

SUPERPAVE

-			

May 2022 Superpave QC/QA

-		
•		

SUPERPAVE

TABLE OF CONTENTS

Introduction

Module 1 Mix Design Overview

Module 2 QC/QA Overview

Module 3 Plant Operations Overview

Module 4 Aggregate Testing Overview

Module 5 Asphalt Sampling

Module 6 Sample Reduction AASHTO R47 & Aging AASHTO R30

Module 7 AASHOT T312 Gyratory Compactor Operations

Module 8 AASHTO T209 Maximum Specific Gravity

Module 9 AASHTO T308 Asphalt Content Testing by Ignition Oven

Module 10 Job Mix Formula (JMF)

Module 11 Pay Factors

Module 12 Quality Level Analysis (QLA)

Module 13 Performance Testing

Module 14 Contract Administration

Appendix Appendix

Glossary Glossary

-		
-		

SUPERPAVE

2022 – Updates

- 2022 Entire Manual has been updated.
 - O Several updates for TSR testing Jeff will go over this.
 - o Updated MoDOT Spreadsheets to current.

-			
-			

TAB Module 1

Module 1

Mix Design Overview

AASHTO Test Methods

- R35 Volumetric Design Practice
- M323 Volumetric Mix Design Specifications
- R30 Mix Conditioning
- T 312 Gyratory Compactor Operation (Gyro)
- T 166 Bulk Specific Gravity of Compacted Specimens (Pucks)
- T 209 Maximum Specific Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity

2

MoDOT Specifications & Guides

- Missouri Standard Specifications
 - Sections: 403, 401, 610, 1002, 1004 etc.
- Engineering Policy Guide
 - Sections same as above.

Other sections are referenced when applicable.

3

PG Binder System

PG = Performance Grade, Example: PG 64-22H

- Tests are directly related to field performance.
- Criteria remain constant but tests are run at temperatures that reflect the design climate.
- Tests are conducted at high, intermediate, and low temperatures.
- Both short-term and long-term aging is employed.
- Tests are suitable for modified binders.

4

Typical Bituminous Mixture COMPONENT % by wt. Aggregate (Coarse & fine) 90 Dust (Dust-of-fracture + mineral filler) 5 Binder (Asphalt cement or tar) 5

5

lot Mix Asphalt Concrete (HMA) Mix Design Methods

- Objective:
 - Develop an economical blend of aggregates and asphalt that meet design requirements.
- Mix design methods (Compaction)
 - Superpave gyratory
 - Marshall hammer
 - Hveem

Requirements in Common

- Sufficient asphalt to ensure a durable pavement.
- Sufficient stability under traffic loads.
- Sufficient air voids.
 - Upper limit to prevent consolidation rutting and excessive environmental damage.
 - Lower limit to prevent plastic distortion while allowing room for initial densification due to
- Sufficient workability.

Flexible Pavements MoDOT Standard Specs.

Asphalt Mixture	EPG Section
Plant Mix	401
(Bit Base, BP-1, BP-2, BP-3)	
Surface Leveling	402
Asphalt Concrete (Superpave)	403

EPG = Engineering Policy Guide

Engineering Policy Guide (modot.org)

8

Superpave Mixes in Missouri

- SP048 = #4 NMS surface course
- **SP095** = 3/8" NMS surface course
- **SP125** = $\frac{1}{2}$ " NMS surface course
- SP190 = 3/4" NMS binder course
- SP250 = 1" NMS base course

Traffic levels: B, C, E, F

- **Extensions:**

 - **SM** = stone mastic **SM**(R)= stone mastic (rural)
- NC = non-carbonate
- LP = limestone-porphyry
- **LG** = low gyration

Material Standard Specs. ITEM SECTION 1002 Aggregate (403) Aggregate (401) 1004 1015 PG Binder Mineral Filler 1002 1002 Hydrated Lime 1071 Fiber 1071 Anti-Strip Filler (RAP) 403 403 RAP 403 RAS 10

10

Construction of SMA • What is SMA? • Mixture with a gap-graded aggregate skeleton that is filled with mastic. • Mastic comprised of fine aggregate, mineral filler, fibers and asphalt binder. • Minimum asphalt content of 6.0%. Stone Mastic Asphalt Mix

11

MoDOT Determines Desired Mix Based on Design Traffic Data. 1. Determine traffic data for the project site. 2. Convert the traffic levels for the mix of vehicle types to ESAL's. 3. Estimate growth over the design life. 4. Calculate the total design ESAL's: Example: 12,000,000 ESAL's

Skid Resistance For "B" surface mixes and all SP095 and SP048NC containing limestone. Must contain some (see table) hard noncarbonate materials (traprock, most gravels, steel slag, flint chat, with AIR ≥ 85%), (Acid Insoluble Residue) Limestone must have AIR ≥ 30% (see TM76).

Coarse Aggregate (+#4)	Minimum Non-carbonate By Volume		
Limestone, LA≤30	30% Plus #4		
Limestone, LA>30	20% Minus #4*		
Dolomite	No requirement		
	1/1		

14

Trial Mix Design Coarse Aggregate: Fine Aggregate: Gradation · Specific gravity & absorption Deleterious · Lightweight pieces materials LA abrasion

 Coarse aggregate angularity Flat & elongated

PI (as required)

•	Gradation
•	Specific gravity
•	Clay lumps & shale

 Sand equivalent Fine aggregate

angularity PI (as required)

FIGURE C-1 FHWA 13 VEHICLE CATEGORY CLASSIFICATION

	1		
Class I Motorcycles	ॐ	Class 7 Four or more axle, single unit	
Class 2 Passenger cars	66		
		Class 8 Four or less axle,	
-		single trailer	
Class 3 Four tire,			
single unit		Class 9 5-Axle tractor	
		semitrailer	
Class 4 Buses		Class 10 Six or more axle,	
		single trailer	
		Class I I Five or less axle, multi trailer	
Class 5 Two axle, six	To	Class 12 Six axle, multi-	
tire, single unit	000	trailer	
		Class 13 Seven or more axle, multi-trailer	
Class 6 Three axle, single unit			00 000 00

Selection of PG Binder Grade Based on: Climate Depth in pavement Volume of traffic Vehicle speed Desired level of reliability RAS (shingle) content RAP content

17

RAP/RAS Binders RAP - Has aged- stiffer than virgin binder RAS - Roofing binder is much stiffer Combined - Virgin & recycled binder → stiffer May be too hard unless combined with softer Oil.

What's My Grade?

Different Example

- "Contract Grade" = the PG grade in the contract, e.g., PG 70-22
- "Purchased Grade" = what contractor buys from supplier (terminal), e.g., PG 58-28 (if RAP/RAS will be used)
- "In-line Grade" = Purchased grade + additive (warm mix, anti-strip, etc.) e.g., PG 58-28
- "In-line Grade" = Purchased grade + modifier (rejuvenator) e.g., PG 52-28

20

20

Volumetrics

- "Volumetrics" involves the space (volume) between the aggregate particles.
- During mix design, several gradations are tried, and volumetrics are calculated until proper VMA, VFA, and Va (air voids) are obtained.
- Space is dependent on aggregate gradation, particle shape, aggregate toughness, and aggregate absorption.

21

Example JMF Showing Substitution of purchased grade M 332 (PG 64-22V) for contract grade M 320 (PG 76-22)

- SMA: No RAP/RAS allowed
- No additives, so in-line grade
 PG 64-22V

Aggregate Structure Selection

Aggregate structure=gradation

- The design gradation will be a blend of up to 8 different aggregate fractions plus mineral filler such as hydrated lime.
- Vary the percentages of each fraction to make the total gradation *blend*.
- The blend must meet the aggregate consensus test criteria.

23

23

Aggregate Structure

(Gradation)

- Gradation is usually plotted on 0.45 power graph paper.
- The maximum density line represents the densest possible gradation for a given maximum aggregate size - is just a reference line.

24

To Increase VMA

"Change Gradation"

- Gap-grade, (Increase a coarse sieve, decrease next 2 smaller sieves)
- Replace some of the most coarse-graded fraction with a higher % (or introduction of) a finer coarse aggregate.
- Move gradation away from the MDL (maximum density line).

31

31

To Increase VMA:

Lower Minus #200

Reduce the % of the material that is the source of fines.

- -Replace some dusty screenings with a clean mfg. sand.
- -Replace some dusty screenings with a natural sand.
- -Replace some graded aggregate with a clean coarse fraction.
- (e.g., replace some 1/2" minus material with a clean 3/4" chip).
- -Replace some screenings with a less dusty graded fraction
- -Replace some of the source material that is breaking down with a harder aggregate.
- -Wash the source material that is the source of fines.

rial that is the soorce of fin

32

Aggregate Specific Gravity

- For each aggregate, there are three types of specific gravity:
 - Bulk specific gravity (G_{sb})
 - Apparent specific gravity (G_{sa})
 - Effective specific gravity (G_{se})

NOTES:

G = Gravity s = Aggregate

b = Bulk

a = Apparent

e = Effective

33

Testing for Spec. Gravity

- Gsb and Gsa from water displacement tests (T84, T85)
- Gse back-calculated from Gmm test on HMA mixture (Rice)

$$G_{se} = \frac{100 - P_b}{\frac{100}{G_{mm}} - \frac{P_b}{G_b}}$$

35

SUMMARY OF VOLUMETRIC EQUATIONS

	ODIVIDATE OF A OFFICE LIFTOF COVIDED
Mix Design	Bulk Specific Gravity of Aggregate Blend
	$G_{sb} = G_{sb} \text{ (combined)} = \frac{100}{\frac{P_{s1}}{G_{sb1}} + \frac{P_{s2}}{G_{sb2}} + \frac{P_{s3}}{G_{sb3}} + \dots}}$
Mix Design	Effective Specific Gravity of Aggregate Blend
	$G_{se} = \frac{100 - P_b}{\frac{100}{G_{mm}} - \frac{P_b}{G_b}}$
Mix Design	Absorbed Asphalt Content
	$P_{\text{ba}} = 100 \times \left(\frac{G_{\text{se}} - G_{\text{sb}}}{G_{\text{sb}} \times G_{\text{se}}}\right) \times G_{\text{b}}$
Mix Design	Effective Asphalt Content
	$P_{be} = P_b - \left(\frac{P_{ba} \times P_s}{100}\right)$
Mix Design	Ratio of Dust to Effective Asphalt (Sometimes called Dust Proportion)
	$\frac{P_{0.075}}{P_{be}} = \frac{\% minus #200}{P_{be}}$
Mix Design	Air Void Content
and Field Verification	$V_a = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$
Mix Design and Field	Voids in Mineral Aggregate
Verification	$VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$
Mix Design	Voids Filled with Asphalt
and Field Verification	$VFA = \frac{VMA - V_a}{VMA} \times 100$

$$V_a = \left(\frac{G_{mm} - G_{mb}}{G_{mm}}\right) \times 100$$
• V_a = % Air Voids
• G_{mm} = maximum specific gravity of the Voidless mix (Rice sp gravity).
• G_{mb} = sp. gravity of the compacted mix.

9 Steps to find Aggregate Structure and Optimum Target AC%

- Choose 3 or more trial aggregate gradations based on experience.
- **2.** Estimate the required "initial" binder content based on experience or standard procedure.
- **3.** Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.
- **4.** Compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
- During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.

40

40

- 5. Measure compacted puck specific gravity.
- 6. Run Rice for maximum specific gravity (Gmm).
- **7.** Calculate volumetrics (VMA, VFA, air voids) for each trial blend.
- **8.** At N_{des} adjust (calculate) % binder to achieve V_a =4.0%. Calculate what VMA, VFA, and dust/effective asphalt would be.
- **9.** compared to criteria. Choose blend that best meets criteria, economy, and chance of success.

41

41

Selection of Design Asphalt Binder Content

Binder Content Selection Steps

 Using the winning blend, compact more specimens in duplicate to N_{des}, this time varying binder content.

Example: Use 3 different %'s of binder: -0.5, +0.5, and right on the initial %.

- Again calculate volumetrics. Plot % binder vs. % air voids. Choose the design % binder that produces 4% air voids.
- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
- 5. Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- Compact more pucks at the design binder content to N_{max}; check criteria.

43

44

	Factor	Criteria	Reason
Compare to	Air voids,	4.0%	Stability
Compare to criteria.	N _{des}		Durability
Choose the	VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
blend that	VFA	70-80 %	Stability
best meets		65-78%	Durability
criteria,		65-75%	
economy,	%G _{mm} @	≤ 91.5%	Tenderness
and chance	N _{ini}	≤ 90.5%	
of success.		≤ 89.0%	
	%G _{mm} @	≤ 98.0%	Stability
	N _{max}		
	Dust/binder	0.8-1.6	Compaction
		0.9-2.0	Handling 48

That's the hard part! Now performance testing, design phase TSR Moisture sensitivity, susceptibility, stripping Drain down (SMA, UBAWS) Stability during the setting process Hamburg/IDT Rutting Ideal CT/Ifit Cracking

TAB Module 2

Module 2

QC/QA Overview

QC/QA What is it? • QC...Contractor provides control of the process. • QA...Owner provides assurance that control is working.

Use of QC/QA • QC/QA concept dates back over 40 years. • Most DOT's use QC/QA.

QC/QA

- A way to get material producers and paving contractors more involved in the entire process, which includes:
 - Material selection
 - Mix design
 - Control of production
 - Control of construction

5

Project Flowchart

- Paving contractor writes Bituminous QC plan; submits QC plan to MoDOT.
 - The mix design is often submitted at the same time.
- 2. MoDOT grants final approval of QC plan.
- Paving Contractor contracts with Aggregate Producer.
 - Often aggregate samples for mix design are taken earlier.

6

Flowchart, cont'd.

- Paving contractor submits mix design information (Job Mix Formula = JMF) to MoDOT through the district.
- 5. MoDOT Field Office handles JMF approval.
- Aggregate production begins. (actually, Superpave rock is more common now.)
- Asphalt production begins.

8

8

Specification Hierarchy

Asphalt Mix Design Limits

- Limits controlling aspects of the mixture during the design phase.
 - Gradation, AC%, Dust limit, Aggregate quality, etc.

Production Limits

- Tolerances controlling production of asphalt.
 - Va, VMA, AC%, Density, Gradation, Consensus.

Comparison Limits

Insure validity of QC/QA test results.

Removal Limits

 Specification limits requiring the removal and replacement of out of spec material.

Asphalt Mix Design Limits

- Limits controlling aspects of the asphalt mixture during the design phase.
 - Gradation
 - AC%
 - Dust limit
 - Aggregate quality, etc.
- Based on . . .
 - Anticipated traffic loads
 - **Climate**

10

10

Production Limits

- Tolerances controlling production of asphalt.
 - Va
 - VMA
 - AC%
 - Density
 - Gradation
 - Consensus.
- Ranges set for each in order to keep the desired characteristics of the mixture.

11

11

Comparison Limits

- Insuring validity of test of both QC and QA.
 - Tests are generally performed on a split sample with same equipment, separately by QC and QA personnel.
 - Limits are based on statistical data showing repeatability of a given test between operators.

12

Removal Limits

- Generally applied when test results fall outside of production limits.
- Example:

Air Voids (Va) specification tolerance is 4.0 \pm 1.0%. Removal limit is - 1.5%.

Hope to stay away from this but it does happen. Many things to check before material is actually removed.

13

13

Aggregate Inspection

QC and QA perform tests at the mixing facility, compare results to each other and:

- Job Special Provisions
- · Standard specifications
- Engineering Policy Guide (EPG) guidelines
- Task Force (FAQ) guidelines

14

14

Asphalt Inspection

- QC and QA perform tests, compare to each other and to:
 - Job Special Provisions
 - Standard Specifications
 - Engineering Policy Guide
- Must use spec. in force on contract date unless QC requests change.
- Pay factors are computed ("Best Management Practice" says at the end of each lot).

15

Quality Control

- QC is the contractor's responsibility to do the necessary testing during the production of the Asphalt pavement to ensure a durable, well performing product is achieved.
- QC involves comparing the contractor's test results to the specifying agency's requirements and specifications; should use QC's equipment for comparisons to work.

16

16

Quality Control

- The contractor provides control of all steps of the process: aggregate, binder, additives, mix design, asphalt production, and compaction.
- The contractor is responsible for providing properly trained personnel and testing equipment.
- QC must always perform tests diligently and in compliance with all specifications.

17

17

Quality Assurance

- MoDOT personnel assure that the quality controls are working properly.
- QA personnel must also be properly trained.
- QA must always perform tests diligently and in compliance with all specifications.

18

Asphalt Quality Control Plans

- Prior to the approval of the trial mix design the Asphalt contractor will submit a QC Plan to the District which adds traffic and then sends to MoDOT Construction & Materials in Jefferson City.
- Generally, a "Short Form" QC plan is used once a companies' standard practices are established.

19

19

• Company name

- Contract name
- Contract #
- Job #
- Route
- Contractor rep. in charge of QC plus contact information.
- List Personnel conducting acceptance testing.
- Lot & sublot sizes and how they will be designated.
- Name, address, and phone number of the third-party testing lab that will be used for dispute resolution.

20

QC Plan cont.

- Information on which method will be used for %AC determination
- Where the gradation will be sampled
- Size and number of cores per sample

21

Notes

- Lot sizes can be different for the same project. (e.g., 3000 tons first lot, 10,000 thereafter).
- Third party cannot be the one that performed the mix design.

22

22

23

RECORD KEEPING Samples

- Contractor samples retained for the engineer:
 - · clean covered containers
 - readily accessible
 - *ID'd: Job mix no. , sampler, sample location, time & date sampled
 - stored until test results accepted)
- QC gradation samples: retain the portion of the QC sample not tested after reducing the sample to testing size.

*All samples labeled

24

Quality Control Plan Superpave SP125CLGLP

Job: J6P5555

Contract I.D. 000716-F05 Route 141

St. Louis and Jefferson

Counties

Plant: Asphalt Today – Arnold, MO

QC Personnel

Quality Control Contact: Joe McCracken (314) 555-1212 Quality Control Inspector: Kyle Williams (314) 555-1213 Quality Control Inspector: John Jones (573) 555-4949 Quality Control Inspector: Mary Smith (314) 555-1732

Asphalt Testing

The Quality Control testing will be performed by taking samples from random numbers for volumetrics in accordance with the Specifications. On sections of the project with a bonded overlay, sampling will be performed using truck sampling methods.

Asphalt Content Determination

Asphalt content will be determined using the Ignition Oven, AASHTO T-312. Gradations will be performed using the burn-off residue.

Density Cores

Density cores will be cut using a 6 inch diameter core saw. One core will constitute a sample.

Lot and Sub-lot

The mixture with PG 64-22 V will be one lot of 5045 tons in sub-lots of 750 tons. The mixture with PG 64-22 H will have one Lot of 3,000 tons and 750 tons with the remaining Lots of 10,000 tons in sub-lots of 1000 tons.

Third Party Resolution

ACME Testing, LLC 2000 Quarry Road Linn, MO 65051 (573) 555-1111

QC RECORD KEEPING

- · Record and maintain all test results
- Up-to-date test results
- Paper backup of results
- Maintain printouts from gyro and binder content devices
- Pay Factor records
- Maintain an inventory of major sampling, testing, & calibration equipment.

25

25

DOCUMENTS On Hand

- Job mix
- QC plan
- Current copies of all test method procedures

26

26

TEST EQUIPMENT & PLANT CALIBRATION/ VERIFICATION RECORDS

- Results of calibration
- Description of equipment calibrated
- Date of calibration
- Person calibrating
- Calibration procedure ID
- Next calibration due date
- ID of calibration device & trace ability of calibration

27

Equipment	Req'ment	Interval (month)
Gyro	Calibrate	12
Gyro	Verify	Daily; when moved
Gyro molds	Dimensions	12
Thermometer	Calibrate	6
Vacuum	Pressure	12
Pycnometer	Calibrate	Daily
Ignition oven	Verify	12 or when moved

Equipment	Requirement	Interval (month)
Nuclear gage	Drift & stability	1
Shakers	Sieving thorough-ness	12
Sieves	Physical condition	6
Ovens	Verify settings	4
Balances	Verify	12 or when moved
Vimers	Accuracy	6

29

QC RECORDS

- Maintain 3 years from completion of project
- What:
 - test reports, including raw data
 - calibrations
 - technician training
 - personnel

30

EXCHANGE OF DATA

QC furnishes raw data (including gyro, and binder printouts) and test results to QA not later than the beginning of the next day following the test.

