTION 403 FAQ (Revised 5-29-18) INTRODUCTION

This document was developed, and will be maintained, to clarify the intent of the specifications, reduce conflict in the QC/QA environment and improve uniformity of contract administration across the state.

This is not a contract document and cannot be enforced as such. The Resident Engineer always has the latitude to react in an appropriate way to job specific circumstances, but decisions should be consistent with the underlying intent of guiding specifications and policies.

For this discussion, QC refers to the contractor's representative performing Quality Control testing. QA refers to MoDOT's representative performing Quality Assurance testing.

QUESTIONS AND ANSWERS

#1

Can I direct a routine QC loose-mix sample to an area on the roadway that appears to have a mix problem?

It is critical that routine tests, as defined in the contractor's QC plan, be at random locations. It is critical because any manipulation of the random numbers introduces bias. Keep in mind that the QC test results are used to statistically define a population of data. Bias causes inaccuracy in that statistical calculation.

#2

Am I restricted to testing only the locations where the random samples fall?

No. QA can take a sample anywhere, at any time if there is concern about a problem area, but this should be treated as an "extra" sample. These "extra" samples are used to determine if problem areas are acceptable, or to help define limits of a problem.

#3

Can I direct my random QA test to an area on the roadway that looks like it may have a quality problem?

No. The QA random test that will be used for comparison to QC should be taken at a random location unless adjusted for a specific reason. For example, a test should not be taken in the middle of a busy intersection because that would be contrary to public interest. Also, Sec 403.23.7.1.5 allows samples to be separated by a minimum of 200

tons. Remember, bias causes problems with our statistics and is not in the interest of either MoDOT or the contractor.

#4

Didn't you tell me earlier that QA could test anywhere any time?

Yes. The test frequencies listed in the specifications are minimums. QA always has the option to take additional tests. The random QA sample is used for comparison to QC and determines whether QC tests adequately define the characteristics of the entire lot. The "extra" QA test is used only to determine if an isolated area has a problem, or to help define the limits of a problem.

#5 Does it matter how I choose my random numbers?

Generate random numbers by using the Asphalt Random Locations spreadsheet, because that eliminates any question of bias.

QA can locate the sheet on the internal site at the following link: <u>http://eprojects/Templates/Forms/AllItems.aspx</u> Sheet Name: Asphalt_Random_Locations

A random number chart is okay, but be sure to choose random number pairs either row by row, or column by column. In other words, don't jump around on the chart, because that can introduce unintentional bias. Random number generators on a calculator are satisfactory as long as the selections aren't intentionally biased.

When using any method other than the spreadsheet to generate random numbers for roadway density cores, the pairs should be recorded once at the beginning of the lot and provided to QC at the completion of the lot. This will assure transparency of the random number selection process. Drawing a number from a hat can be used if no other options are available.

#6 When should I give the random numbers to QC?

This issue has caused a great deal of conflict statewide. To restore confidence in the process, the following procedures will be used:

Random numbers will be generated in advance, by lot, and a printout of those numbers will be sealed in an envelope. At least one lot should be prepared in advance and kept in a secure location. The QA inspector will also keep a copy in his possession. A best practice is to generate all of the random numbers prior to the start of the project. Both QA and QC parties sign and date the seal and then QA delivers the envelopes at the end of each lot. Random numbers will be given to QC between 100 and 150 tons in advance of the test. The intent is to give QC enough time to get any ongoing tests to a stopping point and to get out to the

roadway in time. This should not give the plant operator enough time to adjust production and work any resulting change through the silo. When the sampling for a lot is completed, the envelope for that lot will be opened to demonstrate that the random numbers were not manipulated during production.

Random numbers for density cores should also be generated in advance. They can be provided to QC when rolling is complete.

QC and QA need to work together in good faith to make this process run smoothly. Occasionally random tests will fall close together. If QC is at a critical point in a test when the next random number comes up, QA should make an adjustment QA should be aware that this policy creates some real challenges for QC and use appropriate judgment. Loose mix samples should not be collected from the roadway in handwork areas. Random cores should not be taken in areas where handwork is required due to adjacent obstructions, they should instead be moved 10 feet ahead of the affected area. Extra QA cores may be taken to monitor these areas, but should not be part of the PWL. As a professional courtesy, QA should give QC a reasonable opportunity to witness random QA roadway sampling.

#7

The contractor is sampling mix directly out of the trucks and using the results to adjust the plant. Is that okay?