- QC data, control charts, etc., readily available to QA at all times.
- QA raw data & results made available to QC no later than the next working day
- QA will make the QLA within 24 hours of receipt of the QC test results

31

31

at the	QA Function Asphalt Pla	ant ~nlarg
	a Policy Guid	e (EPG)
FUNCTION:	LOCATION:	FREQUENCY:
Aggregate Gradation: 3 sloves: 1 size smaller than NNS _{PP} : not to exceed 92.0%. #8: Not to exceed 2.0% beyond master spec. #200: within master spec.	Drum: Combined cold feed Batch: Hot bins Optional: T303 Residue	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week
Consensus FAC: Consensus FAC: FAC: CAMper - 2% CAMper - 5% SEport - 5% FREque: + 2%	Drum: Combined cold feed Batch: Combined cold feed	QC: 1 per 10,000 tons (min. 1 per project per mix type) QA: 1 per project QA: QC retained: 1 per project
Deleterious:	All plants: cold feed	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: OC retained: 1 per week
RAP: Gradation (T303 or T164 residue) Deleterious Micro-Deval (if necessary) Binder Binder		QC: 1 per day 1 per 2 sublots 1 per 1500tons 1 per 4 sublots QA: 1 per project QA: QC retained: None
Ground Shingles: Gradation		QC: 1/10,000 tons (Min. 1 per project)

32

Asphalt				
FUNCTION:	LOCATION:	FREQUENCY:		
Obtain Sample	Behind paver	QC: 1 per sublot QA: 1 per 4 sublots QA: C retained, 1 per day; not necessary on days the QA independent sample is: taken if favorable comparison of retained splits has been achieved.		
Quarter Sample	QC lab	*		
Compact 2 gyro pucks at N _{des}	QC lab			
Run pucks specific gravity Calculate average of the two (G _{nb})	QC lab	•		
Run Rice specific gravity (G)	QC lab			
Calculate % Air Voids (V _s): V _s = [(G _{mn} ·G _{mb}) + G _{mm}] x 100 Compare to spec: 4 ± 1.0% This is a pay factor	QC lab			
Run asphalt content (P _b), Either nuclear or ignition oven. Compare to spec: P _{b,3#} ± 0.3% This is a pay factor	QC lab	•		
Calculate % aggregate (P _s): P _s =100 - P _b	QC lab	(*)		
Calculate VMA: VMA = 100 - [(G ₂₅ × P ₁) ÷ G ₃₅] G ₃₅ from MF Compare to Spec: VMA design minimum [-0.5 to +2.0 %] This is a pay factor	QC lab			
inis is a pay factor		33		

A	dditional Testing	
FUNCTION:	LOCATION:	FREQUENCY:
Mix Temperature	Roadway	QC: 1 per sublot OA: 1 per day
Temperature base & air	RAP/RAS feed	As-needed
Binder content of RAP/RAS	QC lab	QC: 1 per 4 sublots QA: 1 per project
Calculate Volds Filled (VFA): VFA=[(VMA-V_) + VMA] x 100	Roadway	QC: 1 per sublot QA: 1 per 4 sublots
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot QA: 1 sample per 4 sublots
Drill longitudinal joint and shoulder cores	: 100	(See Module 5 Sampling)
Calculate pavement density: Density= $(G_{mc}, G_{mm}) \times 100$ Compare to Density Pay Adjustment Table if an unconfined joint core Table is a pay adjustment factor		(See Module 5 Sampling)

35

Small Quantities
Individual Asphalt Mixtures Less Than 4000 tons

403.19.3.2.1 options:

1. Use all testing frequencies in 403.19.3 table.

OR

2. Do same tests as in 403.19.3 but: No field lab required

QC: ≤750 tons/day: QC: 1/day >750 tons/day: QC: 2/day

QA: (independent & retained: 1/1500 tons

Small Quantities

- 403.23.7.4.1
- QLA & PWL not required (no PF's) but mix must be within spec
- Still have VMA, Va, Pb, density spec limits
- TSR still required
- Density: PF-adjustment table (See Specifications)

37

QC/QA Functions at the Hot Mix Plant Engineering Policy Guide (EPG)

AGGREGATE			
FUNCTION:	LOCATION:	FREQUENCY:	
Aggregate Gradation: 3 sieves: 1 size smaller than NMS _{JMF} : Not to exceed 92.0%. #8: Not to exceed 2.0% beyond master spec. #200: Within master spec.	Drum: Combined cold feed Batch: Hot bins Optional: T308 Residue	QA: 1 per 4 sublots QA: QC retained: 1 per week	
Consensus Tests: $FAA_{spec} -2\%$ $CAA_{spec} -5\%$ $SE_{spec} -5\%$ $F&E_{spec} +2\%$	Drum: Combined cold feed Batch: Combined cold feed	QC: 1 per 10,000 tons (min. 1 per project per mix type) QA: 1 per project QA: QC retained: 1 per project	
Deleterious:	All plants: cold feed	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week	
Gradation (T308 or T164 residue) Deleterious Micro-Deval (if necessary) Binder Binder		QC: 1 per day 1 per 2 sublots 1 per 1500tons 1 per 4 sublots QA: 1 per project QA: QC retained: None	
Ground Shingles: Gradation		QC: 1/10,000 tons (Min. 1 per project) QA: 1 per project	

HMA				
FUNCTION:	LOCATION:	FREQUENCY:		
Obtain Sample	Behind paver	QC: 1 per sublot QA: 1 per 4 sublots		
		QA: QC retained, 1 per day; not necessary on days the QA independent sample is taken if favorable comparison of retained splits has been achieved.		
Quarter Sample	QC lab	n n		
Compact 2 gyro pucks at N _{des}	QC lab	w.		
Run pucks specific gravity Calculate average of the two (G _{mb})	QC lab	W.		
Run Rice specific gravity (G _{mm})	QC lab	ш		
Calculate % Air Voids (V_a): $V_a = [(G_{mm} - G_{mb}) \div G_{mm}] \times 100$ Compare to spec: $4 \pm 1.0\%$ This is a pay factor	QC lab	v		
Run asphalt content (P_b) , Either nuclear or ignition oven. Compare to spec: $P_{b,JMF} \pm 0.3\%$ This is a pay factor	QC lab	W		
Calculate % aggregate (P _s): P _s =100 - P _b	QC lab	п		
Calculate VMA: VMA = $100 - [(G_{mb} \times P_s) \div G_{sb}]$ G_{sb} from JMF Compare to Spec: VMA design minimum $[-0.5 \text{ to } +2.0 \%]$ This is a pay factor	QC lab	n n		

HMA cont				
FUNCTION:	LOCATION:	FREQUENCY:		
Run TSR Compare to spec This is a pay adjustment factor		QC: 1 per 10,000 T QA: 1 per 50,000 T Minimum: 1 per mix (combination of projects)		
Drill pavement cores	Traveled way pavement	QC: 1 sample per sublot QA: 1 sample per 4 sublots		
Determine pavement core density (G_{mc})	Trailer	QC: 1 sample per sublot QA: 1 sample per 4 sublots		

Additional Testing			
FUNCTION:	LOCATION:	FREQUENCY:	
Mix Temperature	Roadway	QC: 1 per sublot	
		QA: 1 per day	
Temperature base & air	RAP/RAS feed	As needed	
Binder content of RAP/RAS	QC lab	QC: 1 per 4 sublots	
		QA: 1 per project	
Calculate Voids Filled (VFA):	Roadway	QC: 1 per sublot	
VFA=[(VMA-V _a) \div VMA] \times 100		QA: 1 per 4 sublots	
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot	
		QA: 1 sample per 4 sublots	
Drill longitudinal joint and shoulder cores	Roadway	See Module 5, Sampling	
Calculate pavement density:		See Module 5, Sampling	
Density= (G _{mc ÷} G _{mm}) x 100			
Compare to Density Pay Adjustment Table if an unconfined joint core			
This is a pay adjustment factor			

-		
		To only the second seco
		SZA SZŚROZNY WIEDZY WIEGO SIĘCZEG WIEGO SZ

TAB Module 3

Module 3

Plant Operations Overview

• Plant equipment • Plant problems • Aggregate sampling & testing • RAP & RAS sampling & testing

Weighing Aggregates and Mineral Filler in a Batch Plant

2. When the scale reading reaches a preset weight, the discharge gate is closed.

- 3. The dicharge gate of the next aggregate bin is opened.
- 5. These steps are repeated for the remaining aggregate sizes and the mineral filler.

4. When the scale reading reaches a preset weight, the discharge gate is closed.

Drum Mix Plant

- Aggregate is divided into different bins and proportioned by bin percentages.
- More bins allow you to control your mixture better.
- Drum mix plants feed material continually.
- Drum mix plants have a high production rate but may not be able to use potential because of limiting roller rate.

Druk Mix Plant

13

13

14

There is an optimum flight configuration for the % RAP to maintain the veil of aggregate that protects the RAP, binder, and baghouse.

RAP collar ok up to ~20% RAP; problems for greater amounts

Aggregate Moisture Content

- Daily moisture contents are needed for every aggregate bin for drum mix plants.
- Wet fine aggregate will stick to conveyor belts.
 This may cause over-asphalting & low voids.
- Moisture may cause tender mix behavior.

28

28

Aggregate Moisture cont'd.

- May need to slow down production to get the aggregate completely dried.
- Moisture affects the amount of dust that goes either to baghouse or stays in the dried aggregate. Thus, it affects the required dust return feed rate. The amount of dust affects the mix volumetrics

29

29

Aggregate

Daily gradation checks at the asphalt plant may help you spot a problem.

- Make sure aggregate stockpiles are properly labeled.
- Make sure the loader operator loads the correct aggregate in the cold feed bins.
- Loader operator should work to minimize degradation, contamination, and segregation.

30

Daily Plant Procedures

Make sure all equipment is well maintained (e.g., look for holes in screens)

- Check the bill of lading on all materials before you unload them:
 - Correct material
 - Check for "testing statement"—some binder suppliers are now sending out non-certified binder
- Check the quantities of AC, mineral filler, hydrated lime, burner fuel, etc.
- Dust control is important with Superpave. Make sure your dust collection system is working

31

31

Possible Issues at the Plant Quarry

- Quarry delivers material not in conformance with Contractor-Quarry agreement:
 - Production stone now only being checked by MoDOT at the plant
 - MoDOT doesn't see the agreement
 - No longer a Quarry QC plan in some Districts

32

32

Possible Issues at the Plant Quarry, cont'd.

- Quarry has already changed screens and is no longer making the product required so it substitutes something else.
- Quarry delivers the wrong material (e.g., makes several 3%" products).
- Keep an eye on:
 - Gradation
 - Specific gravity for certain products
 - Flat & elongated (crusher wear)

33

Possible Issues at the Plant Receiving

- Contractor orders the wrong material (MoDOT and quarry may have different definitions of fractions).
- Contractors do not check material daily to ensure correct material is being delivered.

34

Possible Issues at the Plant Loader Operator

- Piles get mixed together.
- Loader operator pushes dirt and bedding material up into stockpile or gets it on tires and tracks it onto pile.
- Loader operator gets both sets of wheels on stockpile and breaks it down.

35

Possible Issues at the Plant Loader Operator

- Loader operator falls behind production, allows bin to empty, fills them with closest available
- Wrong material in bins from spillage from adjacent bin.
- Wrong material in bins from getting piles mixed
- Bin runs empty, then gets material dumped in, locks collector belt, no material gets to cold feed

Possible Issues at the Plant Plant Operator

- Doesn't pay attention to computer screens and one bin runs faster or slower than it's supposed to, thus the combined grading changes.
- Somebody changes gate settings on cold feed or puts them in improper position for the mix being made, thus the combined grading is wrong.

37

37

Possible Issues at the Plant Plant

- Hole wears in shaker (scalper) screen and allows various oversized materials to get into mix: dirt clods, sticks, oversized aggregate, bottles, cans, etc.
- Motor or belts burn up on a bin and it stops running but plant diagnostics do not catch it.

38

38

Possible Issues at the Plant Plant

- Wind blows belts up and down-causes problems in weighing.
- Lose a leg from 3 phase power-scalping screens run slower.
- Times of peak power demand -screens run slower.
- Mix silo-problems of carryover of wrong product when switching mixes.

39

Possible Issues at the Plant Plant

- AC hauler loads wrong grade of binder.
- AC hauler doesn't know which tank to unload into and contaminates burner fuel.
- AC hauler has hauled a different grade the previous night and rather than clean out this tank, he loads a new load on top of what was left in the tank.
- Pugmill paddles wear > 3/4"-poor mixing and coating.

40

40

Possible Issues at the Plant Plant

- Two separate storage tanks for 2 different grades of binder are connected—if valves are not in correct position, one tank can drain or equilibrate with the other tank, mixing the 2 grades.
- If binder sample fails—must mill.
- Burner fuel hauler doesn't know which tank to unload into and unloads into binder tank (possible explosion risk here).
- Valves are cleaned with diesel-can contaminate a sample-need to run some binder (~gal) through before sampling.

41

41

Asphalt Production

- Keep good records of plant settings. Note any irregularities or changes.
- Keep a separate copy:
 - · Hard drives crash.
 - New computer system installation-lose files.
- Train all personnel to look for problems.
- Use your test strips wisely. Look for trouble spots before you go to full production:
 - Get the volumetrics right.
 - Get the nuclear gage settings.
- Rolling patterns are likely to change from job to job or even on same job if material underneath fails.

42

TAB Module 4

Module 4

Aggregate Testing Overview

Aggregate Acceptance

- Aggregate acceptance for Asphalt is at the mixing facility.
- MoDOT performs sampling/testing of ledges.
- MoDOT visits quarries to assure that proper ledges are being used.

2

Production Aggregate Test

3

Gradation

Deleterious

Consensus tests:

- FAA Fine Aggregate Angularity
- CAA Coarse Aggregate Angularity
- SE Sand Equivalency
- F&E Flat & Elongated

SAMPLING: Aggregate

- Gradation:
 - Drum Cold feed belt
 - Batch Hot bins

 - Can use Asphalt sample T308 residue
 (Not applicable for dolomite).
 RAP T308 residue; combine mathematically with virgin gradation. (Dolomite will need to extract)
- Deleterious:
 - · All plants Cold feed belt
- Consensus:
 - All plants Cold feed belt
- QC retains half their sample (after final split) for QA. 5

Q

QC Aggregate Sampling/Testing

- Gradation -1 per 2 sublots
- Consensus tests -1 per 10,000 tons mix (at least 1 per project per mix type)
- Deleterious 1 per 2 sublots
- Save a retained sample of each.

14

14

QA Aggregate Sampling/Testing

Independent:

- Gradation -1 per 4 sublots minimum
- Consensus -1 per project minimum (no matter how many mixes)
- Deleterious -1 per 4 sublots
- QC retained split:
 - Gradation -1 per week minimum
 - *Consensus* -1 per project minimum (no matter how many mixes)

Deleterious -same as gradation

15

Sampling and Testing

2: Aggregate Cold feed:

- Deleterious
- •Consensus
- Gradation: if dolomite and maybe if limestone

5: RAP

- Binder content (T308/T164)
- Gradation-binder residue
- (Mathematically combined with cold feed gradation if not using roadway sample for gradation)
- Micro-Deval- maybe

•7: Silo Discharge-Truck or HMA Mini-stockpile:

Maybe TSR

Not Shown-Roadway sample:

- Binder content/moisture
- •(Gradation-binder residue)
- Gyro pucks
- Rice Gravity

	SPECIF	IED GRA	ADATION	NS		
Sieve Size	SP250	SP190	SP125	SP095	SP048	
1 1/2 "	100					
1	90-100	100				
3/4	90 max	90-100	100			
1/2		90 max	90-100	100		
3/8			90 max	90-100	100	
#4				90 max	90-100	
#8	19-45	23-49	28-58	32-67		
#16					30-60	
#30						
#50						
#100						
#200	1-7	2-8	2-10	2-10	7-12	20

Example	Sieve	SP190	Tolerance	Test
	1.5			
SP 190	1	100		100
	3/4	90-100		99
	1/2	90 max	92 max	91
	3/8			
12.4	#4			
	#8	23-49	21-51	22
	#16			
	#30	(22)		
	#50			=
	#100	0/200	- The same of the same	
	#200	2-8	2-8	5.2

		\ Tolera IMF Target		
	Sieve	SP095	SP125	
	3/4"			
	1/2"		± 4	
A STORY	3/8"	± 4	± 4	
	#4	± 3	± 3	
	#8	± 3	± 3	
	#200	± 2	± 2	

Minor Deviations	
 Minor deviations outside the tolerances are allowed if Asphalt test results indicate the binder content, volumetrics, and density are satisfactory 	
	24

Aggregate Acceptance: Be within tolerance of JMF values (Gradation and Consensus tests) Be within standard specs (Deleterious) Compare "favorably" with QA results

26

Comparing QA to QC (QC Retained Sample) • Consensus Tests: • CAA: QC ± 5% • FAA: QC ± 2% • SE: QC ± 8% • T& E: QC ± 1% • Gradation: see table • If QC meets spec and QA compares favorably (Verifies QC) but QA is out of spec, the sample passes.

1 sieve smaller than NMS: 2% above master spec

Figure 3.10 Superpave Gradation Limits

#200: within master spec

- FAA: QC= 46, QA= 48
- Is there "favorable comparison"?
- Yes, must be within 2, and they are.

28

Unfavorable Comparison

 FAA most prone to "unfavorable comparison" because of incorrect specific gravity

(e.g. - Just using ${\rm G}_{\rm sb}$ from JMF, which erroneously would include Gsb of coarse aggregate)

29

29

	Sieve Size	Percentage points	
	≥3/4"	± 5.0%	
Gradation	1/2"	± 5.0	
on OC retained	3/8"	± 4.0	
sample so are	#4	± 4.0	
running same type	#8	± 3.0	
of sample	#10	± 3.0	
or sample	#16	± 3.0	
	#20	± 3.0	
ACCOUNTS OF THE PARTY OF THE PA	#30	± 3.0	
	#40	± 2.0	
	#50	± 2.0	
	#100	± 2.0	
	# 200	± 1.0	30

TAB Module 5

Module 5

Asphalt Sampling Loose Mix & Cores

Resources

- 403 specification
- General provisions & Supplemental Specifications
- AASHTO Test Methods:
 - R 97 Sampling Asphalt Mixtures
 - R 47 Reducing Sample Size
- EPG
- FAQ
- Superpave Course Notebook

2

2

Sample Types

- Quality Level Analysis (QLA)
 - Randomly Chosen
 - QC For determination of pay factors.
 - QA For seeing if QC samples define the characteristics of the lot (Favorable Comparison).
- "Extra" or "Check" or "Self-test" samples.

NOTE: Samples should be clearly marked as to what they are.

3

Extra or Check Samples

Extra sampling done by MoDOT or contractor to:

- · Check how the mix is doing.
- Investigate problem areas e.g., does a problem exist?
- · Determine limits of the problem.
- Can be from truck, plant, mat.
- Not random and cannot be used for QLA.

Δ

5

• QA gets their own "independent" sample plus their retained sample • Samples that are used for comparison to QC (QLA) should be randomly located

8

QA - Volumetric and %Binder Samples; Sampled from the Roadway only. One per 4 sublots - "Independent Sample" (spec 403.19.3). Once per day test QC "retained sample". This may be omitted on days when independent QA samples are taken, if confident and "Favorable Comparison" exists between QA's - QC split and QC. (403.1.18 EPG & FAQ* #14)

*QAQC Questions and Answers

Loose Mix

9

Retained Samples

403.17.2.3:

Retained samples should be clearly labeled and not discarded until all QC/QA comparison issues are resolved. If the lab becomes crowded, the RE should store the samples in the project office.

The retained sample is a contract requirement and belongs to the Commission.

The contractor can keep ADDITIONAL mix for internal use.

10

10

Loose Mix - TSR Sample

- QC: 1 per 10,000 tons or fraction thereof.
- QA: 1 per 50,000 tons or minimum 1 per combination of projects.
- Random locations:
- Required by spec.
- Not enforced (EPG)
 - FAQ* #23

11

Loose Mix Sampling Location

- Volumetric/Binder Content samples;
 - Sampled from the Roadway.

Use of spray paver or trackless tack may contaminate sample; consider an alternate sample location.

- TSR Samples;
 - Sampled from a Truck, Plant Discharge or Roadway.
 - QA samples same place as QC, but at a different time.

12

Loose Mix Volumetrics/Binder

- C Volumetric and %Binder;
 - QC: Gets their own Volumetrics & "Binder sample plus a "Retained" sample for QA.
 - Location: Behind the paver.
 - Size: About 50 lbs. each.

QC - TSR;

- Location: Truck sample, At the plant, or Behind the paver*.
 *Full depth of the course.
- Size: 75-125 lbs.

(Plus, another 125 lb. sample retained for QA)

13

Loose Mix Volumetrics/Binder

QC - Preferred:

- Size: ~100 lbs.
 - Mixed, quartered, from two opposite quarters 50 lbs. Retained for QA.

14

14

Loose Mix

QLA - Volumetric and %Binder Samples;

- Sampled from the Roadway
- Random Locations:
 - QC = Required
 - QA = Required*

*Might become part of the data set from which Pay Factors are computed.

15

• Definition of a "Lot": • No specified limitation • Typically, 3000 or 4000 tons • Sometimes much larger

17

Lots and Sublots, cont'd. Sublot: Must have at least 4 sublots per lot. Maximum sublot size = 1000 tons. Number of lots: Contractor's choice – must be in the QC plan. More sublots means more lab work but may increase the pay factor somewhat. If a lot = 3000 tons, a sublot = 750 tons.

Lot Routines 403 Mixes

- Traveled way + integral shoulders.
- Non-integral shoulders (If Superpave).
- If not Superpave (e.g., BP-1), random. numbers not required- see "Non-traveled area" notes.

19

Sample Location

- Longitudinal position in terms of tons of mix from the start of the lot.
- *Transverse* position in terms of distance from edge of mat.

20

_		-		RENDON	Contra			76	_
-	1 5	1 4					1	4	1
53	*720	430	794	2%	£3	213	.22	.81	229
842	Fit	211	315	.835	114	493	518	20	391
547	-75	.501	422	231	575	019	409	51.7	171
423	192	.821	110	314	325 812	IJ!	J:1	211	711
573	124	302		100		-	146	4.7	
.153	.817	351	427	A27	.14	1,3	243	314	213
3:0	.137	215	143	347	405 547	215	50	135	308
185	211	324	324 321	633	804	r	414	105	311
511	301	54	67	151	414	172	215	310	122
	125	211	411	317	267	291	578	418	10
371	212	104	10	200	213	10	317	.754	916
101	.106	254	13	554	378	81	512	244	20
471	333	137	111	247	.117	579	.787	314	.85
753	331	234	434	(0)	314	330	£1	191	324
346	315	477	\$49	147	349	.02	.01	324	.156
. 501	34	\$13	30	.142	.911	123	284	321	211
.67	411	#12	200	.175	312	211	265	319	210
548	212	841	364	115	J13	135	912	461	73
314	(2)	122	-		-	-			264
.117	311	211	342	,GS	20	.100 100	217	.63 .63	301
rı	543	325	10	.20	D1	533	at at	311	106
311	411	25	309	115	10	325	404	111	IN
Tel	255	Di:	28	10	364	473	315	/ 115	30
112	211	.602	377	.454	.721	.716	315	110	rs
414	19	429	203	.017	318	317	267	5 10	- 41
in in	-711	20	in	411	63	.594	301	I'de	1,00
316	120	.721	131	213	14	.771	371	.432	311
336	214	314	50	171	315	226	321	500	338
434	.117	414	1 414	429	.613	413	.861	276	10.
436	1 473	\$45	344	211	511	.443	10	219	40
364	411	111	.576	351	328	3.70	10	191	113
30	.113	111	211	See	.272	200	342	511	100
.153	.491	.157	355	\$10	13	215	1 445	1 14	1 313

Random Numbers

RANDOM NUMBERS

i		2		3		4		5	
٨	В	٨	В	٨	B	٨	В	٨	В
.576	.730	.430	.754	.271	.870	,732	.721	.998	.239
.892	.948	.858	.025	.935	.114	.153	.508	.749	.291
.669	.726	.501	402	.231	.505	.009	.420	.517	.858
.609	.482	.809	.140	.396	.325	.937	.310	.253	.761
.971	.824	.902	.470	.997	.392	.892	.957	.640	.463
.053	.899	.554	.627	.427	.760	.470	.240	.304	.393
.810	.159	.225	.163	.549	.405	.285	.542	.231	.919
.081	.277	.035	.039	.860	.507	.081	.538	.986	.501
.982	.468	.334	.921	.690	.806	.879	.414	.106	.931
,095	.801	.576	.417	.251	.884	.522	.235	.398	.222
.509	.025	.794	.850	.917	.387	.751	.608	.698	.683
.371	.059	.164	.838	.289	.169	.569	.377	.796	.996
.165	.996	.356	.375	.654	.379	.815	.592	.348	.743
.477	.535	.137	.155	.767	.187	.579	.787	.358	.595
.788	.101	.434	.638	.921	.894	.324	.871	.698	.539
.566	.815	.622	.549	.947	.169	.817	.472	.854	.466
.901	.342	.873	.964	.942	.985	.123	.086	.335	.212
.470	.682	.412	.064	.150	.962	.925	J55	.909	.019
.068	.242	.667	.356	.195	.313	.396	.460	740	,247
.874	.420	.127	.284	.448	.215	.833	.652	.601	.326
,897	.877	.209	.862	,428	.117	.100	.259	.425	.284
.875	.969	.109	.843	.759	.239	.890	317	.428	.302
190	.696	.757	.283	.666	.491	.523	.665	سافللارا	بالطاف
,341	.688	.587	.908	.865	.333	.328	.404	.892	.696
.846	.355	.831	.218	.945	.364	.673	.305	.195	.387
.882	.227	.552	.077	.454	.731	.716	.265	.058	.075
.464	.658	.629	.269	.069 ·	.998	.917	.217	220	659
.123	.791	.503	.447	.659	.463	.994	.307	.631	.422
.116	.120	.721	.137	.263	.176	.798	.879	,432	.391
.836	.206	.914	.574	.870	.390	.104	.755	.082	.939
.636	.195	.614	.486	.629	,663	.619	.007	.296	.456
.630	.673	.665	,666	.399	.592	.441	.649	.270	.612
.804	.112	.331	.606	.551	.928	.830	.841	.602	.183
.360	.193	.181	.399	.564	.772	.890	.062	.919	.875
.183	.651	.157	.150	.800	.875	.205	,446	.648	.985

Random Numbers

- Position of loose mix: longitudinal tonnage and a transverse distance generated by random number.
- Position of core: a transverse distance and a longitudinal distance.
- Distances are determined by random numbers-one for longitudinal (A), one for transverse (B).
- The pair of random numbers are different for each sample location (core or loose mix) QC, or QA.

25

25

Random Numbers

- Random Numbers are generated by QA.
- Methods of generating random numbers;
 - By compute (Routines, websites, MoDOT spreadsheet, etc.).
 - Use of random number tables.

The control of the co

26

Random Numbers

- Object: to produce unbiased samples-sample bias occurs either during construction or during sampling
- QC should provide contingencies in QC Plan to handle random numbers in weird locations (does not apply to early tonnage e.g., first 50 tons).

27

MoDOT Spreadsheet

Set-Up Sheet

Helpful spreadsheet on where to obtain QC/QA Samples in Superlot jobs for each day's production based off the Random Numbers Generated

DAILY TONNAGE FOR SUBLOTS PLANT AND ROADWAY

USE COLORED AREAS FOR ENTERING DATA

DATE

8/1/2019 SP125 'Can be any format

*Use type of mix (SP125C etc.)

TOTAL TON PRODUCED TO DATE 3500.00 'All

4All days Total Tons for specific mix

MINUS FOR LOT SHUTDOWN

"FOR PLANT MAN WHEN AC

IS CHANGED DURING PRODUCTION

"ENTER IN DAILY LOT NUMBERS, SUBLOTS, RANDOM TONS AND THE OFFSET FOR THE DAY.
THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE.

QC

Entered from the Random Number Spreadsheet

FROM QC QA PLAN SUBMITTED

	Q	A SAN	IPLE FO	R THE LOT (OR LOTS	
	SUBLOT	LOT	RANDOM TON	15		T
	4	Α	3107	OFFSET	4	
QA TE	ST FOR	A4	-393	3.0	OFFSET	4
	SUBLOT	LOT	RANDOM TON			
	7	Α	2820	OFFSET	6	1
QA TE	STFOR	A7	3320	0.0	OFFSET	6

LOOSE MIX

JOB0	ROUTE	0	MIX NO.	SP129	5 09-95	_ LOT NO	5
NO. TONS 3000 TECHNICIAN philic1	QA SAMF	LE		NG TONS '		3000 0 3000 12	
RANDOM NO. A B 0.7512 0.9344	T 3000	A 0.7512	X=T x A 2254	TONS 22	= BT + X 54	QA SAMPL	.E
	WIDTH	В	W = WI	DTH - 2'	WxB	OFFSET =	
	12	0.9344		10	9	To Center o	o Sample
SUBLOT A TECHNICIAN phille1	****		BEGINNII	SUBLOT ' NG TONS ' TONS "ET"	'BT"	750 0 750 12:::12::::	y Campio
RANDOM NO.	Т	Α	X=T x A		= BT + X		
A B 0.4397 0.0513	750	0.4397	330	33	30		
0.4397 0.0513	WIDTH	В	W = WI	DTH - 2'	WxB	OFFSET =	
	12	0.0513		10	1 1	To Center o	
							· · · · · · · · · · · · · · · · · · ·
SUBLOT B TECHNICIAN DIMENSIONAL DIMENSI	<u>:::</u>		BEGINNIN	SUBLOT " NG TONS " FONS "ET"	'BT"	750 750 1500 :::12::::	
RANDOM NO.	Т	Α	X=T×A	TONS:	= BT + X	7	
A B	750	0.6380	479	12	29]	
0,638 0.2229	WIDTH	В	10/ - 10//	DTH - 2'	WxB	OFFSET =	1+\// v B
	12	0.2229	VV - VV.	10	2	3	
						To Center o	f Sample
SUBLOT C C TECHNICIAN ::::philic1::::::	<u>!!!</u>		BEGINNIN	SUBLOT " NG TONS " TONS "ET"	BT"	750 1500 2250 12	
RANDOM NO.	Т	Α	X=T x A	TONS:	= BT + X]	
A B	750	0.3303	248	17	48	J	
0.3303 0.2401	WIDTH	В	10/ = 10/11	DTH - 2'	WxB	OFFSET =	1+W v B
	12	0.2401	77 - 77.	10	2	3	
						To Center o	f Sample
SUBLOT D TECHNICIAN philic1	:::		BEGINNIN	SUBLOT • IG TONS • ONS "ET"	BT"	750 2250 3000 12	
RANDOM NO.	T	Α	X=T x A		= BT + X		
A B	750	0.0596	45	22	95	J	
0.0596 0.0308	WIDTH	В	W = WII	DTH - 2'	W×B	OFFSET =	1+W x B
	12	0.0308	4,7	10	0	1	
•						To Center o	f Sample

Loose Mix Sampling Steps-Typical Scenario (EPG)

1. QA generates pairs of RNs for upcoming lot. Numbers are placed in a sealed envelope & kept in a secure location in QC lab. QA keeps a copy. Both QA & QC sign & date the seal (FAQ #5).

34

Typical Scenario (EPG)

QA uses random numbers to calculate the longitudinal measurement to sample (ton or distance) and the transverse measurement (distance).

2. QA gives info to QC 100-150 tons in advance of the test (FAQ #6).

35

35

Sampling Steps, cont'd

- 3. QC gives info to plant operator.
- Plant operator marks ticket of the load that the RN ton fell in.
- QC follows truck to site.
- **6. QC** notes the location (station) where the load went down. This will be arbitrary.
- Samples should not be taken in areas of handwork; move 10 ft ahead of affected area (FAQ #6).

36

Traveled Way and Shoulder Types

QC/QA Coring Frequency & Location

QLA - Cores

- QC: 1 sample per sublot.
- QA: 1 sample per 4 sublots.

 ${\it Sample}=1$ core. Up to 2 more cores (if stated in QC Plan) can be obtained, at the same offset, within one foot of the random location.

- Density is average of all 2-3 cores.
- QA core can be at same location as one of the QC cores: same offset; within 6" longitudinally; or randomly located.
- In traveled way (not on integral shoulder).
- Applies to unconfined joints as well as traveled way.

43

QA Core

QLA - Cores

- Independent
- Can be randomly located as a location independent from QC's core,

OR

- Typically, same "location" as QC core sample:
 - Same transverse offset from mat edge as QC sample.
 - · Within 6 in. longitudinally from QA core.

44

44

Extra QC Cores

QLA - Cores

Recommended that QA witness extra coring to avoid questions about unidentified holes.

Thick Lifts
OLA - Cores

If mix is placed in lifts ≥ 6 x NMS, cores should be cut in half & density determined separately

Example: SP250 NMS= 1", 6" mat

PF density will be based on N = 8, not N = 4

48

Non-Traffic Areas - (403 mixes), cont'd.

Non-integral shoulders

- When rolling pattern demonstrates successful achievement of density, RE may allow the pattern in lieu of density tests.
 - Intelligent Compaction
- On re-surfacing projects where shoulders cannot withstand the compactive effort, RE can relax the density requirements.

50

50

90.5 - 90.9 **or** 97.6 - 98.0 80 90.0 - 90.4 **or** 97.6 - 98.0 75 Below 90.0 **or** above 98.0 Remove & replace

51

Confined Joints Density on confined joints is handled with the traveled way coring. Required density is same as for the traveled way. 94.5 ± 2.5% for non-SMA. 94.0% minimum for SMA.

LONGITUDINAL JOINT DENSITY

1 UNCONT	LONGITUDIN	AL JOINT DENSI	TY	
JOB	0 ROUTE	0 MIX NO. SP129	5 09-95 Ju	TNO 5
SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	A 750 1000+00	A RANDOM NO. 0.7769	B E	DGE 1
ENDING STATION	1050+50	L A	X=L x A	STA + X
LENGTH "L"	5050	5050 0.7769 Measure from unconfi	3923	1039+23
		Weasure from uncom	neu eage.	
SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	750 1050+50	RANDOM NO. 0.3816	B E	DGE 1
ENDING STATION	1100+50	LA	X=L x A	STA + X
LENGTH "L"	5000	5000 0.3816	1908	1069+58
		Measure from unconfi	ned edge.	
	7.50	Α		DGE
TONS IN SUBLOT BEGIN STATION "STA"	750 1100+50	RANDOM NO. 0.6654	0.4791	1
ENDING STATION	1149+00	LA	X=L x A	STA + X
LENGTH "L"	4850	4850 0.6654	3227	1132+77
		Measure from unconfi	ned edge.	
SUBLOT	D	A	ВЕ	OGE
TONS IN SUBLOT	750	RANDOM NO. 0.5892	0,4773	1
BEGIN STATION "STA" ENDING STATION	<u>1149+00</u> 1199+10	T L T A	X=L x A	STA + X
LENGTH "L"	5010	5010 0.5892	2952	1178+52

Measure from unconfined edge

QLA CORING for QC Typical Scenario Roadway inspector marks where each sublot starts. 1. QA generates and records RN's for freshly laid sublot. 2. QA calculates the longitudinal and transverse distances for the core.

• Beginning station = 1200+00
• Add 5238 ft= 52+38
• Ending station:

1200+00

52+38

1252+38

Extracting A Core

66

Procedure

- Avoid distorting or cracking of the cores during and after removal from pavement.
- Cores should be free from seal coats, soil, paper, paint, any other foreign materials.
- Cores may be separated from other pavement lifts by sawing or other appropriate methods.
- Cores should be allowed to air dry overnight (12 hr minimum) to a constant weight (checking at 2 hr intervals) as per T 166.
- Some contractors report less variability with 6" diameter cores.

67

67

68

COMPACTED MAT DENSITY No Unconfined Joint Case

■ Sample full width (12 ft)

		CORING SU	MMARY	En	1-		
Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type	larg		
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor			
	QA	Random Number	1 sample/ 4 sublots				
Integral shoulder	none						
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor			
Longitudinal Joint, confined		Considered part of the traveled way					
Longitudinal Joint, unconfined	QC	Random Number	1 sample/sublot	Longitudinal Joint Density Pay Adjustment Factor			
	QA	Random Number	1 sample/ 4 sublots				
Base widening, entrances	Not QLA	7777	RE discretion	Density Pay Adjustment Factor			
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/sublot	Density Pay Adjustment Factor	75		

COMPACTED MAT DENSITY Two Unconfined Joints Case

■ Leave out both 6" strips at mat edges (sample 11.0 ft)

CORING SUMMARY

Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/ <u>sublot</u>	QLA Pay Factor
	QA	Random Number	1 sample/ 4 <u>sublots</u>	
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined		Considered p	eart of the traveled way	1
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 <u>sublots</u>	
Base widening, entrances	Not QLA	????	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/ <u>sublot</u>	Density Pay Adjustment Factor

CoringSummary.doc (3-2-16)

Common Errors: Testing Cores

- Avoid distorting, bending, or cracking during and after removal from the pavement.
- Samples should be free from seal coats, tack coats, soil, paper, paint, etc.
- Make sure puck /core has cooled to proper temperature.
- Cores should initially be dry.

76

TAB Module 6

Module 6

Sample Reduction and Aging

1.

Test Methods • AASHTO R 47 Reducing Sample Size • AASHTO R 30 Mixture Conditioning (Aging)

2

Quartering and Testing Specimen size for gyro & MoDOT nuclear samples are on JMF. Specimen size for Maximum Specific Gravity (Rice) & ignition oven samples are based on aggregate size.

QUARTERING LOOSE MIX

Both QC and QA samples must be taken from the roadway. They are to be taken separately. The sample locations in both cases will be determined with a different set of random numbers.

Both QC and QA samples should be quartered at the site lab.

ORDER OF IMPORTANCE

- 1. If the mix type to be quartered has changed since the last quartering, clean the 2'X2' square pan. Otherwise, use a buttered pan. Butter = hot mix.
- 2. Place the whole 50 lb. loose mix sample into the pan. Mix by turning material over a minimum of 4 times with a flat-bottom scoop, shape into a cone, flatten. Bring up big pieces, distribute evenly on top so that all 4 quarters get the same amount. Shape the pile so that all 4 quarters have the same amount of material.
- 3. Insert quartering plates.
- 4. From a given quarter, pull just enough mix to make one gyro specimen (the required weight is on the Job Mix Formula) and place in a clean pan. Clean off scoop into the pan.

Do the same for the opposite quarter. Place an ID tag in each pan.

Put the pans into the oven to get the mix to the compaction temperature (39 minute maximum-heating allowed, therefore, may have to set even higher than melding temperature to keep within the 39 minutes). Do not heat the mix above the molding temperature.

5. From a third quarter, pull the proper amount for a Rice specimen and set aside for cooling:

SP250 → 2500 grams (minimum) All others → 2000 grams (minimum) Scrape material stuck on the scoop into the appropriate pan. Place an ID tag in each pan.

- 6. Remove the quartering plates; remix the material, cone, flatten, quarter.
- 7. Remove sufficient material for the nuclear sample. The required amount is stated on the Job Mix Formula sheet. Scrape the scoop; place an ID tag in the pan.

Compact nuclear sample into the nuclear gage pan while mix is still warm (may have to re-warm).

If running AC content by the ignition oven method, obtain the sample out of this quarter:

```
SP250 \rightarrow 3000 to 3500 grams
SP190 \rightarrow 2000 to 2500 grams
SP125 \rightarrow 1500 to 2000 grams
SP095 and SP048 \rightarrow 1200 to 1700 grams
```

- 8. Obtain moisture sample from same sample as the asphalt content sample. Treat the moisture sample the same as the mix sample in terms of the time interval between splitting and testing.
- 9. Leave the 2'X2' pan buttered if the type of mix will not change before the next 50 lb. is quartered.

Plant Discharge

(Chop Gate-Diverter Chute)

- Divert entire production stream from drum to a loader bucket.
- Sample across the loader bucket, one shovel per box, all boxes.
- Repeat until boxes are full.
- Cool (beware of dust).
- Close boxes.

17

17

Plant Discharge (Chop Gate-Diverter Chute)

- Re-heat material.
- Mix all boxes.
- Quarter with templates.
- Remove quarters to 4 buckets.
- · Quarter each bucket.
- Pull one puck from each quarter.

18

- Need about 2 tons sampled from silo discharge into a truck.
- Dumped
- Back dragged
- Sampled into, 4 buckets or boxes.
- Back at lab; material is combined, mixed, quartered, and combined into 2 piles.
- Then 4 pucks are sampled from each pile.

20

• AWP ID number • Mix number • G_{mm} from sublot taken (QC or QA) • Specimen weight QC is using.

Loose Mix Testing Plant Mixed

- Label samples!
- Re-heat mix to molding temperature. (use a temperature probe in mix to facilitate temperature verification).
- Recommended to put gyro material into oven immediately to minimize additional binder absorption and aging.
- Begin cooling Rice sample.

28

28

R30 Aging of Asphalt Loose Mix

- Used for *lab mixed* volumetric specimens.
 (2 hr.)
- Also used in preparation of lab mixed asphalt for Performance Testing. (4 hr.) "Short Term".
 - Ideal CT
 - Hamburg
 - Ifit
 - IDT

29

29

Significance and Use

- The properties and performance of Asphalt can be more accurately predicted by using conditioned test samples.
- "Short term" conditioning is used for mechanical property (performance) testing to simulate plant mix and construction effects on the mixture.
- "Long term" conditioning is used to simulate the aging compacted mixture will undergo during 7-10 years of service.

30

Mix Conditioning

• Hot mix ages at high temperatures: in plant, truck, and MTV. Called short-term

- Aging means the binder gets more brittle due to oxidation and volatilization.
- Embrittlement leads to premature cracking and raveling.

31

Mix Conditioning, cont'd.

- The binder will also be absorbed by the aggregate.
- More absorption, less effective binder left between the particles to function: less compactible, lower durability.
- **Long-term aging**, is the aging that occurs during the *service* life of the pavement.

32

32

Procedure for Lab Mixed "Volumetric"

- Place mixture 25-50 mm thick in a pan.
- Place in forced air oven for 2 hr. <u>+</u> 5 min. at compaction temperature.
- Stir after **60** <u>+</u> **5 min.** to maintain uniform conditioning.
- The conditioned mixture is now ready for compaction.

33

Procedure for Performance Specimens "Short Term"

- For Lab mixed specimens only.
- Place mixture 25-50 mm thick in a pan.
- Place in forced air oven @135°C for
 4 hr. ± 5 min.
- Stir after **60** <u>+</u> **5 min.** to maintain uniform conditioning.
- The conditioned mixture is now ready for compaction.

34

34

Procedure "Long Term" Mainly Research Use

Procedure for aging prepared specimens:

- · Compact Specimens.
- Cool specimen for 16 ± 1 h.
- Place compacted specimen in the conditioning oven for 120 ± 0.5 hr. at a temperature of 85 ± 3°C.
- After **120 hr.** turn off oven and open doors to allow specimens to cool to room temperature.
 - · Allow 16 hr. for cool time.
 - Specimens are now ready for testing. 35

		·

TAB Module 7

Module 7

Gyratory Compactor AASHTO T312

Significance and Use

- To prepare specimens for determining mechanical and volumetric properties of asphalt mixtures. Specimens simulate the density, aggregate orientation, and structural characteristics of the actual roadway.
- May be used to monitor the density of test specimens during preparation.
- May be used for field control of mixture during the production process.

2

Equipment

- Superpave Gyratory Compactor
- Specimen Height Measurement and Recording Device
- Specimen Molds
- Ram Heads and End Plates
- Lab Equipment such as balance, thermometer, oven, pans etc.

Λ

5

Gyratory Compacter (Gyro)

- Uses a gyratory motion which compacts by shearing action.
- Simulates compacting action achieved under a roller.
- The resulting specimen's density, particle orientation and structural characteristics are similar to a pavement.