Yes, but the samples should be marked as such if they are tested in the field laboratory. The contractor has the option of doing extra testing. These "self-tests" or "truck tests" are used to see how the mix is doing between random tests. Only the random QC tests are used to calculate pay.

#8 Can't the "self tests" be used to tweak the plant in advance of the random test?

Not if the random test locations are given 100 to 150 tons in advance as outlined earlier. There would be no way to complete a test and adjust the plant in time.

#9

The contractor doesn't want to give me the results of the "self-tests." Can I insist on getting them?

There is no reason to demand "self-test" results. If the random testing is being done correctly, the results will accurately define general production characteristics. If there is reason to be concerned about an isolated area, take an extra QA test.

#10

Can "self-test" results be used to determine removal limits?

EPG 403 reads as follows: "QC self-test results may be used to help define the limits of removal as long as the self-test(s) are well documented".

A self-test will be considered well documented if the following minimum criteria are met:

- 1. The puck is available and is clearly labeled
- 2. The gyratory printout is made available
- 3. The printout from the AC test is made available

The resident engineer has the option to determine removal limits based on puck height, provided that the self-test data is consistent with previous production.

#11

There are test specimens in the field laboratory that I can't identify. I can't be there all the time to witness all the testing. How do I know that the correct samples are used to determine payment?

There is no legitimate reason for unidentified samples to be in the field laboratory. The QA inspector should insist that all test specimens in the field laboratory be marked as soon as they are cool enough. The identifying mark should be permanent, unique, and indicate what the sample is.

#12

My QA sample does not compare favorably with QC. QC says my testing is in error. Now what do I do?

QA and QC should be given the opportunity to witness each other's sampling and testing. Doing so will head off a lot of conflict.

Copies of all test methods should be readily available in the field laboratory. Testing procedure must follow an approved test method. If either party has an issue with the other's test procedure, an objection should be raised at that time. By doing this promptly, the issue can be resolved while it is still possible to re-create the test. If a decision is made to test a retained sample, the test should be run jointly so that testing procedure is taken off the table as a variable.

EPG 403 reads as follows: "If the comparison is not favorable, the first step is to review both QC and QA test results to see if there is any noticeable error. If no errors are found, testing of the retained samples may be performed. Judgment must be used in determining which retained sample(s) to test. When testing a retained sample, the entire suite of tests (%AC, V_a , and VMA) should be performed to verify the validity of the original test results. If the test results of the retained sample confirm the original test results, the original test results are used to determine the PWL. If the test results of the retained sample verify that the original test results were incorrect, the test results of the retained sample are used to determine the PWL."

#13

We have checked everything and it turns out that QA and QC test results are both valid. The results are still unfavorable. What does the contractor get paid?

EPG 403 reads as follows: "If the QC and QA test results have been determined to be valid and the comparison is still unfavorable, the test results from the random, independent QA sample will be included in the PWL calculation. The QA test results of QC retained samples or the test results from any additional QA samples will not be used in the PWL calculation. As an example, lot 3 has been completed and consists of 4 sublots. A favorable comparison was not obtained but it was determined that the QC and QA test results are valid. Therefore, the PWL calculation will include the QC test results from all 4 of the sublots and the test results of the random, independent QA sample (n =5)."

When the random QA test results are included in the PWL calculation, all volumetric properties (%AC, VMA & V_A) for that sample will be used, even if only one of the three properties has an unfavorable comparison.

#14

The plant is running smoothly, I have confidence in QC's testing and our comparisons are favorable. Do I need to continue running so many QA tests?

The minimum testing frequencies are shown in section 403.19.3 of the specification.

The following table illustrates the differences. The frequency of testing of QC splits can be reduced when QC and QA become confident with each other's sampling and testing procedures, frequencies for evaluating the retained sample are outlined in section 403.18.1.

	Minimum by Spec	Early in project	Later in project
Random QA	1/4 sublots	1/4 sublots	1/4 sublots
QC Split	1/week	1/day	On days when there
			is no random QA

What about the frequency of dry-back. Can we cut back if the results are consistent?

Section 403.19.3.1.2 explains the dry-back requirement "The dry-back may be reduced to once per 4 sublots if the difference of the Gmm and Dry-back Gmm of the first 4 samples are within 0.002 of each other."

What constitutes a favorable comparison when running a QC split?

Gmm should be within 0.005, Gmb should be within 0.010, and AC within 0.1%. If variances are larger both QA and QC should scrutinize sampling and testing procedures to identify the cause of the difference.

Isn't that a pretty tight comparison range for G_{mb} ?

Yes, but for two technicians in the same lab it is attainable. If there are comparison problems, the retests should be run together to ascertain the cause of the discrepancy.