6

11

AASHTO Test Methods & Specifications

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyratory Compactor operation
- T 166 Bulk Specific Gravity of gyro pucks
- T 209 Max Specific Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity

12

	Cut	101				TMENT	JCK W	RTATIO	1 - DIVIS				Narge	0
						-			Ī					
AFE:	sèteta									_			_	Para
DENT.								104.K	MYAK.		P.ORDATECO	(EDITA	Spen	-
10	PRODUCTO		(MEDU)			_			270	23	Del Chi Dela	CESUMA .	26	-
TSU.B.P.	406202-520		Hatt Bark			_		40.5	2713	17	Jacob Core	24	E .	_
CALKEZ CALKET	THEOR AND		Hert Fort		Dam Mil		-	1400	271	4.0	and to the	- 4	- 11	
DCALCUS	DOLL				is dense to	-		230	2335		Prof. Cray		-	1
														E
19.614 19.581	BOKA	1/24	Epolio	nat France	s Daving M	-		1623		A275.03	Sin Mad Sold. 3	002199		
more.	20,75,667	MAKES	MARKET.	BOLDS				Y-5/27						- 63
aice.	10	14	4141100	Hat Cree				80.6				0.9		- 44
17	NA.	5367	12.5	40				E :			ACCUPATION AND ADDRESS.		-	1
r .	196.3	201	10.0	1501				62.0	TS	R=		95		
AF.	150.0	100.0	100.0	1003				20.0	- 55.5	-		55.		
r	91.0	1000	900.0	10-63				3/1	24	OO/A	~	1.1		,
r	81.3	36.1	ma.c	411				50.5		JUIN		- 1.1		1
4	21.5	8.5	91.3	500.0				n				4610		
4	7.6	14	42.5	10.03				12	<u>G</u> y	то И	n	4010	-	
rd.	11	13	22,7	10.00				16						
90	13	21	111	100.0				14	BAC	K C	W. =	2196		
100	13	- 13	11.5	1952				62		1	10			
100	13	- 17		90.0						/	24			
NACHARCAY		100 1	140	-	\$7565 F			2	TO .		No.4	> 30	SCHEON TON	_
MAACTERS			170		YMA 2	18.6	21,3%5 4	- 0	ALTER O		Petro E	425 50%	103	\$2
Kalento Total		NAY.	2.529		* F\$150 4	77	Charles of				bette a	205 ASP	TARTEGORPLAN	4

14

Operational Modes

- **1.** For Volumetric specimens, compact to a *fixed number of gyrations*, resulting height must be $=115 \pm 5$ mm.
- **2.** For performance test (TSR, Hamburg, etc.) compact to a *fixed height* = 95,62 mm as required

15

Location of Gyro Puck Weight on JMF

Gyration Levels

Design	Ninitial	N _{design}	N _{maximum}
F	-	50	
E	7	75	115
С	8	80 or 100	160
В	9	125	205

- C Mixes at 80 gyrations:
 - no N_{Initial} or N_{max} requirements.
- SMA Mixes:
 - N_{design}= 100
 - No N_{max} requirement

19

Number of Gyrations

- N_{ini}= initial number of gyrations: at a low number, the ease of mix densification is analyzed to spot tenderness potential.
- N_{des}= the number of gyrations corresponding to the design traffic; want 4% air voids at this point (96% density).
- N_{max} = maximum number applied to the specimen to assess densification after many years; want > 2% V_a (<98% density).

20

19

20

Number of Gyrations

- N_{ini}, N_{des}, and N_{max} are shown on the JMF.
- Samples for field verification of volumetrics should be compacted to N_{des} gyrations.

2

Sample Prep. Weigh enough mix to achieve the desired height and/or void target. Adjust specimen weight as needed during the design phase of establishing a mix design. Condition mixture as required in R30 for the type of specimens to be molded. Heat mix to molding temperature. (See JMF)

Location of Gyration Info on JMF

	. <u> </u>				A SPHA	LTIC CONCRETE	TYPE SP12	НВ		ļ		<u>.</u>			
DATE #	10/29/03	<u> </u>			co	NTRACTOR = MY	BUSINESS	İ					1	S	P 125 03-
IDENT.	CONTROL PROPERTY CONTROL		:		:		BULK	APPAR				:			
NO.	PRODUCT	CODE	/ PRODUCE	R. LOCATION			SP. GR.	SP. GR	%ABS	FORMATION	1	LEDGES	ig.	CHERT	
35JSJ001	100207LC		/ Hard Rock	Stone, Dig Deep, MO	***************************************		2.515	2.713	2.9	Jet City Dolo).	5-8	2	5	
35JSJ002	100204 LE			Stone, Dig Deep, MO	:	:	2.476	2.725	3.7	Jet City Dolo).	5-8	2	5	
35JSJ003	1002MS .t/		1					2.761		Jet City Dolo) .	5-8	1	0	
30CAJ016	1002HLH		7	2.0				2.303		Hyd. Lime					
		}						:				:		I	
)	1	Ali-1			<u> </u>		:	:		i			
	:		1	Nini =			9	:						-	
			7									į		Í	
	<u> </u>	 	1	A 4 - 4		40	_			Y i			:		
	;	<u> </u>	1	Ndes =		12	ə 🗆							Ī	
36DLJ016	1015ACPG	7022						İ	PG70-22	Gyro Mold To	emp. 300-3	10°F		i	
MATERIAL	: 10137010	1	1 :	M		20								1	
IDENT#	35JSJ001	35JSJ002		Ymax =		20	ට	35JSJ002	35JSJ003	30CAJ016					COM
03016	3/4"			00-10 -1-1 -1-1-10-10-10-10-10-10-10-10-10-10-10-10											GRA
1 1/2"	100.0		LOS	*4	ے مو	77 AT A	<u> </u>	12.0						[100
1"	100.0			100.0	1.		60.0	12.0		1 1 1				i	100
! 3/4*	100.0		1 1111	100.0		1 .	.00	12.0	26.0	1 1					100
3/4 1/2*	97.6	1		100.0			58.6	12.0	26.0	1 1					98
3/8"	83.8	ſ	100.0	100.0			50.3	11.5	26.0	† <u>†</u>		.,,.,.,	1		89
<u>3</u> 44	31.8	···		100.0			19.1	4.2	28.0	(1		51
	7,0	\$····		100.0			4.2		21.3	† †			1		28
#8 #16	2.6			100.0			1.6		10.6					İ	14
#30	1.6			100.0	-		1.0		6.9	1.1					10.
				100.0			1.0		3.5	11.1				.	6
#50 #100	1.6	i	5.4	100.0			0.9	0.2	3.3				1		4.
#100 #200	1.5	****	4.2	99.0	1.	÷.	0.9	0.2		2.0				1	4
#200 LABORATORY	:	Gmm ≃	2.405	% VOIDS =	A .	TSR ≃	95	TSR WI.		Nini =	9	_//	міх сомроз	пои	
CHARACTERIS		Gmb =	2,405	- 76 VOIDS - V.M.A. =	14.4	-200/AC =	1,1	3855.0		Ndes ≃	125	Y	MIN. AGG.		93.89
CHARACTERIS AASHTO T312	· · · · · · · · · · · · · · · · · · ·	Gsb =	2.508	% FILLED =	72	Gyro Wt. =	4610	5055.0		Nmax =	205		ASPHALT CO	NTENT	6.29
		C30 -	90004	SerieceD*		JGE BACK CNT. =	2196		_	-Δ1 =	-5 234744			******	
CALIBRATION	MANARK	·	\$UVU4		MADIER UAL	JOE BAUK CHI	2190							~~~~	

Location of Gyro Molding Temperature on JMF

			1113	SSOURI DEPAR		HALTIC CONCRETE T								
	10/29/03					CONTRACTOR = MY E	UISINESS							SP125 03-
DATE =	10/29/03		A A A A A A A A A A A A A A A A A A A			CONTINUO TO TO	BULK	APPAR	A STATE OF THE STA		A CONTRACTOR OF THE PARTY OF TH	:	:	
DENT.	DOONICE	CODE	/ OBODUCE	R, LOCATION			SP. GR.	SP. GR.	%ABS	FORMATIO	: . N	LEDGES	% CHERT	
10.	PRODUCT				:		2.515	2,713	2.9	Jet City Dol		5-8	25	
5JSJ001	100207. LD			Stone, Dig Deep, MO			2.476	2.725	3.7	Jet City Dol		6-8	26	İ
5JSJ002	100204LD			Stone, Dig Deep, MO			2.470	2.761	. 0,1	Jet City Dol		5-0	10	<u> </u>
15JSJ003	1002MS M			Stone, Drg Deep, MO							· · · · · · · · · · · · · · · · · · ·			+
0CAJ016	1002HLHL		/ Missy Lime	Co. #2, Ste. General, I	10 1	:	2.303	2.303		Hyd. Lime				1
							:)				-		
												<u> </u>		
) [:									1
5DLJ016	1015ACPG.	7022	I Black Asol	nak Products, Decoy, MC	,		1.023		PG70-22	Gyro Mold T	Temp. 300-3	10°F)	
	TOTS ACT O	.1022	/ Dieck Aspi	itak i loddets, Devoj, im-										
ATERIAL SENT#	35JSJ001	35.15.3002	35JSJ003	30CAJ016			35JSJ00	35JSJ002	35JSJ003	- 300H3010		:		CO.
03016	3/4*		MAN SAND				60.0	12.0	26.0	2.0				GR
1/2*	100.0			100.0			60,0	12.0	26.0	2.0				10
1/2	100.0			100.0			60.0	12.0	26.0	2.0				10
	100.0		1	100.0		K	60.0	12.0	26.0	2.0				10
/4" <u> </u>	: 100.0	100.0	100.0	(30.0	:		58.6	12.0	26.0	1		1		9
/2"		-	***************************************		·		50.3	11.5	26.0	·	<u> </u>			8
/8"						-	19.1	4.2	26.0					5
4	<u> </u>						4,2	1.0	21.3	÷				2
8	007	0.22	Chien	Mold Tem	~ 3 00	_340°₽	1.6.	0.4	10.6					1
16	ru:	<u> </u>	Gyiu	MON TOTAL	y. 000	0101	1.0	0.3	6.9				-	1
30						ŀ	1.0	0.3	3.5					
50						11	0.9	0.2	1.4				1	
100			1 1				0.9	0.2	1.5	1				
200	1.5	1.8	·	99.0	i :				1.7				LIV COLIDORATOR	1
ABORATOR'	Y	Gmm =	2.405	% VOIDS =	4	TSR≝	95	TSR Wt.		Nini =	9		MIX COMPOSITION	
CHARACTER	ISTICS	Gmb =	2.308	V.M.A. =	14.4	-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.	93.
ASHTO T312	2	Gsb =	2.629	% FILLED	72	. Gym Wt. =:	4610			Nmax =	205		ASPHALT CONTENT	1 6.
AUBRATION	NUMBER		90004		MASTER	GAUGE BACK CNT. =	2196			A1 =	-5 234741			
IASTED GAS	JGE SER NO	=	770			SAMPLE WEIGHT =	7200	į		A2 =	3.436895			

Procedure - Verification

Verify the gyratory on a cold (Powered up 10-15 min) And clean machine.

- 1) Daily during use or
- 2) If gyratory compactor is moved.

Calibrate:

- 1) Annually or
- 2) If verification fails.

More on verification and calibration after procedure.

25

25

Procedure - Pre-compaction

- Preheat gyratory mold and plates to molding temperature (see JMF) for ≥ 30 min.
- Reduce loose mix according to AASHTO R47.
- Place the mix in a preheated oven set to JMF molding temperature.
- Place a thermometer in the loose mix to check temperature before molding.
- When loose mix is at molding temperature, move quickly to compaction.

26

26

Procedure - Compaction

- · Pull the mold items out of the oven.
- Assemble if needed.
- · Place a paper disc to the bottom.

27

Add a funnel on the top of the mold. At the oven, check if mix is at molding temperature. If on temperature, place the mix in the mold in one lift. Scraping the pan and spatula to include all of the sample into the mold.

28

Procedure - Compaction

- Level the mix and place a paper disc on top the sample.
- · Place the lid to the mold with beveled side facing up.
- Place the mold into the gyratory compactor.
- · Verify settings on the gyro are correct.

29

Procedure - Compaction Items to verify: • Verify 150mm specimen diameter. • Verify compaction pressure = 600 kPa. • For Volumetric pucks, • Set gyrations = Ndes from JMF. • For TSR pucks, • Set specimen height to 95 mm.

30

Record Keeping Must have a unique ID on each piece of equipment. Must keep a list of equipment for IAS inspection.

35

Common Gyro Errors

- Not placing a paper disk on bottom or top of specimen.
- Not removing paper disks while puck is still warm.
- · Not using top or bottom plates.
- Not compacting mix at proper temperature.
- Not properly verifying the calibration of the compactor prior to use.
- Not pre-heating the mold and plates.
- Not charging the mold with mix quickly in one lift without spading or rodding.

36

35

Common GYRO Errors, cont'd.

- Avoid allowing built-up asphalt in gyro mold to smear the sides of the puck as it is extruded, closing off voids. As a minimum, wipe off top and bottom lids after every puck.
- Don't let paper disks become brittle by keeping them in in bottom of mold in oven overnight.

37

37

Calibration and Verification

- Must check:
 - rate of gyration (rotational speed)
 - · roller clearance & zero position
 - height measurement
 - ram force (load)
 - angle of gyration:
 - Internal angle (calibration)
 - External angle (verification)

38

38

Actions

- **Calibration**: Annually, if Verification fails, if moved.
 - Measure
- Adjust
- Re-measure
- **Verification**: Daily, After maintenance, or questionable results.
 - Measurement
- Note: Calibration and Verification should only be performed on a clean/cold machine.

39

GYRO MOLD EVALUATION

- Frequency: min. 12 months or 80 operating hours
 - External calibration service (usually in conjunction with gyro calibration), or:
 - In-house
- Critical dimensions:
 - Mold inside diameter
 - End plate diameter
 - Mold length

40

40

AASHTO T 312: Specimen Compaction

Pro	e-Verification Checklist: (Note: State operation & frequency).	1	2	R
Sta	ate required frequency of verification & calibration:			
Ve	rify on a cold (powered up for 10-15 minutes) and clean machine 1) Daily during use, or 2) if gyro is moved			
Ca	librate: 1) Annually, or 2) If verification fails			
	e-Compaction Checklist: (Note: Proctor will tell you the type of specin			
1000	be molded, you will explain the setting for the machine for that operation	on.)		
-	ate & verify required parameters for compaction:			_
1.	Verify 150 mm specimen diameter			
2.	Verify compaction pressure = 600 kPa			
3.	For Volumetric pucks, SET GYRATIONS = N _{des} (from JMF)			
4.	For TSR pucks, set SPEC. HT. (specimen height) = 95.0 mm			
5.	Preheat gyratory mold and plates to molding temperature. (see JMF) for ≥ 30 minutes)			
6.	Loose Mix sample must be reduced according to AASHTO R47. (see JMF for information)			
7.	Place the mix in a preheated oven set to molding temp. (See JMF for temp.)			
8.	Place a thermometer in the loose mix to check temperature.			
9.	When loose mix is at molding temperature, move quickly to compaction.			
	mpaction Procedure: <mark>(Mold specimen, proctor can assist with maching eration as needed.) CAUTION!! Use PPE, everything is HOT!</mark>	9		
	Pull the hot mold items out of the oven.			
	Assemble mold & bottom plate (If necessary) & insert a paper disk into the bottom of the mold and place a funnel on the top.			
12.	Check if mix is at molding temperature, if so, take the loose mix from the oven, place it in the mold in 1 lift. a. Scrape pan and spatula clean to include all of the sample to the mold.			
13	Level the surface of loose mix in the mold, place 2nd paper disk on top.			
	Place top plate on top beveled side up.			
78 7836	Place mold in machine according to manufactures instructions.			
	Verify setting are correct on the Gyro, Press START and let compaction			
17.	When the compaction has completed, open door and move mold to puck extrusion station.			
	a. Note: Some machines will automatically extrude the sample.			

18. Carefully remove the top plate and paper disk. a. If the mix is tender, may need to cool a few seconds before	
handling to avoid collapse.	
19. After minimum cooling period to assure puck stability, carefully set puck upside-down on cooling rack, and remove 2 nd paper disk ASAP	
20. Mark the puck for identification purposes on the side of the sample.	ļ ļ
PASS?	
FAIL?	
ProctorDate	
Reviewer Date	

TAB Module 8

Module 8

Maximum Specific Gravity AASHTO T209

(Gmm), (Rice)

Maximum Specific Gravity of Voidless Mix • Specific gravity is the ratio of the mass in air of a volume of material to the mass in air of an equal volume of water. • "Rice" test • "G_{mm}": • G = specific gravity • m = mix • m = maximum

Sample Location • Volumetric sample: Behind the paver

- TSR sample:
 - Truck
 - Plant discharge
 - Behind paver

4

- 1. Computing % air voids (a pay factor):
 - ${}^{\bullet}$ $\mathbf{V}_{a} = [(\mathbf{\textit{G}}_{mm} {}^{-} \mathbf{\textit{G}}_{mb}) \div \mathbf{\textit{G}}_{mm}] \times 100$
- 2. Computing pavement density (a pay factor):
 - Density = $(G_{mc} \div G_{mm}) \times 100$
 - G_{mc} = core specific gravity

5

Nominal Maximum Aggregate Size, mm	Minimum Sample Size, g
37.5mm or Greater (1.5")	4000
19 to 25mm (3/4 - 1")	2500
12.5 (1/2") or smaller	1500

8

g

Weigh in Water Procedure Check level of the water bath and the temperature of the bath. Temperature of the bath should be 77°F (25°C). Determine and record the empty weight of the Pycnometer (without lid). Place dry loose sample in pycnometer and level the out the top surface.

Weigh in Water Procedure

Add sufficient water to cover the sample completely. (~1 inch) De-air the specimen by agitating under vacuum for 15 ± 2 min.

The vacuum is required to be 27.5 ± 2.5 mm Hg absolute vacuum. Connect a manometer to the system.

After 15 ±2 min slowly release the vacuum. Disassemble apparatus.

13

Side note: Agitation

- Mechanical Method A
- Manual Method B
- Manual method has come and gone and come again in the specs as an allowable method

14

Weigh in Water Mass Determination

 Weigh suspended pycnometer with sample below the scale in water 77 °F (25 ± 1°C) without lid for 10 ± 1 min:

[pycnometer + specimen] under water= "C"

15

temperature.

23

Dry-Back Step

- Continue drying in front of a fan.
- Determine and record the mass at 15-minute intervals.
- When the loss in mass is less than 0.05% for this interval the sample may be considered surface dry. (SSD state)
 - Procedure generally takes approximately 2 hr.

24

Dry-Back Calculation "A₂"

 Knowing mass of specimen and mass of water displaced (volume of specimen), calculate G_{mm}

$$Gmm = \frac{A}{(A_2 + B - C)}$$

"C" will be incorrect if water temperature is not standard.

25

25

When to Implement Dry-Back

- If coarse aggregate absorptions are excessive, perform on first lot (all sublots).
- If initial Gmm and the dry-back Gmm are within 0.002 of each other in each of the first 4 sublots, the dry-back procedure may be reduced to once per 4 sublots (FAQ).