The 7-day requirement in Sec 403.17.2.3 notwithstanding, retained samples should not be discarded until all comparison issues with the lot are resolved. If space at the field lab is an issue, the sample should be stored at the project office.

#16

I observe extra density core holes in the mat that I can't account for. Should I be concerned?

The roadway inspector should assure that the density cores taken from the roadway are the same ones tested in the lab. The preferred procedure is for a MoDOT inspector to take possession of the cores as soon as they are cut, and deliver them directly to QA at the plant. This needs to be done promptly so that testing of the density cores can proceed without delay. When specific job circumstances make this procedure impractical, the roadway inspector may dry the core with a paper towel and mark the side using a permanent felt-tipped marker, then place and seal the core or cores in a tamper proof bag. The identifying mark should be unique and readily identifiable when the sample arrives at the plant. A signature, along with lot and sublot, is one example of an identifying mark. When marked in this fashion, it is acceptable for the contractor to deliver the QC cores to the lab.

The roadway inspector will select one QC core roadway location per lot to cut a QA core. The QA core should be taken at the same offset as the QC core and within 6 inches longitudinally. The roadway inspector will take possession of the QA core and deliver it directly to the lab. When calculating the G_{mb} for the QA core, the G_{mm} will be the same as that used for the corresponding QC Core. The comparison will be favorable when the G_{mb} of the QA core and the QC core at that same location (or the average of the QC cores if specified in the QC plan) is within 0.010.

If the comparison is not immediately favorable, QC and QA will rerun both cores in each other's presence to check for testing errors. If the comparison is still outside the acceptable limit, the resident engineer will determine if either core is non-representative due to damage, roadway surface irregularities etc. If both cores are representative, an average of QC and QA will be used for that sublot.

Can I take the joint density cores at the same longitudinal location as the random mat density samples or should I use a separate random number?

Either way is acceptable. If QC prefers to take the joint cores at a separate random number it should be indicated in the QC plan.

#18

Due to stage construction, less than 4 sublots in a particular lot have an unconfined joint. Should the deduction for low unconfined joint density apply to the entire lot?

No. The deduction should only apply to those sublots which have an unconfined joint density sample, the spread sheet will assist with this determination.

#19 What is this QC/QA project checklist that I'm hearing about?

A checklist was developed for QC and QA to run through before work begins. It is intended to reduce conflict by working out the day to day details of how to conduct business in advance of the production pressures. A Industry/MoDOT task force developed a checklist but any other that accomplishes the same thing is acceptable.

One of the key elements is to clearly define a conflict escalation procedure. Far too many conflicts lay unresolved for too long. Conflicts that QC and QA cannot resolve between themselves should be promptly escalated.

#20

I have a disagreement with QC that we can't resolve. What do I do now?

The vast majority of issues between QC and QA can be resolved by consulting the QC Plan, the Test Method or the contract documents. If a dispute cannot be resolved within a few hours of taking these initial steps, it should be escalated.

Time frames and escalation levels (including the names of the individuals) should be discussed when going through the checklist. Unresolved issues lead to an atmosphere of mistrust in the QC/QA environment.

Decisions should always be timely and made at the lowest **appropriate** level.

#21 Do the Specifications require that the QC lab be located at the asphalt plant?

No. The contractor is required to provide an appropriately equipped QC laboratory. The contractor is also required to provide office space at the asphalt plant for the QA inspector to work on records and reports. Usually these 2 requirements are met with one structure, but not always. The intent of the specification will be met if the QA inspector

is provided with suitable facilities at the plant, but the lab is located offsite at a location appropriate to the work under progress. For example, the contractor may elect to place the laboratory at a location between the jobsite and the plant.

#22

My random QA test results indicate that the sublot that it fell within should be removed. The random QC results are above the removal limit. The comparison for the entire lot is favorable. What should I do?

EPG 403 under Removal of Material reads as follows: "If the QA test results fall below the removal limits for density and/or air voids, the mix should stay in place if a favorable comparison has been obtained with the QC test results. Again, a favorable comparison signifies that the QC test results adequately define the characteristics of the lot and are, therefore, acceptable. If the QA test results fall below the removal limits and a favorable comparison has not been obtained, dispute resolution should be initiated to determine whether or not the mix should stay in place."

#23 Can the TSR sample be taken at the asphalt plant?

Yes, the test method allows that. Since it is easier to take a larger sample at the plant, the QA sample should be at least 250 pounds. 125 pounds should be sent to the Central Laboratory for testing and the other half kept by the RE as a retained sample. The inspector should write the Mix Number and sample ID on the box. TSR samples need to be taken at random locations but can be taken when it is convenient to production.