26

26

Use of G_{mm}

- Calculate Air Voids
- Calculate Core Density

27

Spreadsheet	Ca	Cu	lat	ior	15	(E)	large
10,000000000000000000000000000000000000	1000	3-277				/	276
							190
ASHTO R 35							
= Gmm (FIELD)	2.472	2 472	2472	2472	2 472	2.472	2.472
= Gmb (FIELD) (Avg.)	2 339	0.000	0.000	0.000	0.000	0.000	0.000
= Gsb (Job Mix)	2 557	2.557	2 557	2.557	2.557	2.557	2.557
= Ps = Percent Agg. In mix	94.5	100.0	100.0	100 0	103.0	1000	100.0
MA = 100 - (B X D / C)	13.3	100.0	100 0	100.0	100.0	100 0	100.0
a = 100 X ((A - B) / A)	54	1000	100 0	160.0	100.0	100.0	100.6
FA = (VMA-Va) / VMA	59	0	.0	0	0	0	0
A 8	- 1						
ASHTO T 166				-			-
ECHACIAN		1.77		_		1000	-
= Weight of sample in air:	1225		_	-		-	4
= Weight in water;	710		+1 -			1.35	100
= Weight of surface dry sample:	1250	-	-				
mc = CORE SPECIFIC GRAVITY = A / (C - B)	2 292	0.000	0.000	0 000	0 000	0.000	0.000
mm = MAX. SPECIFIC GRAVITY (T209)	2 472	2.472	2472	2 472	2 472	2 472	2.472
COMPACTION OF CORE = 100 x (Gmc / Gmm)	923	0.0	0.0	0.0	0.0	0.0	00
HICKNESS			155		3 3	7	41.5
UBLOT							
					OTTOWN D		Street, Street

Changes in "G_{mm}" In silo, trucks, MTV	
Time interval at high temperature Absorptiveness of aggregate	
	30

SUPERPAVE MIXTURE PROPERTIES

A2 required 1594.4 7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1 2814.5	0.0 0.0 2.472	0.0	0.0% on any a	0.0 0.0 2.472	0.0 0.0 2.472	0.0
1594.4 7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4699.1	0.0	0.0 0.0 2.472	.0% on any a	0.0 0.0 2.472	0.0	0.0
1594.4 7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4699.1	0.0	0.0	0.0	0.0 0.0 2.472	0.0	0.0
7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1	0.0	0.0	0.0	0.0 0.0 2.472	0.0	0.0
7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1	0.0	0.0	0.0 0.0 2.472	0.0	0.0	0.0 0.0 2.472
7472.2 9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1	0.0	0.0	0.0 0.0 2.472	0.0 0.0 2.472	0.0	0.0
9066.6 8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1	0.0	0.0	0.0 0.0 2.472	0.0 0.0 2.472	0.0	0.0 0.0 2.472
8421.5 645.1 2.472 4867.8 2801.9 4880.4 2.342 4899.1	0.0 2.472	0.0 2.472	0.0 2.472	0.0 2.472	0.0	0.0 2.472
4867.8 2801.9 4880.4 2.342 4899.1	6.0 2.472	2.472	0.0 2.472	0.0 2.472	0.0	0.0 2.472
2.472 4867.8 2801.9 4880.4 2.342 4899.1	2.472	2.472	2.472	2.472		2.472
4867.8 2801.9 4880.4 2.342 4899.1					2.4/2	
4867.8 2801.9 4880.4 2.342 4899.1						
4867.8 2801.9 4880.4 2.342 4899.1						
4867.8 2801.9 4880.4 2.342 4899.1						111 1 1 111 1
2801.9 4880.4 2.342 4899.1						
4880.4 2.342 4899.1						
2.342 4899.1						
4899.1	ር ለሰለ ፣				- 1. i. : 11	
		0.000	0.000	0.000	0.000	0.000
2814.5						
· · · · · · · · · · · · · · · · · · ·	<u></u>					21 (1 1 1 1 1 1 1 1
4911,9					0.000	
2,336	0.000	0.000	0.000	0.000	0.000	0.000
2.339	0.000	0.000	0.000	0.000	0.000	0.000
			T			
			1			
	-138					*********
in diving	1-1-11-11-11-11-11-11-11-11-11-11-11-11	31417773	:::::::::::::::::::::::::::::::::::::::		- 1-111-111-111-1	
ei. Heiligigi		11.11				
5.35	1				<u> </u>	
				I	7	and head of
5.2						
2.472	2.472	2.472	2,472	2.472	2.472	2.472
		0,000			0,000	0.000
						2.557
						100.0
13.3						100.0
5.4	100.0	100.0		100.0		100.0
59	0	0	0	0	<u> </u>	0
						
White service of A	 	je smarta ell	· · · · · · · · · · · · · · · · · · ·	11 11 11		75 112 12 1
1255						
710				****	***************************************	- H. A
						
4000	1					
1260				11 1 2 1 1		
2,202	2,472	2.472	2.472	2,472	2.472	2.472
	2.472	2,472	2.472	2,472	2.472	2.472
2,202						
2.472					2.472	2.472
2.472					2.472	2.472
2.472					2.472	2.472
2.472					2.472	2.472
2,472					2.472	2.472
2.472		2.472			2.472	2.472
2.472					2.472	2.472
2.472		2.472			2.472	2.472
2.472	2.472	2.472	2.472	2.472	2.472	2.472
2.472	2.472	2.472	2.472	0.000	0.000 2.472 0.0	2,472
2.472 2.472 31.3 0.000 2.472	0.000 2.472	0.000 2.472	0.000 2.472	0.000 2.472	0.000 2.472	2.472 3.0 0.000 2.472
	2.472 2.557 94.8 13.3 5.4 59	2.472 2.472 2.557 2.557 94.8 100.0 13.3 100.0 5.4 100.0 59 0	2.472 2.472 2.472 2.557 2.557 2.557 94.8 100.0 100.0 13.3 100.0 100.0 5.4 100.0 100.0 59 0 0	5.35	5.35	5.35

SPREADSHEET CALCULATIONS

AASHTO R 35

A = Gmm (FIELD)

B = Gmb (FIELD) (Avg.)

C = Gsb (Job Mix)

D = Ps = Percent Agg. in mix

 $VMA = 100 - (B \times D / C)$

Va = 100 X ((A - B) / A)

VFA = (VMA-Va) / VMA

2.472	2.472	2,472	2.472	2.472	2.472	2.472
2.339	0.000	0.000	0.000	0.000	0.000	0.000
2.557	2.557	2.557	2,557	2.557	2.557	2.557
94.8	100.0	100.0	100.0	100.0	100.0	100.0
13.3	100.0	100.0	100.0	100.0	100.0	100.0
5.4	100.0	100.0	100.0	100.0	100.0	100.0
59	0	0	0	0	0	0

AASHTO T 166

TECHNICIAN

A = Weight of sample in air:

B = Weight in water:

C = Weight of surface dry sample:

Gmc = CORE SPECIFIC GRAVITY = A / (C - B)

Gmm = MAX. SPECIFIC GRAVITY (T209)

% COMPACTION OF CORE = 100 x (Gmc / Gmm)

THICKNESS

SUBLOT

	13 July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
92.3		0.0	0.0	0.0	0.0	0.0
2.472	2.472	2.472	2.472	2,472	2.472	2.472
2.282	0.000	0.000	0.000	0.000	0.000	0.000
126	60					
71	0					
125						

32

Common Testing Errors

- Not allowing specimen to cool to proper temperature.
- Over-manipulating the specimen, producing broken, uncoated particles
- Not having a manometer connected directly to the pycnometer
- Not maintaining the proper level of vacuum.
- Not breaking up sample completely
- Not agitating sample enough
 Agitating sample too much

iucii

33

Common Testing Errors, cont'd

- If the specimen was too warm when placed in the pycnometer: after the vacuum step, if stirring is done, aggregate may be broken.
- Not placing the lid in the same position each time.
- Not sufficiently drying the outside of the pycnometer before weighing.
- Allowing entrapped air bubbles in pycnometer.
- Not performing the dry-back procedure for highly absorptive aggregates.
- Not calibrating the pycnometer often enough.
- Not maintaining proper water temperatures.

34

34

Common Testing Errors, cont'd

- Use of a dry towel may wick water out of the pycnometer hole.
- Not using similar size specimen each time.
- Not changing vacuum level at proper rates.

35

AASHTO T 209: Theoretical Maximum Specific Gravity (Rice Test): "Weigh In Water" Method

	Trial#	1	2	R
Pre	e-Procedure Checklist: <mark>(State for proctor operation and frequency</mark>)		
Sta	ate the following requirements for routine testing of a particular mix:			
1.	Pycnometer calibration required daily			
2.	Sample moisture content must be <0.1%: Verify by a) oven drying until mass repeats within 0.1% OR b) use results of AASHTO T 329			
3.	Perform "dry-back" procedure if <u>ANY coarse aggregate fraction</u> has absorption > 2.0% (use surface-dry weight "A2" in place of "A" in the denominator of the non-dry-back Gmm equation			
Ro	utine Rice Test Procedure: (Demonstrate procedure, proctor will s	horte	<mark>en</mark>	
	e frames where needed.)			3.
4.	Separate particles while cooling sample: 1) Don't break aggregate; 2) Reduce sand-binder clumps to ≤ ¼"; 3) Cool until mix is at room temperature			
5.	Determine and record empty weight of the pycnometer (without lid). Place and level sample in pycnometer. Record weight of sample + pycnometer. Calculate and record oven-dry weight of sample [A]			
6.	Cover sample with approximately 1" of bath water			
7.	Subject to specified vacuum while agitating for 15 ± 2 minutes			
8.	Very slowly release vacuum, then disassemble apparatus			
9.	Confirm that water bath temperature is in spec and water is at default level (are they?), then zero out the weigh-in-water system.			
10.	Being careful not to expose the mix to the air, suspend pycnometer (without lid) and contents in water bath			
11.	Determine and record combined mass of pycnometer and contents [C] after 10 ± 1 minutes of immersion			
12.	After recording C, remove pycnometer from water bath, completely remove the contents, reset the weigh-in-water system to its default condition, re-suspend empty pycnometer (without lid) in water bath, then determine and record mass [B] after steady-state has been achieved (tank stops overflowing).			
13.	Calculate non-dry-back Gmm = A / (A + B $-$ C): Nearest 0.001?			
14.	Calculate dry-back Gmm = A / (A2 + B – C): Nearest 0.001?			
	PASS?			
	FAIL?			
Proc	torDate			
7 av d	ower Date			

AASHTO T 209: Theoretical Maximum Specific Gravity (Rice Test): "Weigh in Air" Method

	Trial#	1	2	R				
Pre	Pre-Procedure Checklist: {State for proctor operation & Frequency}							
Sta	ate the following requirements for routine testing of a particular mix:	,		r				
1.	Pycnometer calibration required daily							
2.	Sample moisture content must be <0.1%: Verify by a) oven drying until mass repeats within 0.1% OR b) use results of AASHTO T 329							
3.	Perform "dry-back" procedure if <u>ANY coarse aggregate fraction</u> has absorption > 2.0% (use surface-dry weight "A2" in place of "A" in the denominator of the non-dry-back Gmm equation							
	utine Rice Test Procedure:							
{De	emonstrate procedure, Proctor will shorten time frames}		1					
4.	Separate particles while cooling sample: 1) Don't break aggregate; 2) Reduce sand-binder clumps to ≤ ¼"; 3) Cool until mix is at room temperature							
5.	Determine and record empty weight of the pycnometer (without lid). Place and level sample in pycnometer. Record weight of sample + pycnometer. Calculate oven-dry weight of sample [A]							
6.	Cover sample with approximately 1" of bath water							
7.	Subject to specified vacuum while agitating for 15 ± 2 minutes							
8.	Immediately after the 15 ± 2-minute time period (i.e. the vacuum application stops), very slowly release vacuum.							
9.	Start 10 ± 1 minute time period in which the final weight must be obtained (i.e., finish the test). Disassemble apparatus.		and the same of th					
10.	Being careful not to expose the mix to the air, slowly submerge pycnometer in water bath at the specified temperature (is it?) and carefully place capillary lid on pycnometer							
11.	Just prior to end of 10 ± 1 minute time period, remove pycnometer, dry off the exterior, then determine and record total weight [E]							
12.	After recording E, completely remove contents, re-submerge empty pycnometer in water bath, place capillary lid on pycnometer, wait 10 ± 1 minutes for temperature to stabilize, remove pycnometer, dry off the exterior, then determine and record total weight [D]							
13.	Calculate non-dry-back Gmm = A / (A + D – E): Nearest 0.001?							
14.	Calculate dry-back Gmm = A / (A2 + D – E): Nearest 0.001?							
·	PASS?							
	FAIL?							
roc	torDate							
Revi	ewerDate							

-		

TAB Module 9

Module 9

Binder Ignition AC Content AASHTO T308

Equipment

- **Ignition Furnace** A forced air oven that heats by convection or direct IR irradiation. The convection type must be capable of maintaining 538 ± 5 °C(1000 ± 9 °F).
- For Method A the oven shall have an internal balance.
- Specimen basket assembly consisting of
 - Specimen Baskets
 - Catch Pan
 - Assembly guard

2

2

Oven Verification

- The oven must be "verified' every 12 months and after each move.
 - Temperature
 - Balance
- Methods:
 - Yearly outside service (usually along with gyro and mold calibrations, etc.)
 - In-house

3

Moisture Correction

- Moisture in mix will evaporate.
- This will count as binder unless corrected.
- Correction (2 methods):
 - Dry mix to a constant mass at 110 ± 5 C prior to testing.
 - "Aging"—must still verify that constant mass has been achieved.

Or

 Determine moisture content of mix (AASHTO T 329), subtract it from the apparent binder content.

7

7

Moisture Content (AASHTO T 329)

- Temperature:
 - · Within the JMF mixing temperature range.
 - If unavailable, use 325 ±25 F
- Initial drying time is 90 ± 5 minutes.
- Continue drying checking at 30 ± 5 min intervals until the mass changes less than 0.05% from the previous mass.
- Moisture is now calculated based on dry weight of HMA.

$$MC = \begin{bmatrix} M_{i(wet)} - M_{i(dry)} \\ M_{i(dry)} \end{bmatrix} X100 \quad \text{MC} = \% \text{ moisture} \\ M_{i(wet)} = \text{ initial mass of mix, wet} \\ M_{i(dry)} = \text{ final mass of mix, dry}$$

8

Rounding

- When calculating, round to nearest 0.01% for moisture content, binder content, and Cf
- When comparing to specification, round binder content to nearest 0.1%

9

q

	MOR	sture	En	5
	Data	Sheet	Enle	190
MOISTUR		ASPHALT (HMA) by 0 T 329-15 orrection purposes)		
Project No.	Job No.	Route	County	
Technician	Date	Sublot No.	Mix No.	
Oven Temp.	Time in	Time out	Interval]
		Sample:	Sample:	1
Pan wt. (g)		340.2		
Mix + pan wt., mo	ist (g) = (W _{wet})	1840.4		
Mix + pan wt., dry	(g) [Trial 1]	1839.3		
Mix + pan wt., dry (g) [Trial 2]		1838.8		
Mix + pan wt., dry (g) [Trial 3] = (W _{dry})		1838.3		
%Mo	$visture = \frac{W_{val} - W_{ay}}{W_{ay} - pan} \times 100$			1

Moisture Testing Frequency: "Common Wisdom"

As needed

- High RAP/RAS mixtures especially prone to moisture.
- Rainy weather
- "Warm mix"
- New aggregate
- If plant operator reports burning more fuel to maintain temperature.
- Fluctuating volumetrics or binder contents.
- Watering piles per DNR.

11

11

Moisture Testing Frequency:

"Common Wisdom" Less Often

- Dry weather
- Same stockpiles
- · No moisture when tested

12

Moisture Data Sheet

MOISTURE CONT	ENT OF HOT MIX ASPHA	ALT (HMA) by OVEN N	/IETHOD
AASHTO T 329-15	;		
(for ignition oven	correction purposes)		
Project No.	Job No.	Route	County
Technician	Technician Date		Mix No.
Oven Temp. Time in		Time out	Interval
		Sample:	Sample:
Pan wt. (g)	Pan wt. (g)		
Mix + pan wt., m	oist (g) = (W _{wet})	1840.4	
Mix + pan wt., dr	y (g) [Trial 1]	1839.3	
Mix + pan wt., dr	Mix + pan wt., dry (g) [Trial 2]		
Mix + pan wt., dry (g) [Trial 3] = (W _{dry})		1838.3	
$\%Moisture = \frac{W_{wet} - W_{dry}}{W_{dry} - pan} \times 100$			

NOTE: All weights to nearest 0.1 gram and % moisture to nearest 0.01%

Binder Content Corrections • Moisture • Aggregate burn loss • Temperature effects on weighing

13

Asphalt Binder Correction Factor (Aggregate Correction Factor)

- To correct for loss of mass during the mix ignition due to aggregate burn-off.
- Determined during mix design by mix designer (usually QC).
- Re-determined if mix design changes (e.g. >5% change in stockpiled aggregate proportions).
- Re-determined if a different oven is used (QA or QC).

14

14

Asphalt Binder Correction Factor (Aggregate Correction Factor), cont'd.

- · C_F Procedure:
 - Mix specimen in lab with dry aggregate at a known (actual) % binder.
 - Input "zero" for the C_F
 - Burn, obtain *measured (apparent*)% binder.
 - The difference between the measured and the actual % binder is the Asphalt Binder Correction Factor (C_F).
 - If the C_F is > 1.0%, re-determine at a lower temperature.

15

Definitions

 $\mathbf{M} = \text{mass}(g)$

- Mi(dry) = Mass of mix before burning, dry already
- Mf = Final mass of mix after burning (binder and some aggregate burned off).
- (Mi(dry) Mf) = Binder & aggregate burned off.
- Magg = Initial unburned mass of just the aggregate, dry.
- (Mi(dry) Mi(agg)) = Mix mass minus aggregate mass is the mass of binder, initially.

16

16

Asphalt Binder Correction Factor

(Aggregate Correction Factor), cont'd.

Lab-produced sample (dry)

$$C_f = Measured - Actual$$

Math

$$C_f = \left[\frac{M_{i(\textit{dry})} - M_f}{M_{i(\textit{dry})}}\right] - \left[\frac{M_{i(\textit{dry})} - M_{i(\textit{agg})}}{M_{i(\textit{dry})}}\right]$$

- The difference is the aggregate mass loss
- The *Measured* binder content can be from the oven ticket
- The Actual binder content can be from a bench scale
- If the C_F is > 1.0%, re-determine at a lower temperature

17

17

Convection Oven Temperatures

· AASHTO:

- Normal: 538 C
- High C_F 's (>1.0%): 482 C

· MoDOT:

- Normal: 538 C
- High C_F 's: if >1.0% try 482 C
- Very high C_F's: if >1.0% at 482 C, use 427 C

18

Cf Determination:

Number of Replicate Specimens

- Use two.
- If the difference in measured asphalt contents is > 0.15%, test 2 more replicates.
- For the four replicates, discard the high and low results.

19

19

20

Use of Cf

- Before production, when Cf is the *unknown*:
 Cf = Measured content–Actual content
- During production, when Actual content is unknown:

Actual = Measured content - Cf

21

Asphalt Binder Correction Factor

(Aggregate Correction Factor) Data Sheet

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308) METHOD A

Aggregate Correction Factor [Asphalt Binder Correction Factor] Determination

Sample	Lab No	Date	eInitia	ls
Replicate	1	2	3	4
Test Temperature	538	538		
Tare (basket, etc.) Mass (g)	3000.0	3000.0		
Total Dry Mass (g)	5000.1	5005.2		
Initial Dry Specimen Mass (g)	2000.0	2005.3		
Loss in Weight (g)	125	126		
%AC, measured = M	6.25	6.28		
%AC, actual = A	6.00	6.01		
%AC _{diff} (M ₁ – M ₂)	0.03	> 0.15%? If	0.15%? If so, 2 more replicates	
$C_F = M - A$	0.25	0.27		
C _F , average		0.26		

RAP Aggregate Correction Factor

(Asphalt Binder Correction Factor)

• Follow TM-77:

- $^{\bullet}$ Assumes aggregate $C_{_{\!F}}$ for RAP aggregate is same as $C_{_{\!F}}$ for virgin aggregate.
- Follow the standard procedure as if there was no RAP, i.e., use only the virgin aggregate, and only the binder content associated with the virgin. aggregate portion when fabricating the specimen.
- So, the Cf from the virgin materials test is used as the Cf for the whole mix.

23

23

Binder Content Corrections Moisture Aggregate burn loss Temperature effects on weighing

Convention Oven:

Temperature Compensation Factor

Material "weighs" differently at elevated temperatures.

- Mass loss shown on the oven printout must be corrected.
- Oven calculates and prints the "Temperature Correction Factor (TCF)" for the particular test run.
- TCF = apparent loss in mass due to heating.

25

25

Use of Temperature Correction Factor

- When determining the Aggregate Correction Factor, if the oven printout is used for determination of the Measured Asphalt Content, include the Temperature Correction Factor (TCF)
- If all weighing is performed outside of the oven and specimen is cooled to room temperature, do not use the TCF

26

26

Second Generation Infrared oven

- No Temperature Correction Factor
- Anecdotal: Scale is better insulated from the chamber.

27

Ignition Oven Specimen Size					
NMS, in.	Specimen Size, g				
#4	1200-1700				
3/8	1200-1700				
1/2	1500-2000				
3/4	2000-2500				
1	3000-3500				
	NMS, in. #4 3/8 1/2				

32

Convection Oven Test Procedure:

Method A

- Determine temperature of mix.
- Dry specimen at 230 \pm 9 °F (110 \pm 5 °C) or determine moisture content (T 329).
- Cool to temperature previously determined .
- Enter the chamber set point (desired oven temperature).
- Enter the asphalt correction factor (C_F).

33

- Obtain and record weight of empty basket assembly.
- Place ~ half of the mix in each basket.
- Use a spatula or trowel to level and move the mix about an inch away from the edges of the basket.
- Cool to room temperature.

Convection Oven

Test Procedure:

Method A

- Weigh the test specimen and basket on external bench scale.
- Enter the specimen mass.
- Place the sample in the oven and compare the mass indicated by the oven scale to that of the external scale the sample was first weighed on (this helps detect if basket is contacting the furnace wall).

35

35

Convection Oven

Test Procedure:

Method A

- Burn
- Oven will stop when burn is complete and will calculate % binder based on the:
 - · Original specimen weight entered
 - Total loss
 - Asphalt correction factor (C_F) that you entered.
 - "Temperature Compensation" factor that the oven calculates = apparent loss in weight due to heating.
- You must then correct (subtract) for moisture if started with a wet sample.

36

F	Reproducing	Oven Ticket	
Project No.	Job Na	Route	Corty
ednidan	Date	Sublet No.	Mix No.
Erryty Basket	Assently Weight (gs. [F,	i	3000
Basket Assert	thy + Wet (or dry) Sample	Weight (gr. [T]	4270:
Wat (or dry) S	wriple Weight (g), [W] = (1		
Loss in Weight (g). (L) (from tape)			
Total % Loss.	[P_= (L /W) x100]		
Temperature Compensation (%), [C _E] (from tape)			
% AC, uncome	ded (Per = Pr · Cr)		
Aggregate Correction (Calibration) Factor (%), [CJ] (from tape)			
Calibrated NAC (from ignition even tape), [P _{N,4} = P _{In} - C.]			
% Moishire Co	rtert [UC] (previous tes	y.	0.13
% AC. corrects	d (by weight of mir). [P ₄ :	P _{ns} - MCP	1 7 4 4

38

Asnhalt	Binder	Correction	Factor
Aspirair	Dillaci	Correction	lactor

(Formerly Aggregate Correction Factor)

Calculation

Where:

 $\sigma = \left| \frac{M_i - M_f}{M_i} \times 100 \right| - C_f - MC$

 M_i = initial mass of mix, wet or dry

 M_f = final mass of mix

MC = % moisture

 C_f = Asphalt Binder Correction Factor (old Aggregate Correction Factor)

39

Test Results Printout from Iginion Oven

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Reproducing Oven Ticket Values

Revised 12-9-15 *If $w_i = wet$

Project No.	Job No.	Route	County
Technician	Date	Sublot No.	Mix No.
Empty Basket Assembly	3000.2		
Basket Assembly + Wet	4270.2		
Wet (or dry) Sample We			
Loss in Weight (g), [L] (
Total % Loss, [P _L = (L / V			
Temperature Compensa			
% AC, uncorrected, [P _{bu}			
Aggregate Correction (C			
Calibrated %AC (from ig			
% Moisture Content, [M	-0.13		
% AC, corrected (by we			

Example Manual Method • Moisture = 0.05% • C_f = 0.22% • Initial wet mass = 5400.2 g • Final burned mass (after cooling to room temperature) = 5256.2 g

73		(AASH) M	TO T 308-1 ethod A eighing Me	ion Met O ethod	nlarged
	Project No.	Job No.	Rods	Courty	
	Technician	Date	Sublot No.	Mix No.	
	Empty Basket A	ssembly Weight (g)	ርህ.	3000	
	Initial Basket As	Initial Basket Assembly + Wet (or dry) Sample Weight (g). [T]			
	Initial Wet (or dr	initial Wet (or dry) Sample Weight (g), [W,= (T,-T,)]			
	Final Basket Ass	Final Basket Assembly + Burned Sample Weight (g), [T]			
	Loss in Weight (Loss in Weight (g), [L= T, -T.]			
22	% Loss, [P _L = (L.	% Loss, [P _L = (L/W) x100]			
	Aggregate Corre	Aggregate Correction (Calibration) Factor (%), [C]			
	Calibrated %AC	Calibrated NAC, [P _{lot} = P _L - C.]			
	% Moisture Cont	% Moisture Content, [MC]*			
	% AC, corrected	% AC, corrected (by weight of mix), [P _b = P _{bus} – MC]*			
	416 1-1-1		as used (wi = wet)		4:

Asphalt Content Ignition Method

(AASHTO T 308-10) METHOD A Manual Weighing Method

Project No.	Job No.	Route	County
Technician	Date	Sublot No.	Mix No.
Empty Basket A	3000		
Initial Basket As	5400		
Initial Wet (or di	2400		
Final Basket As	5256		
Loss in Weight	144		
% Loss, [P _L = (L	6.00		
Aggregate Correction (Calibration) Factor (%), [C _f]			-0.22
Calibrated %AC	5.78		
% Moisture Con	-0.05		
% AC, corrected	5.73		

^{*}If non-dried specimen was used (wi = wet)

Test Procedure

Method B

- · Weigh out specimen.
- Burn for about 45 minutes.
- · Remove, cool, weigh.
- Burn for another 15 minutes.
- Remove, cool, weigh.
- Keep repeating the 15-minute burn intervals until 2 consecutive mass weighings do not change by > 0.05%.
- Subtract moisture % if necessary.

44

44

Common Testing Errors/Source

of

Non-Comparison/Early Shut-off

- Starting test when oven is cold: incomplete burn; can affect TCF.
- Neglecting to push "Start" (binder burns but is not recorded).
- Not cleaning oven & vents often enough.
 - Tip: Perform "Lift" test regularly to verify clean oven.
- Using vent pipe less than 4 in, diameter (NTO clogs more quickly).

45

Common Testing Errors/Source

of

Non-Comparison/Early Shut-off

- Asphalt correction factor (C_F) not used
- Not cleaning baskets
- Allowing scale plate or support tubes to rub
- Not spreading specimen out
- Not tearing off ticket before opening oven door
- Allowing door to not latch correctly
- Not correcting for moisture (e.g., when plant speed increases, etc)

46

46

Common Testing Errors/Source

of

Non-Comparison/Early Shut-off

- Using an oversize specimen.
- Not using the same size specimen for asphalt correction factor (C_F) determination and all production tests.
- Using a plant-made specimen instead of a lab-made specimen for (C_F) determination.
- Not double-checking specimen weight on oven scale against exterior scale weight.

47

47

Common Testing Errors/Source

of

Non-Comparison/Early Shut-off

- ${}^{\bullet}$ Materials used for (C_{F}) determination not the same as project materials
- Inaccurate asphalt contents used for (C_F) determination
- QA & QC starting with different temperature specimens
- Door left open too long between loadings

48

Common Testing Errors/Source of Non-Comparison/Early Shut-off Wrong chamber set point. Wrong burn profile. Weighing on bench balance when specimen is hot.

49

Operation Problems Oven won't shut itself off—it's OK to manually shut off as long as 3 consecutive readings show less than 0.01% loss, and the sample appears to be completely burned (EPG 403.1.5)

50

Premature Burn Stop • Vibrations • Basket or strap up against wall or top of chamber. • Clogged port • Used U.S. date, not European date (1998-2000 NCAT models).

		_			_	_	****	***
SUPERPAVE MIX	TURE F	ROPE	RTIE	s				
60 1 KOUTE 1	NUMB		0.0	LETRO				
ELECT UNITE HONORADE POR TYCHNISAN A VICE OF ANTONIA A VICE OF ANTONIA A VICE OF ANTONIA	Marrie	ings 194 s	POTEN S	n-n	wown.h	-		EDI
E - 60 of tack bind not come # - A - Cody come or top of A to deplant; E - 10 of tack bind not come and compar Y - X - E Come of the EFELF C Disay(T) - A / Y	101 101 101 101	100	100	110	78	400	1) 14	Enlarged
Monto Prints 150-06-00-00 Managema Phateson Andel An Employ of Sensory in the Bit Weight of Sensory in the Bit Weight of Sensory in the Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel of Sensory Controlled on Antel on Ant	2011 2011 2011 2011 2011 2011 2011 2011	***	100	1.60	.te		780	\
AVS 0=0	227	100	691	4 700	120	2.00	1.07	
TEO-MICHA BACKT THE FRANCE IN SAMELE RECORD SALES SHOUND CRAPES AND SHOUND SAME CRAPES A SE								
SEASON DESIGNATION OF NAME AND ASSOCIATION OF NAME ASSOCIATION OF NAME ASSOCIATION OF NAME ASSOCIATION OF NAME ASSOCIATION OF	2 (g) 2 (g) 2 (g)							
A - D F-ELD) B - C	401 401 401	147 150 161 161 161 161	210 210 200 201 201 201 201 201	A 6 22 23 23 23 23 23 23 23 23 23 23 23 23	100 100 100 100 100 100 100 100 100 100	THE SECOND	10	
Extended that 100 feeting of amount in an 8 is Visiged to recent to sample the visiged to recent to sample the in court of recent case are in a 100 feet down in the affected data are in a 100 feet the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the the court of the court of the court of the court of the the court of the court of the court of the court of the the court of the court of the court of the court of the the court of the court of the court of the court of the court of the the court of the 100	107	144	1 av 1 b y 2 f y	150	130	6 to 10 to 1		
From processes had not be with a mile of the operation of a 19 mile of the operation of the	15	# 10 to 10 t	15	18	iĝ.	100	3 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00	56

	Binder	Po	rt	ion	4	nlar	ged
TECHNICIAN	137.37				1000	7	Livos.
MoDOT TM54 (NUCLEAR)				*			
SAMPLE WEIGHT	1112			E COL	100	-	
BACKGROUND	12.30	100	100	-	100	17	7.5
COUNTS	1.E -E		100		1 (F)	1 :-	
GAUGE % AC	4 .1	11 11	+		111	2.75	+
AASHTO T 308 (IGNITION)							r .
GAUGE %AC	5.35	100		to the second		178 42	1.5
NUCLEAR OR IGNITION % MOISTURE	0.12	UGBT/		11.	1000	T	
% AC BY IGNITION OR NUCLEAR	52		-	-	-104		1000
% AC DI IONITION ON NUCLEAR	52						
3A 10 10 10 10 10 10 10 1			LINE OF THE PARTY				
							57

SUPERPAVE MIXTURE PROPERTIES

JOB 0 ROUTE 0	_ MIX NO.	#\/	ALUEI	_ LOT NO.	0	•	
SUBLOT		T	1	Τ	T	Γ	
DATE	Little Fall E	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F111 111 111	48423	
AASHTO T 209	A2 required	when T85 a	absorption >2	2.0% on any	aggregale fr	action.	
TECHNICIAN				I		- ,-:::::,::::::::	ta e que di ta ti
A = Wt. of sample:	1594.4	1 14.2					
A2=Wt. of sample (dry-back):			.**. 1*				
D = Wt. of flask filled with water:	7472.2				0.00		10.000
X = A + D (A2 used in lieu of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0.0
E = Wt, of flask filled with water and sample: Y = X - E	8421.5 645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX, SPECIFIC GRAVITY = A / Y	2.472	2,472	2.472	2,472	2.472	2.472	2 472
Office - WAX. OF COLIFO CHAVELL - AT I	6.376	2,772	2.412	6,716	L	&	L
AASHTO T 166				······		,	•
TECHNICIAN	+ F - 11,7 S				111 111 1111	10 11 14	114411111
MOLDING TEMPERATURE						<u> </u>	
A = Weight of sample in air:	4867.8					1 11111	
B = Weight of sample in water: SPEC. 1	2801.9	111111111111111111111111111111111111111					1 1 1 1 1 1 1 1 1
C = Weight of surface dry sample:	4880.4	0.000	0.000	0.000	0.000	0.000	0,000
Gmb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0,000
A = Weight of sample in air: B = Weight of sample in water: SPEC. 2	4899.1 2814.5					7	
C = Weight of surface dry sample:	4911.9						
Gmb = BULK SP. G. = A / (C-B)	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
riv wer herriter						2.000	
			Y				
TECHNICIAN		<u> </u>		.11, **			
MoDOT TM54 (NUCLEAR) SAMPLE WEIGHT Nuclean case	ar daman		T			** *:::::::::::::::::::::::::::::::::::	
SAMPLE WEIGHT Nuclear gage	1111 1211111					1 11 11 11 11	
COUNTS			1.11 1111	de en de l'Arte.	dericana i		
GAUGE % AC		2 HE 1911					
AASHTO T 308 (IGNITION)							
GAUGE %AC Ignition oven	5.35				11.2 21 211 32		
	0.40	. ;:: 1: 1: 1	r	11	a in terrora		in in Park 4
% MOISTURE	0.12		ļ		12 12 2 2 2 2 2		
% AC BY IGNITION OR NUCLEAR	5.2		L				
AASHTO K 30							
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
B = Gmb (FIELD) (Avg.)	2.339	0.000	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)	2.557	2.557	2.557	2,557	2.557	2,557	2,557
D = Ps = Percent Agg. in mix	94.8	100.0	100.0	100.0	100.0	100.0	100.0
VMA = 100 - (B X D / C)	13.3	100.0	100.0	100.0	100.0	100.0	100.0
Va = 100 X ((A - B) / A)	5.4	100.0	100.0	100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA	59	0	0	0	0	0	0
AASHTO T 166							
TECHNICIAN							
A = Weight of sample in air:	1255				. 15.		Mar Nati
B = Weight in water:	710	******		1 11 11 111.		114 4 2	### # # + 11. ·
C = Weight of surface dry sample:	1260						· 1 [1:1
Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	2.282	0.000	0.000	0.000	0.000	0,000	0.000
Gmm = MAX. SPECIFIC GRAVITY (T209)					0.470	2.472	2.472
	2.472	2.472	2.472	2.472	2.472	2.472	
% COMPACTION OF CORE = 100 x (Gmc / Gmm)	2.472 92.3	2.472 0.0	2.472 0.0	2.472 0.0	0.0	0.0	0.0
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS							
% COMPACTION OF CORE = 100 x (Gmc / Gmm)						0.0	
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT						0.0	
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN	92.3					0.0	
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN	92.3					0.0	
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air:	92.3					0.0	0.0
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water:	92.3					0.0	0.0
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample:	92.3				0.0	0.0	0.0
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	92.3	0.0	0.0	0.0	0.0	0.0	0.0
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209)	92.3	0.000	0.00	0.00	0.00	0.00	0.000
% COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B)	92.3 0.000 2.472	0.00 0.000 2.472	0.000	0.000	0.000	0.000	0.00 0.000 2.472

Binder Portion

TECHNICIAN
MoDOT TM54 (NUCLEAR)
SAMPLE WEIGHT
BACKGROUND
COUNTS
GAUGE % AC
AASHTO T 308 (IGNITION)
GAUGE %AC
NUCLEAR OR IGNITION
% MOISTURE
% AC BY IGNITION OR NUCLEAR

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	* . * * *					
		1				
				 	L	····
				** ************	/	
						44444444444444

		****				7

			1			
					and the first control of	
F 25						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 44 4 4 4 4 4					
0.00						
					·····	

1()-17-(***************	
· · · · · · · · · · · · · · · · · · ·						· • • • • • • • • • • • • • • • • • • •
				l I		
ı 521			ì	ł l		i
J.Z.						l .

Gradation Samples MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample. An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock. RAP gradation in the field is determined with ignition oven.

65

When is Aggregate Gradation Correction Factor Required?

Gradation Samples

Burned and Unburned Plus #200 Portion

 Determine a difference for each sieve, each replicate, say, for the #4 sieve:

 $(\%-#4)_{blank}$ - $(\%-#4)_{burned}$, replicate #1 $(\%-#4)_{blank}$ - $(\%-#4)_{burned}$, replicate #2

- Calculate the average difference for that sieve (#4).
- The difference is called the AGCF for #4 sieve material.

67

67

Gradation Samples

Burned and Unburned Plus #200 Portion

- If the difference on any sieve exceeds the allowable (see below), then each sieve must have its own AGCF applied to the result.
- Allowable differences:

≥ #8:

± 5.0%

• ≥ #200 to < #8:

± 3.0%

≤#200

 $\pm 0.5\%$

68

68

Gradation Samples

Passing the #200 Portion

• If only the #200 sieve exceeds the limit, apply the AGCF only to the #200 sieve

69

Sieve	Burned Rep#1	Burned Rep#2	Unburned Blank	Rep#1 Diff	Rep#2 Diff	Avg. Diff= AGCF	Allowable
1"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
3/4"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
1/2"	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5
		Rep#2: 5	eve: 63.9-52.1 = 1.6 63.9-55.6 = -1 = [1.8 + (-1.7)	.7	i = 0.1 (rou	inded)	70

Example

Adapted from FHWA "Addendum T308"

Sieve	Burned Rep#1	Burned Rep#2	Unburn ed Blank	Rep# 1 Diff	Rep# 2 Diff	Avg Diff= AGCF	Allow able
1"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
<u>3</u> "	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
1 "	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5

For #4 sieve:

Rep#1: 53.9-52.1 = 1.8

Rep#2: 53.9-55.6 = -1.7

Avg diff = [1.8 + (-1.7)]/2 = 0.05 = 0.1 (rounded)

Compare to ± 5.0 : 0.1 < 5.0 OK

		выволитетна в година, по до година в г
		AASMANIII/LIIII-29Pallifferdassa tuuxaaana
		abhitidade communication de debidomenta donnos de debidomenta donnos de debidomenta donnos de debidomenta debidomenta de debid
		decelédationipularaneam

TAB Module 10

Module 10

Job Mix Formula (JMF)

								JM	1F					
					SEE 5	outs dez	ACTIVENT OF TRANSPORT			IN OF MA	TERALS	Π		
ATE I	more						**********	and the man	CONTANT					-
100	THE RESERVE	_	_					But	APP-AR			_		-
4	PRODUCT SCO		PAGE-38					25.34	27.58		SOME COLD		ODER AD-RET	
	many ut-			141				1.80	2,81		11/2	_	14 1	_
	975 (B)			a che him h				101	110	1.0	10.0			
	made.			Limbert				1.00	179	- 12	10.7			_
	STORE SOLD			to Leter Stope &				275	192		11.4			_
	E 10			ments by		_		100	100	_	total and a second	_	ans	_
	Electrical and		ne tona	Dis District			0,==101====			rae a	les at the	25.00*	Entitle	=
	Marie W	_	25.014.3	1000					not chiese		13.55.13	1200		
2750		_												
SEVER	DEPOSITE D	CHE	DEPOSITE OF	120024	PERCHASE.	COOK!		OTHER DESIGNATION	PERMIT		Derrotte :			4.2
233	10	Nr.	34	Not bed	300	\$13.7.E		2.1	-71	-11	-11	- 84	-11	_
112	707.0	911	1403	40.5	100.0	48.4		2.1	28 1	41	16.0	86.0	.,	- 3
	123.3	40.1	122.2	10.3	42.1	10.2		21	26.1	4.3	12.2	21	42	
24	C1	100.0	day.	1000	***	100.0		21.5	21.2	16.3	41	30.2	41	- 3
		101.1	68.8	400.0	18.1	622.9		48.7	ms	43	10.0	20.0	**	
42	46.2	100.0	1011	C1	11.1	GI.I		41	262	41	12.2	37	42	
20		11	41		71.1 10.1	***		**				91	14	
*				16.7		51		24	12		12	12.1	14	
:	**							**	44		12	4.2	2.5	
	11	**												
1:11	11	11	1.1	e1	9.2						1.2	41	12	
	11			cz					**		12	**	4	
11:412	11	**		61	==	41.8								Ĵ
F 4 4 2 2 4 5 E	11 11 11	::	11 11	e1	11 12 12 12 12 12 12 12 12 12 12 12 12 1	#1 H2	54.			11		::	12 12 93 60 #20100	-
T	11 11 11	"	0	e1	11 12 15 15 16 16 16	#1 B2 21	M. Co.	11 11 11	11	11		**	14 41 93.60.920.00 83.636	-
17 12 12 12 12 12 12 12 12 12 12 12 12 12	11 11 11 11	11 11 11 11	11 11 11 14	e1	## #1 */1	#1 #2 #1			11 14	11		::	12 12 93 60 #20100	-

	JMF Header	
	Contains Type of Mix	
	Date Issued	
	 Contractor Issued to 	
	Mix Number	
1		3

Product Ident. Number Product code Producer Location Bulk SP. (Specific) GR. (Gravity) Apparent SP. GR. %ABS (absorption) Product Ident. Number Formation Ledges %Chert

5

JMF Virgin Aggregate Information Each mix design is acceptable to use for a three-year period. Ledge information is generally updated annually by the aggregate producer and MoDOT. If the product remains close (ledge is same, gravity, absorption, etc.), acceptable to use JMF information

JMF Binder and Additive Information • Additives such as Warm Mix additives, Rejuvenators, Fibers are shown in this area. • Name of product • Supplier • Rate of incorporation

JMF Individual Aggregate Gradations This area contains the gradation of individual aggregate fractions to include RAP & RAS if applicable.

							JI	VII	F					
_	_				Mass	ours de	PARTMENT OF TRANS			N OF MA	TERNALS			
	0.741						CONTRACTOR OF 129	*****	POPPERT.					tent in
cer.							77.77.77.77.77.77	PAL	M+4.	t-on	1400000		VERNE PROPERTY	_
sd.	#ROBUST DES		(19.35/68)	LASSACION:				34 SA	p 41	541	FORWITCH		JESES 52-497	
others:	EF 21		complete.	z Arm from t				253	146	ti.	12.4		н .	
1000	F-12-12-			is any bear		_		100	101	1.0	10.0		1	
	COLUMN TO A STATE OF			I LIN SALE		_		2.68	2.75	.16	10.0		_н1	
	SPERME			to the bear o				180	180		2010		54	
	A 141			tart to the				1100	100	_	1.0		AMA	
Libour	40.20		rin term	ferra ta de	314.10	_		151	162		Patifit.		ans	_
BIRTO.	A-SPER		ma b fa.			506/6			Act - No-C	_	Invalor		Conformation (
	DOM:				PER CALL	See mile.		24	21	\$2 C	11	112	H.Elmin	. 3
121	14	101	911	EN ROS	101	101		21	16.1	41	11	***		_
1.12	42.1	95.1	411	61	-0.1	GI.		21	21.	41	21	-		
10	mi.	m1	40.1		10.7	-		21	20.2	41	41	21	3	
12"	m;	101.1	4011	411	151	COLUM		4.1	**	41	92	× 1	ä	
12"	41	101	401	163	**	-		41	20.2	41	41	20.7	- 22	
	41	31.1	412	61	71	*1		**	74		17	20.7	11	
-	41		41	11.1	6-3	**		11	33	12	11	16.2	14	
-	11		71	21		71		25	12	- 65	**	41	11	
410	12	24	12		**	-		14	ü	**	17	u	11	
*12	11	14	11	41	21	-11		14	11	u	1.0	u	ü	
	**	11	11			MI		24	41	10	11	41	14	
	11	11		41		**	1	11	- 11	- 11	11	- 11		
Learn	Settler	2	1 ad		4.241+	- 12	74.	*	- 51	wit .			we LO. FOOTOW	_
	354704		234		1880	91	and.	**		-	****	10	ER 431	
	200	Acre.	2.00		Man.	77	30.50	CI		277		177	VENEZULE AND STREET	
ALEKON IN	OR 285, NO .		pun tum			107	SATISFACTORS -	E111		4.			ethical studied in ten way housely	
,						Į.					e le		1	2

JMF Weighted and Combined Gradations

This area contains the weighted gradation of each fraction based on its bin percentage. The combination of these yields the combined mix gradation.