#24

It seems to take an awfully long time getting results from my counterpart. Within what time-frame should I expect results?

Sec 403.17.1.1 of the Standard Specifications requires QC to provide all **raw** data to the engineer no later than the beginning of the day following the test. Raw data, of course, is subject to revision.

Sec 403.23.7.1 requires QA to make the QLA no more than 24 hours after receipt of the contractor's test results. Best management practice is for QA to review the QLA with QC before processing the report.

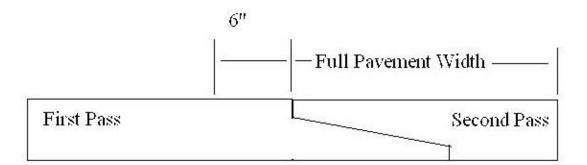
These should be adhered to unless there is a compelling reason to do otherwise. If problems are persistent they should be escalated quickly for resolution. In general, it is a good practice to provide PWL calculations to the contractor for work that is paid for on each estimate.

#25

In a small quantity situation is it necessary to remove and replace mixture that is out of the specification limits by only a small amount?

In Section 403 of the EPG under Removal of the Material the following guidance exists;

"The resident engineer should use engineering judgment when mixture placed under this section fails to meet specifications. If the laboratory compacted air voids are less than 2.5%, or the roadway density is less than 90.0% or more than 98%, the material should be removed and replaced. If asphalt content is above or below the target value by more than 0.3%, or if the roadway density is between 91.5% and 90%, the mixture may be allowed to remain in place with an appropriate deduction. Mixture that is out of specification by a minor amount may be left in place with no deduction"


The small quantity deduction is more punitive than if PWL were calculated. Is it an option to use PWL to calculate the deduction on a small quantity project?

Yes, if the contractor has it spelled out in the quality control plan.

26

The contractor is using something called a notched-wedge to construct the longitudinal joint. Where is the unconfined joint density measured?

The notch wedge generally looks like the sketch below:



Unconfined joint density should be measured on the first pass in the 6 inches adjacent to the vertical notch (if the contractor is taking 6 inch density cores the location should be adjusted as necessary to avoid the vertical face of the notch.) On the second pass, the entire width of the lane is fair game for random density testing, including the entire wedge section.

#27

Can the contractor take more than one density core at each random location?

Yes. Specifications allows up to 3 cores at each random location, but only if the routine is spelled out in the QC plan. This is indicated in section 403.19.3 of the specification. In the drawing below, the X represents the station and offset of the random location. Best management practice is for QA to mark that location on the pavement. The first density core should have that marking on it. Any additional cores should be taken along a straight line, parallel to the centerline, within 1 foot either side of the random location.

Appendix

APPENDIX

GLOSSARY

11-1-05 Revision

GLOSSARY

Maximum Size	One sieve size larger than the Nominal Maximum Size
Nominal Max Size	One sieve size larger than the first sieve retaining equal to or more than 10% of the combined gradation
G _{mm}	D, Maximum Specific Gravity of mix as determined by the Rice Method, AASHTO T 209
G _{mb}	d, Bulk Specific Gravity: specific gravity including permeable and impermeable voids of aggregates or compacted mix.
G _{mc}	Bulk Specific Gravity of core.
G _{sb}	Stone (Aggregate) Bulk Specific Gravity: weighted sum of bulk specific gravities of combined aggregates.
G _{sa}	Stone Apparent Specific Gravity: weighted sum of apparent specific gravities of combined aggregates. This excludes the water permeable voids.
G _{se}	Stone Effective Specific Gravity: specific gravity including asphalt permeable voids.
N _{des}	Gyrations simulating design life of mix to yield 4% air voids.
N _{ini}	Compaction \geq 89% indicates a tender mix that may rut prematurely.
N _{max}	Gyrations simulating maximum life of pavement. At < 2% air voids the mix becomes plastic.
Pb	Percent binder in total mix.
Ps	Percent stone in total mix.
TSR	Tensile Strength Ratio: Result of AASHTO T 283 indicating the indirect tensile strength of wet cured specimens compared to dry cured specimens.
Va	Percent air voids in compacted mix.
V_{ba}	Volume of absorbed binder.
V _{be}	Effective volume of binder not absorbed into the stone.
VMA	Voids in Mineral Aggregate: percent of voids in the aggregate structure.
VFA	Voids Filled with Asphalt: percent VMA filled with asphalt cement.