13

13

							J	M	F					
	2000				W55	DURI DE	PARTMENT OF TRANSF	TIVE P	mese	N OF MA	TERRALI			
tern.	80.00						SOUTH AND THE LIFE					_		PSIP
****		2		Cutorian				B-15	27 25		Potentia		LEGES STATE	
	HIBAT III			Co. Life Tare 1	-	_		199	180		th.2	_	them to the total	
	- 100 ct			to the first t				180	180		10.2	_		_
	and the			Or Albertane a				120	170	- 12				
	C24 50.2			OF THE PARTY.				16-	240		40.0			
	THE AND			fernis Del				10	181	_	140		Ins	
	105.240			Party by Self				161	167		1-26.0		225	
estin		Jacon Color	Vesimos	10.0000					tore trans				M E CONSCIO	
103	1000CE	1F	15	Total end	1.0	PARE		21	25.3	111	41	13	di reportera	- 1
112	70.1	721	621	C1	10.1	122.2		21	31	41	41	K)	- 11	_
	411	94.5	100.0	44.4	100.0	100.0	- 1	21.8	200	43	41	111	45	
24	1973	-	40.2	-	124	100.0		21.5	20.0	4.1	41	21	41	- 3
	10.1	-000	421	61	40.1	100.0		18.7	21	41	- 21	**	41	
12	**	CLI	· CEA	40.0		CER	- 1	413	26.3	41	18.0	26"	43	
12	11	212		8.3	74	*1	- 1	12	2.5	47	1.2	n.	21	
**		**	153	41	80.8		- 1	1.0	r.F	1.2	11	41	14	
:	43	4.8	7.2	ms		72	- 1	2.8	12	27	1.2	12.3	14	
****	12		6.2	.02	2.2	a1		2.5	t.r		12	**	# #	
13.14	12	11			= 1	41		22	11	**	11	**		STATE STATE
113114	12 12 13	3.6		41							**		u u	
211211	12 12 13	11		**	111	2.3		- 22						
F	12 12 13 23	11 11 11	12		92	21		4	- 11	- 11	- 11			
T	13 13 13 14 15	11 11 11	11 12	**	111	41	54.		134				64 00 F 00 T 04	
True Control	12 12 13 23	11 11 11	12	**	11 14 1401-	21		**			-			
True Control	13 13 13 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11 11 11 11 11 11	11 12 14 14	**	11 1101-	41	gmet.		134		-		879. 439	-
and the control of th	13 13 13 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11 11 11 12 24 54	11 12 144 159	**	11 1101-	41	gara. Same		134		Na:-		2513455A150CDC	

14

JMF Target Mix Characteristics

- Gmm from mix design phase (Rice).
- Gmb from mix design phase (Puck).
- Gsb Calculated from the combined weighted aggregate bulk gravities.

							J	M	F						
					MSS	CURTOEPAR	THENT OF TRANS			M OF MA	TERVLS				
61.	Besse						CONTRACTOR - BY AND	M.TFA.DIG	CONTACT						***
DENT.								10.0	west						
el.	PARTY PARTY		PARKET	LAKE DE				P.33.	\$7.00		728U-129		LECTE	\$ 1487	_
200.00				A LINE DATE OF				2.51	145	18.	10.4				
The Name of Street,				A. Life Steel, St.				139	249	1.0	10.4	_	14		_
-Disaire				a timber is				2,815	170	- 19	\$1.4	_	- 11	1	_
Contractor.	Sint No.2			a the bank				1.00	265	_	10.3	_	ins		_
Ches. 20				APPLIE DAY				189	10		\$-95.61	_	and and		_
200				halbe Vit							2011		Interes		
	THE PLANE	_	40 M It.	BEST LA				1.05			An habita	1200			_
BORN S	-1943	_	_				_	Charles P	KH III			_			_
	CONACTO 2	rausan s	- main term	himselfe.	n emissees	POR MORE		remisser.	reness	t-Chercia	E-Constitle I	SERVICE .	n perment		
223	14"	11	117	204 2042	PHP.	Detth II		2.1	21	.11	-11_	X1	+1		-
112	413	798.8	mi	411	411	-01		21.5	211	41	-8.8	20.3	41		- 3
r	101	122	212	122.2	10.2	188.8	- 1	2:1	21.1	41	***	X1	42		
34"	45.2	122	102.2	C11	12.1	100.3		7.2	21	63	21	EI	41		- 3
124	812	125.2	CIT	101.0	105.2	100.0	- 1	4.	24.8	41	41	H.1	41		
	44.2	NIE E	m.	e:	***	102.3	- 1	4.1	26.8	41	-8.4	24.	44		
15		11	41	61	61	H2	- 1	13	12		**	**	11		
			14	20.2		72.2	- 1	11	12		11	51	20		
:	41						- 1	11	11		1.7	**			
	12	11		17.8							1.0	11	11		
:	41	12		61	21	4.1	- 1	1.0	**	1.1					
:	11 11	11	11			411		11	===		23	41	14		
4.882.	# 11 12 12 12 12 12 12 12 12 12 12 12 12	11	11	62	20.0			11	21 21	ti.					
# # # # # # # # # # # # # # # # # # #	11 11 12 12 11	11 11 12 12	12 12	62	21 41 V:521-	NI NI	91.	11	21 23	n n	11	11	14	NO CONTORNO	
# # # # # # # # # # # # # # # # # # #	11 11 12 13 11 11 11 11	11 11 11 12 14 14	11 11 11 11	62	21 41 41 184	41 41 71	-0242+	11 10 10	21 21	n n	23	41	11	914 431	
# # # # # # # # # # # # # # # # # # #	11 12 13 13 13 13 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17	11 11 12 12	12 12	62	21 41 V:521-	10 10 11		11	21 23	n n	11 11 Name	11	11	PH 401	

					9F33	OURI DEPAR	MENT OF TRAIN			OF MA	TERALS				
Leri .	B.O.T.						10/20/218 / 81/	INATEUR:	CORPAN						***
cav.								But	****						
	HERET SE		14.15.15					19.34	P. 81	141	170450		Libert	1000	
	BET 451			a Alba Tree by				281	100		454		- 4		
Citestic .				t the line to				281	100	11	\$5.2	_	9		_
Maria Maria				A LOT THE M				100	279	19	104		- 14		-
illerich.	4021 AOJ			ents Ca. Out To				1101	111		14	_	ins		
Chestal				ners in the Tu				107	165		P-milit		ans		
Desire.	4 6400 4		white.	Da Dan add				121	101-19-2	-	Annahus Annahus	Dist	INFERR		_
E1355															
				Table - Title	No.			T			a turname i		a better in		-
gec.				Interested in					1570075.1		Linear				
121	br ett	IF dr	ar gr	to lot	14	PARTIE MAIN		T		C)	LISTENIE I	EL EL	LEGISIA II		
gec.	br.	JF	11	100100	14	PART		Total State of the last of the	120021	51	71	El	-1		-
122 117	40.5	41	ID GI	es (o)	41	DATE:		120 E	11 21 11 11 11	61 61	11	111	4		-
122	चा चा	di di	GI GI	## (c)	421 421	GTI GTI		2 Table 2 Tabl	21 21 21 21 21	61 61 61	11 11 11 11	101 101 101	41		_
HC1	का का	41 41 41	G1 G1 G1 G1	61 61 61 61 61	81 81 81 81 81	61 61 61 61 61 61		21 21 21 21 21 21	21 21 21 21 21 21 21	61 61 61	11 11 11 11	81 81 81	4		-
122 127 127 127 127 127 127 127 127 127	61 61 61 61 61	411 411 411 411	0 0 0 0 0	61 61 61 61 61	81 81 81 81 81	01 01 01 01 01		21 21 21 21 41 41 41 41	21 21 21 21 21 21	61 61 61 61	11 41 41 41 41	#1 #1 #1	44		_
IN THE STREET	61 61 61 61 61 61	10 61 61 61 61 81 81	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 61 61 61 61 61	21 21 21 21 21 21 21	81 81 81 81 81		21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21	41 41 41 41	11 41 41 41 41 41 41 41	#1 #1 #1 #1 #1	4	-	_
100 100 100 100 100 100 100 100 100 100	61 61 61 61 61 61 61 61 61	10 01 01 01 01 01 01 01	T	10 (0) C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	12 12 12 13 14 14 15 16 16 17	61 61 61 61 61 61 61		21 21 21 21 21 21 21 21 21 21 21 21 21 2	20 20 20 21 21 21 21 21 21 21		11 11 11 11 11 11 11	#1 #1 #1 #1 #1	4 4 4		_
100 100 100 100 100 100 100 100 100 100	61 61 61 61 61 61 61 61 61 61 61 61 61 6	# # # # # # # # # # # # # # # # # # #	F G G G G G G G G G G G G G G G G G G G	10 (0) 01 01 01 01 01 01 01 01 01 01 01 01 01	10 10 10 10 10 10 10 10 10 10 10 10 10 1	01 01 01 01 01 01 01 01		21 21 21 21 21 21 21 21 21 21 21 21 21 2	20 20 20 21 21 21 21 21 21 21 21 21 21		# # # # # # # # # # # # # # # # # # #	#1 #1 #1 #1 #1 #1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		_
120 111 11 11 11 11 11 11 11 11 11 11 11 1	61 61 61 61 61 61 61 61 61 61 61 61 61 6	# # # # # # # # # # # # # # # # # # #	100000000000000000000000000000000000000	61 61 61 61 61 61 61 61 61 61 61 61 61 6	20 21 21 21 21 21 21 21 21 21			21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21		11 41 41 41 41 41 41 41 41 41 41 41 41 4	#1 #1 #1 #1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		_
100 to to to to to to to to to to to to to	61 61 61 61 61 61 61 61 61 61 61 61 61 6	# # # # # # # # # # # # # # # # # # #	F G G G G G G G G G G G G G G G G G G G	100 CT CT CT CT CT CT CT CT CT CT CT CT CT	10 10 10 10 10 10 10 10 10 10 10 10 10 1	01 01 01 01 01 01 01 01 01 01 01 01		21 21 21 21 21 21 21 21 21 21 21 21 21 2	20 20 20 21 21 21 21 21 21 21 21 21 21		# # # # # # # # # # # # # # # # # # #	#1 #1 #1 #1 #1 #1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		_
100 100 100 100 100 100 100 100 100 100	61 61 61 61 61 61 61 61 61 61 61 61 61 6	# # # # # # # # # # # # # # # # # # #	400000000000000000000000000000000000000	61 61 61 61 61 61 61 61 61 61 61 61 61 6	20 21 21 21 21 21 21 21 21 21 21 21 21 21	01 01 01 01 01 01 01 01 01 01 01	20	51 21 21 22 42 42 43 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	21 21 21 21 21 21 21 21 21 21 21		# # # # # # # # # # # # # # # # # # #	#1 #1 #1 #1 #1 #1	4 4 4 4 4 1 1 1 1	m installa	_
TOTAL TOTAL	et et et et et et et et et et et et et e	# # # # # # # # # # # # # # # # # # #	100000000000000000000000000000000000000	100 CT CT CT CT CT CT CT CT CT CT CT CT CT	20 21 21 21 21 21 21 21 21 21 21 21 21 21	01 01 01 01 01 01 01 01 01 01 01 01	15 d d d d d d d d d d d d d d d d d d d	21 21 21 21 21 21 21 21 21 21 21 21 21 2	31 31 31 31 31 31 31 31 31 31 31 31 31 3		# # # # # # # # # # # # # # # # # # #	#1 #1 #1 #1 #1 #1	4 4 4 4 4 1 1 1 1	an Company of	
100 100 100 100 100 100 100 100 100 100	er er er er er er er er er er er er er e	# # # # # # # # # # # # # # # # # # #	400000000000000000000000000000000000000	100 CT CT CT CT CT CT CT CT CT CT CT CT CT	10 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01		21 21 21 41 41 41 41 41 41 41 41 41 41 41 41 41	20 20 20 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40		# # # # # # # # # # # # # # # # # # #	#1 #1 #1 #1 #1 #1 #1	4 4 4 4 1 1 1 1 1		
TOTAL TOTAL	er er er er er er er er er er er er er e	# ## ## ## ## ## ## ## ## ## ## ## ## #	# GI GI GI GI GI GI GI GI GI GI GI GI GI	100 CT CT CT CT CT CT CT CT CT CT CT CT CT	10 mi mi mi mi mi mi mi mi mi mi mi mi mi m	01 01 01 01 01 01 01 01 01 01 01 01 01 0	G343	21 21 21 41 41 41 41 41 41 41 41 41 41 41 41 41	20 20 20 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40		11 11 11 11 11 11 11 11 11 11 11 11	#1 #1 #1 #1 #1 #1 #1	# # # # # # # # # # # # # # # # # # #	84.43	

							J	M	F						
					MISS-	Curls DE	PARTNENT OF TRANSPORTED			M CF W	TERALS				
4471	100700						20073457878781	and the said	CONTRACT						wat
28.0								BALE	Mrs.						
100	FRODUCT BO			interbe.				10 34	EP 3A		108an704		MOSE	40-00	
	100			a.imbin.i				160	159	- 11	15/2	_=	**		_
	the same			I to her t		_		151	100	- 0	10.0	_	- 14	- +	
	6120 VS			A LINE TOWN !				2.07	151	- 11	10.0		- 11		
	\$100 MILE			te de tre tre t				100	2 80		10.0	_	179.63		_
	100 000			terra to the f				2.50	160		tenhiti.		ans		
	5.5023.40		ne drag		_	-		126			lant'ra	Inite.	tarres	e ·	
E STA	1,220	_	et li te	-				(Carried)	601-1903		la m'ra				_
E STA	5.5023.40	_	et li te	-		I SCOT		(Carried)							
DECEMBER OF THE PERSON AND PERSON	S SCOLAR SECTION IN PROPERTY.	PERSONAL PROPERTY.	es Dida.	2 CD on CD o	Personal Property of the Party			(STACE)	160mm	Jethalt	In at he	NAME OF THE OWNER, OWNER, OWNE	e tabecite 41 41		-
MEN SERVICE	S total at the state of 100 courses	PERSONAL PROPERTY OF THE PERSONAL PROPERTY OF	H CU	Life in	100-000 101 101	CI CI		21	21 21 21	42 41	12 mi bra 12 41 41	#1 #1	* Fall-with	2	-
HEREN MINA MOI MOI MOI MOI MOI MOI MOI MOI MOI MOI	14071 A 14171 A 141 411 411	or or	HE STATES	I made selot ci ci	100 - 100 E	(1) (1) (2)		21 21 22 23 23	31 31 31 21	() () () () ()	12 ms bra 12 13 14 14 14 14	#1 #1	41 41 41 41 41		
HE TO A TO A TO A TO A TO A TO A TO A TO	1000000 1000000 1000000 011 011 011	Dr GR	H CU CU CU CU CU CU CU CU CU CU CU CU CU	1 Carlos	62 62 63 61 61	(1) (1) (1)		21 21 21 21 21 21	31 31 31 31	4) 4) 4) 4) 4) 4)	12 mt bra 12 mt bra 13 mt 14 mt 14 mt	K3 W1 E3 E3	41 41 41 41 41		_
MANUAL STATE OF THE STATE OF TH	100-20-1 100-20-1 101-20-1 101-20-1 101-20-1 101-20-1 101-20-1	DE CONTROL CON	H CLI	1 (0 = 0) 1 (0 = 0) 0 (1 (0) 0 (1 (0) 0 (1 (0)	22 121 121 121 121 121 121 121 121 121	G1 G1 G1		23 23 23 23 24 25 21	31 31 31 31	41 41 41 41 41 41	In na ba	#3 #1 #1 #1	# habeads #1 #1 #1 #1 #1 #1		
MARINE MARIA	100-20-1 100-20-1 101	or or or or or or or or or or or or or o	H CLI	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	121 121 121 121 121 121 121 121 121 121	81 81 81 81 81		24 23 23 23 47 47	25 21 21 21 21 21 21	41 41 41 41 41 41 41 41	To ma bea 132 41 41 41 41 41 41 41 41	#3 #1 #1 #1 #1 #1	#		
HAME HAME	STOTAGE STOTAGE POWER ST ST ST ST ST ST ST ST ST ST ST ST ST	DE CONTROL CON	# 60 60 60 60 60 60 60 60 60 60 60 60 60	1 (marite veslor) eri eri eri eri eri	200-000 101 101 101 101 101 101 101 101	61 61 61 61 61		23 23 23 23 24 25 21	31 31 31 31	41 41 41 41 41 41	To ma bea	#3 #1 #1 #1	# habeads #1 #1 #1 #1 #1 #1	e .	
MACHENIA MACHIA MACHENIA MACHENIA MACHENIA MACHENIA MACHENIA MACHENIA MACHE	1000-201 1000-201 101 101 101 101 101 101 101	Jr. St. St. St. St. St. St. St. St. St. St	H CU CU CU CU CU CU CU CU CU CU CU CU CU	1 (0 action 1 action	100 miles 101 mi	81 81 81 81 81 81		21 21 21 22 23 24 23 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	21 21 21 21 21 21 21	41 41 41 41 41 41 41	To ma bea 132 41 41 41 41 41 41 41 41	#3 #1 #3 #3 #3 #3 #3 #3	# 100m25	2	
HAME HAME	STOTAGE STOTAGE POWER ST ST ST ST ST ST ST ST ST ST ST ST ST	DE CONTROL CON	# 60 60 60 60 60 60 60 60 60 60 60 60 60	1 (marite veslor) eri eri eri eri eri	200-000 101 101 101 101 101 101 101 101	61 61 61 61 61		24 23 23 23 23 47 47 41	12 21 21 21 21 21	4) 4) 4) 4) 4) 4) 4) 4) 4)	12 ms bas 13 ms bas 14 ms 14 ms 15 ms 16 ms 17 ms 18 ms 1	#3 #1 #1 #1 #1 #1 #1 #1 #1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	9	
TOTAL STATE OF THE	100-201 100-201 101 101 101 101 101 101 101	37	H GU GU GU GU GU GU GU GU GU GU GU GU GU	1 00 m 100 m	2 H H H H H H H H H H H H H H H H H H H	81 81 81 81 81		21 21 21 22 23 24 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	21 21 21 21 21 21 21 21 21 21 21 21 21 2	11 11 11 11 11 11 11 11 11	12 ms bas 12 ms bas 13 ms 14 ms 14 ms 15 ms 16 ms 17 ms 18 ms 1	#1 #1 #1 #1 #1 #1 #1 #1	41 41 42 42 43 44 42 43 44 42 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
100 mm m m m m m m m m m m m m m m m m m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F CE CE CE CE CE CE CE CE CE CE CE CE CE	H CU CU CU CU CU CU CU CU CU CU CU CU CU	enlock en	200-000 101 101 101 101 101 101 101 101 1	61 61 61 61 61 61 61		21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	41 41 41 41 41 41 41 41 41 41 41 41 41 4	12 ms bas 12 ms bas 13 ms 14 ms 14 ms 15 ms 16 ms 17 ms 18 ms 1	#1 #1 #1 #1 #1 #1 #1 #1 #1 #1	# 100mills # # # # # # # # #		
THE STATE OF THE S	Sacra de la constante de la co	Jr ott ott ott ott ott ott ott ott ott ot	# 61 61 61 61 61 61 61 61 61 61 61 61 61		200-000 101 101 101 101 101 101 10	61 61 61 61 61 61 61 61 61 61 61 61 61 6	731-	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	41 41 41 41 41 41 41 41 41 41 41 41 41 4	12 miles 13 miles 14 miles 15 miles 16 miles 17 miles 18 miles 19 miles 19 miles 10 mil	#3 #1 #1 #1 #1 #1 #1	41 41 42 42 43 44 42 43 44 42 13 14 14 14 14 14 14 14 14 14 14 14 14 14	NA HIMFOCON	
THE SECOND SECON	Section 1	2 - Dec. 202 Fr - 42 - 4	# 61 61 61 61 61 61 61 61 61 61 61 61 61		2000-000E 500 101 101 101 101 101 101 101	61 61 61 61 61 61 61 61 61 61 61 61 61 6	Tale State	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	41 41 41 41 41 41 41 41 41 41 41 41 41 4	12 ms ba 13 ms ba 14 ms 15 ms 16 ms 17 ms 18	#1 #1 #1 #1 #1 #1 #1 #1	#	NA HIMPOTON DA 451	
THE SECOND SECON	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jr ott ott ott ott ott ott ott ott ott ot	# 61 61 61 61 61 61 61 61 61 61 61 61 61		200-000 101 101 101 101 101 101 10	61 61 61 61 61 61 61 61 61 61 61 61 61 6	731-	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	41 41 41 41 41 41 41 41 41 41 41 41 41 4	12 min (16) 12 min (16) 13 min	#3 #1 #1 #1 #1 #1 #1	# patrionists	NA HIMFOCON	

JMF Gyration Levels • Number of Gyrations for • Nini • Ndes • Nmax Volumetric pucks are made to Ndes during production. • LG mixes only specify Ndes gyrations.

								4F	JN							
Second S				•	TERIALS	OF MA				out: DEF	1033					
Section Proceedings Proceedings Process 17 (01)						to et sair	attent	torractors at any						Bitter	tall .	
		 aman.														
	_		_	144							_					
Company Comp	_															
		14														
		14			12.0											
		49.50			100											
The content of the		2070.44		ti	2-00.01		:0	282								
1		CONCOR.		(D) 10	L DOWN					2 sales land	2.0244028	1000	the an	Challe 2	University of	seres.
T	_		51		71	41	21	21		\$-20,51	tot.	219 2412	38.	17	10	
						*1	201	2.1		102.9	94.1	403	613	100.8	400.0	112
1									- 1							
1																
1																
10 11 12 17 18 18 18 18 18 18 18																
## 32 12 12 13 42 43 44 44 14 14 14 14 14 14 14 14 14 14 14		48	11			**	21									
		18			12	11	11			41						
14000000					11	2.5	21	11		2.2	42	92	4.0			***
Separated for the 184 HA NJ COC II FO NOTE E FOR			11	_	11							+1			-11	
AND THE STATE OF STAT		1														
			E	*	Name of		170									
DATE OF THE PROPERTY OF THE PR			-		*******						V. E.	_		***		
Desire Series 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	_															
Applied the figure for a control for				70%		80							-	-		-

-		

MISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS ASPHALTIC CONCRETE TYPE SP12SGLG

IDENT. PRODUCT CODE				BULK	04004					
PRODUCT CODE DMACOOT 100207LD1 DMACOOZ 100204LD1 DMACOOZ 100204LD1 DMACOOZ 100208LD1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	PRODUCER, LOCATION			SP. GR.	SP. GR.	%ABS F	FORMATION	LEDGES	% CHERT	
	/ Hard Rock Co., Little Town, MO	0		2.563	2.693	1.9	SOLID	4-1	0	
	/ Hard Rock Co., Little Town, MO	0		2.558	2.691	1,9	SOUD	4.	0	
	/ Hard Rock Co., Little Town, MO	0		2,566	2.701		SOLID	7.5	0	
	/ Hard Rock Co., Little Town, MO	0		2,551	2.682		allos	4-1		
21CDMAC005 1002.RAP1 / My.	/ My Asphalt Paving Co., Our Town, MO	own, MO		2,691	2.691		RAP	4.9% AC		
21CDMAC006 1002SHGL / My.	/ My Asphalt Paving Co., Our Town, MO	own, MO		2.600	2,600	57	SHINGLES	26.3% AC		
ONLY FACE DOLY WILLY FO							TO THE PROPERTY OF THE PROPERT	Transfer and the second		
1441	New Product, This Town, USA					1	Stick to It	0.75% BY WT OF AC		
.4634	Hot Oil Co., Seaport, LA	SHAND DESIGNATION OF THE PARTY	**************************************	1.035	***************************************	PG46-34	Gyro Mold Temp, 270-280°F	7-280°F		
IN-LINE GRADE = PG46-34				CONTRACT GR	CONTRACT GRADE = PG64-22					y
IDENT# 21CDMAC001 21CDMAC002 21CC	21CDMAC003 21CDMAC004	21CDMAC005	21CDMAC006	21CDMAC001	21CDMAC002 2	1CDMACODS 2	1CDMACD04 21CD	21CDMACGGZ ZICDMACGGZ 21CDMACGG4 21CDMACGGS 21CDMACGG6		COMB
21008 3/4" 3/8"	3/8" MAN SAND	RAP (SHINGLES	21.0	25.0	10.0	10,0	30.0 4.0	A CONTRACTOR OF THE PARTY OF TH	GRAD
1 1/2" 100.0 100.0	100.0 100.0	100.0	100,0	21.0	25.0	10.0				100.0
1" 100,0 100.0	100,0 100,0	100.0	100.0	21.0	25.0	10.0	10.0	30,0 4.0		100.0
3/4" 100.0 100.0	100.0 100.0	100.0	100.0	21.0	25.0	10,0		30.0 4.0		100.0
	100.0 100.0	100.0	100.0	18.7	25.0	10.0				7.76
3/8" 49.0 100.0	100.0 100.0	0.99	100.0	10.3	25.0	10.0	10.0	29.7 4.0		89.0
#4 6.0 28.0	49.0 92.0	79.0	95,0	<u>د</u> دن	7.0	6,4				49.9
#8 4.0 6.0	10.0 60.0	54.0	85.0	0.8	1.5	1.0				28.9
#16 3.0 4.0	7.0 30.0	41.0	70.0	9.0	1.0	0.7	3.0	12.3 2.8		20.4
3.0	6,0 17.0	31,0	50.0	9.0	8,0	9.0	1.7	9.3 2.0		15.0
		20.0	45.0	9.0	0.8	0,5	1.0	6.0 1.8		10.7
	5.0 8.0	15.0	35.0	0.4	0.8	0.5	0.8	4.5		8,4
#200 2.0 3.0	5.0 6.0	11.0	25.0	0.4	0.8	0.5	0.6	3.3 1.0		9
Gmm ≡	2.445	= SCIOA %	4.0	98	TSR Wt.	Vt.		ANNA MINISTRA	MIX COMPOSITION	
CS Gmb =	2,346	V.M.A. =	14.3 -200/AC =	1. 3.	3700		Ndes	80	MIN. AGG.	94.8%
⊞ dsp	2,599	% FILLED =	72 Gyro Wt. =	= 4710				VIRGIN	VIRGIN ASPHALT CONTENT	2.7%
	XXXXX		MASTER GAUGE BACK CNT. =	XXXX =		A1=	-X.XXXXXX	ASPHALT CONTENT W/ RAP AND SHINGLES	RAP AND SHINGLES	5,1%
MASTER GAUGE SER, NO. =	XXXXX		SAMPLE WEIGHT =	XXXX		A2 ==	XXXXXXX			

TAB Module 11

Module 11

Pay Factors

S	pec Limits
Factor	Spec Limit
Air voids	4.0 ± 1.0 %
VMA	-0.5 to +2.0% Applied to min. design VMA: 12.0, 13.0, 14.0
Binder content	Design ± 0.3 %
Density Density (SMA)	94.5 ± 2.5 % ≥ 94.0 %

Pay Factors

• Incentive:

PF is over 100% Say unit price is \$43.50 per ton and PF is 105% on a 4000-ton lot: adjusted price is:

(1.05-1.00)(\$43.50)(4000)=\$8700

Pay Factors (PFs)

5

6

QLA Pay Factors

- Each sublot is sampled,(50lbs. of loose mix behind the paver and 1 core sample from the compacted mat).
- Each loose mix sample is tested for air voids, VMA, and binder content.
- Each core is tested for density.
- There must be at least 4 sublots per lot.

10

10

QLA Pay Factors

- So now, for a given lot, you have 4 air void values, 4 VMA's and so forth.
- Average the 4 values of each test parameter.
- Average = "mean" = X

11

11

QLA Pay Factors

- Calculate the *variability* of the 4 values of each parameter, say, air voids.
- The measure of variability is called the "Standard deviation" (S).

12

QLA Pay Factors • So now you have the average (*mean*) and standard deviation for air voids, for VMA, for binder content, and for density for a certain lot: $\overline{X}_{air}, S_{air}$ $\overline{X}_{VMA}, S_{VMA}$ $\overline{X}_{AC}, S_{AC}$ $\overline{X}_{dens}, S_{dens}$

14

QLA Pay Factors PFs are based on the quality of the mix: How close to the target is the average value of the lot. How much variability is there between the 4 sublot values. (How large is the S) So, to get a high pay factor, you want low variability--you want CONSISTENCY!

Consistency of Mix Consistent gradation Consistent baghouse fines feed Consistent binder content Consistent temperature Consistent cleanliness: Low deleterious materials High sand equivalent Consistent construction operations

16

16

QLA Pay Factors • QLA PFs are part of the overall statistically-based Quality Level Analysis (QLA) program as specified in Section 403, Standard Specs. • Samples must be obtained in a random (unbiased) manner. QLA = Quality Level Analysis | PFs = Pay Factors | 17

17

QLA Pay Factors • PFs are based on how much of the lot is within the spec limits= "Percent Within Limits (PWL)".

USL and LSL

When producing materials, we would like 100% of all the material to be within the specifications. Usually, we have a target value, and we place a tolerance around it, e.g., target asphalt content \pm 0.3%.

- Lower Spec Limit (LSL)= Target value 0.3%
- Upper Spec Limit (USL)= Target value + 0.3%

22

22

23

Percent Within Limits

- When the average ("mean") of the test data for the lot is close to the LSL or USL, and if there is a large variability in the data, it is likely that some of the material is out-ofspec.
- We would like to estimate the percent of the total material that is out (or how much is inspec) and let the payment for material reflect this fact.

24

Percent Within Limits

- So, we need to calculate the area (probability) under the curve that is between the USL and the LSL.
- This is called the "Percent Within Limits (PWL)"

26

26

Percent Within Limits

- Every set of test results (every lot) will result in a different probability distribution, therefore a different curve.
- It is difficult to calculate the area (probability) under each curve.
- There is a method to convert any curve to a standard curve, with various areas under the curve already worked out.

27

Percent Within Limits

- The areas under the standard curve (probabilities) are published in a table called the "*Quality Index* " *table*. (502.15.8)
- To obtain the probability value from the Q-table, you must use your curve's statistical characteristics: mean (x) and standard deviation (S) to calculate Q.

28

30

28

29

Quality Index (Q) $Q_{L} = \frac{\overline{X} - LSL}{S}$ OR $Q_{U} = \frac{USL - \overline{X}}{S}$

0.41 61.56 63.66 64.46 64.86 65.09 65.25 65.36 65 0.42 61.85 64.00 64.81 65.21 65.45 65.60 65.72 65 0.43 62.15 64.33 65.15 65.57 65.80 65.96 66.07 66 0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.	5.43 5.79 5.15 5.51 .57 .93 .28 .63 .98
QUALITY INDEX PERC ITHIN LIMITS FOR SELECTED SAMPLE SIZES (Q _U or Q _L) n=3 n=4 n=5 n=6 n=7 n=8 n=9 n 0.41 61.56 63.66 64.46 64.86 65.09 65.25 65.36 65 0.42 61.85 64.00 64.81 65.21 65.45 65.60 65.72 65 0.43 62.15 64.33 65.15 65.57 65.80 65.96 66.07 66 0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.7	=10 i.43 i.79 i.15 i.51 i.87 i.22 i.57 i.93 i.28 i.63 i.98
INDEX	=10 i.43 i.79 i.15 i.51 i.87 i.22 i.57 i.93 i.28 i.63 i.98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i.43 i.79 i.15 i.51 i.87 i.22 i.57 i.93 i.28 i.63 i.98
0.41 61.56 63.66 64.46 64.86 65.09 65.25 65.36 65 0.42 61.85 64.00 64.81 65.21 65.45 65.60 65.72 65 0.43 62.15 64.33 65.15 65.57 65.80 65.96 66.07 66 0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.	i.43 i.79 i.15 i.51 i.87 i.22 i.57 i.93 i.28 i.63 i.98
0.42 61.85 64.00 64.81 65.21 65.45 65.60 65.72 65 0.43 62.15 64.33 65.15 65.57 65.80 65.96 66.07 66 0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.	.79 .15 .51 .87 .22 .57 .93 .28 .63
0.43 62.15 64.33 65.15 65.57 65.80 65.96 66.07 66 0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.15 .51 .87 .22 .57 .93 .28 .63
0.44 62.44 64.67 65.50 65.92 66.16 66.31 66.43 66 0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.51 .87 .22 .57 .93 .28 .63
0.45 62.74 65.00 65.84 66.27 66.51 66.67 66.79 66 0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.87 .22 .57 .93 .28 .63
0.46 63.04 65.33 66.18 66.62 66.86 67.02 67.14 67 0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.22 .57 .93 .28 .63
0.47 63.34 65.67 66.53 66.96 67.21 67.37 67.49 67 0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.57 .93 .28 .63
0.48 63.65 66.00 66.87 67.31 67.56 67.73 67.85 67 0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.93 .28 .63 .98
0.49 63.95 66.34 67.22 67.65 67.91 68.08 68.20 68.00 0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68.00 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68.00	.28 .63 .98
0.50 64.25 66.67 67.56 68.00 68.26 68.43 68.55 68 0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.63 .98
0.51 64.56 67.00 67.90 68.34 68.61 68.78 68.90 68	.98
0.52 04.07 07.55 06.24 00.05 06.35 05.12 05.24 05	
0.53 65.18 67.67 68.58 69.03 69.30 69.47 69.59 69	.67
	.01
	.36
	.70
	.04
	38
	72
	06
	39
	72
	06
	39
	72
}	04
	36
	69
0.69 70.39 73.00 73.93 74.38 74.64 74.75 74.93 75	
	33
0.71 71.08 73.66 74.59 75.03 75.29 75.46 75.57 75.	
0.72 71.44 74.00 74.91 75.35 75.61 75.78 75.88 75	96
0.73 71.79 74.33 75.24 75.68 75.92 76.09 76.20 76	***************************************
0.74 72.15 74.67 75.56 76.00 76.24 76.41 76.51 76.	59
0.75 72.50 75.00 75.89 76.32 76.56 76.72 76.83 76.	90
0.76	21
0.77 73.24 75.67 76.53 76.95 77.18 77.34 77.44 77.	
0.78 73.62 76.00 76.85 77.26 77.50 77.64 77.75 77.	82
0.79 73.99 76.34 77.17 77.58 77.81 77.95 78.05 78.	
0.80 74.36 76.67 77.49 77.89 78.12 78.26 78.36 78.	
0.81 74.75 77.00 77.81 78.20 78.42 78.56 78.66 78.	72
0.82 75.15 77.33 78.12 78.51 78.72 78.86 78.95 79.	_
0.83 75.54 77.67 78.44 78.81 79.03 79.16 79.25 79.	31

Percent Within Limits

• First you get the area (probability) under the curve above the LSL, then the area (probability) below the USL, then combine them for the total area under the curve between the USL and the LSL. This is the *Total Percent Within Limits*.

31

31

32

Percent Within Limits

- Knowing the Q_L, enter the Q-table and obtain the corresponding PWL_L (percent of the area above the LSL)
- Likewise, knowing the Q_U, enter the Q-table and obtain the corresponding PWL_U
- Combine the 2 PWL's:
- $PWL_T = (PWL_U + PWL_L) 100$

33

Percent Within Limits

- Let's examine 2 different operations.
- Lot 2's mean is crowding the Lower Spec Limit much closer than the data in lot 1, but there is much less variability in the data of lot 2. The area (probability) in the left-hand tail is equal under both curves.

34

34

35

Percent Within Limits

- So, even though lot 2's mean was lower than that of lot 1, lot 2 had the same PWL because it had less variability (taller, slenderer curve).
- The smaller the standard deviation, the slenderer the curve.
- This illustrates that consistency of results is very important.

36

QLA Pay Factors

- For each lot, each test parameter (air voids, VMA, binder content, density) will have its own curve (based on 4 or more sublot test values).
- A separate PF for each test parameter will be calculated, as follows.

37

37

QLA Pay Factors

• If PWL_T < 70%:

$$PF = 2(PWL_T) - 50$$

If PWL_T ≥ 70%:

$$PF = 0.50(PWL_{\tau}) + 55$$

38

38

QLA Pay Factors

 The PFs for each test parameter are then averaged to obtain the total PF_T:

For the traveled way:

 $[\mathsf{PF}_{\mathsf{AC}} + \mathsf{PF}_{\mathsf{Va}} + \mathsf{PF}_{\mathsf{VMA}} + \mathsf{PF}_{\mathsf{Dens}}] \div 4$

For non-integral shoulders:

 $[PF_{AC} + PF_{Va} + PF_{VMA}] \div 3$

39

QLA Pay Factors

 So, back to our original example, if the average of the 4-test parameter PFs is 105%, then the contract price of \$43.50 per ton per 4000-ton lot is adjusted by:

(1.05-1.00)(4000)(\$43.50) = \$8700

The maximum PF is 105%.

41

41

Example

- See handout of MoDOT spreadsheet.
- The Q table is in Section 403, Standard Specifications (Link to 502.15.8).
- Note: density is now 94.5 ± 2.5%.

42

EQUATIONS:

$$V_a = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$$

$$P_s = 100 - P_b$$

$$\overline{V_a = \frac{G_{mm} - G_{mb}}{G_{mm}}} \times 100 \qquad \qquad P_s = 100 - P_b \qquad \qquad VMA = 100 - \left[\frac{G_{mb} \times P_s}{G_{sb}}\right]$$

$$VFA = \frac{VMA - V_a}{VMA} \times 100 \qquad Density = \frac{G_{mc}}{G_{mm}} \times 100$$

Density =
$$\frac{G_{mc}}{G_{mm}} \times 100$$

$$\underline{MEAN:} \qquad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Example:
$$n = number of samples = 3$$
 Therefore: $\overline{x} = \frac{x_1 + x_2 + x_3}{3}$

$$\overline{X} = \frac{X_1 + X_2 + X_3}{3}$$

STANDARD DEVIATION:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Therefore:
$$s = \sqrt{\frac{\left(x_1 - \overline{x}\right)^2 + \left(x_2 - \overline{x}\right)^2 + \left(x_3 - \overline{x}\right)^2}{2}}$$

$$Q_U = \frac{USL - \overline{X}}{S} \qquad \qquad Q_L = \frac{\overline{X} - LSL}{S}$$

$$Q_L = \frac{\overline{X} - LSL}{S}$$

$$PWL_T = (PWL_U + PWL_L) - 100$$

THEN:
$$PF = 2(PWL_T) - 50$$

IF:
$$PWL_T \ge 70\%$$

THEN: PF =
$$0.50(PWL_T) + 55$$

QA to QC Comparison:

$$[QC_{avg} - 2(s)] \le QA_{avg} \le [QC_{avg} + 2(s)]$$

OUTLIERS:

Highside:
$$t = \frac{x_{\text{max}} - \overline{x}}{s}$$

Lowside:
$$t = \frac{\overline{X} - X_{min}}{s}$$

0A1 0A2	92.5	
QA3 QA4 QA5 QA6 AVE, X STD, DEV.	92.87 92.87	
QA COMP. USL TARGET LSL	94.0 USL = 94.0 + 2.0% = 96.0% 91.0 USL = 94.0 - 2.0 = 96.0% 92.0 USL = 94.0 - 2.0 = 92.0%	
Ou Ou Oi PWU PWU	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45

MoDOT Pay Factor Spreadsheet

Pay Factor 5.01 7/6/200

20112162		00170					Sample ID 0
CONTRACT:	0	ROUTE: 0 CO	UNTY: 0	MIX#:S	P190	LOT#: 5	
PROJECT:	0	DATE: 01/00/00 TO	NS/MG 3000.0	UNIT BID PRICE MIX	\$45.00		5. 2 4.8
I	DENSITY	ASPHALT CONTENT	VMA	AIR VOIDS	Gmm	REMARKS	3
JOB MIX	94.0	5.2	13.0	4.0			
	± 2.0	± <u>0.3</u>	-0.5/+2.0	± 1.0			
- A	93.3 92.6	5.7 5.2	13.3 13.8	3.9 3.7			
Ĉ	93.4	5.4	13,5	3.0			
Ď	92.2	4.6	12.3	3.1			
QA1	92.5	\$.2	13.0	3.8			
QA2		5.5	13.8	3.4			
QA3		5.6	13,0	3.8			
QA4							
QA5							
QA6							
						QC TSR ĐẠT	Α•
AVE. X	92.87	5.22	13.22	3.42			
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
21 20112	04 04 7		115 110			Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
JSL	96.0	5.5	15.0	5.0		Pay Adjustment (Sec 403.23.5)	98.0
TARGET	94.0	5,2	13.0	4.0			
SL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
<u>. </u>	4	<u>4</u> 0.61	4 2.78	4		Contractor Lab	Contractor Laborato
Σi Σii	5.49 1.53	0.61	1,13	3.59 0.95		* TSR results and pay adjustment to	or tonnano
	1.00	0.70	1,10	0.90		represented based on requirement of	
PWŁu	100.00	70.33	100.00	100.00		10,000 ions or fraction thereof. This	
PWLI	100.00	73.33	87.67	81,67		separate from the PWL pay adjustm	
WLI	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			
	PAY FACTOR= 8		BLOTS WITH UNCONF	. JOINT 3000		TOTAL \$ VALUE OF ADJUSTMEN	т\$21,330.0

Traveled Way Lot Testing Results

QC/QA TEST RESULTS BY SUBLOTS

CONTRACT:

٥

ROUTE: 0

COUNTY: 0

MIX #: SP190

PROJECT:		DATE: 01/00/00	TONS/MG	3000.0	UNIT BID PRICE MIX	\$45.00
	DENSITY	ASPHALT CONT	ENT	VMA	AIR VOIDS	Gmm
JOB MIX	94.0	5.2		13.0	4.0	
SUBLOT	± 2.0	± 0.3		-0.5/+2.0	± 1.0	
A	93.3	5.7		13.3	3.9	
В	92.6	5.2		13.8	3.7	
С	93,4	5.4		13.5	3.0	
D	92.2	4.6		12.3	3.1	
QA1	92.5	5.2		13.0	3,8	
QA2		5.5		13.8	3.4	
QA3		5.6		13.0	3,8	
QA4				10.0	0,0	
QA5						,,
QA6						
AVE. X	92.87	5.22		13.22	3.42	
STD. DEV.	0.57	0.46		0.64	0.44	
ДА СОМР.	94 - 91.7	6.1 - 4.3		14.5 - 11.9	4.3 - 2.5	
JSL	96.0	5.5		15.0	5.0	
TARGET	94.0	5.2		13.0	4.0	
SL	92.0	4.9	***************************************	12.5	3.0	
h	4	4		4	4	
Qu	5.49	0.61	······································	2.78	3.59	
QI QI	1.53	0.70		1.13	0.95	
PWLu	100.00	70.33		100.00	100.00	
PWLI	100.00	73.33		87.67	81.67	
YVLI	100.00	(3.33		10.10	81.07	
PWLt	100.00	43.66		87.67	81.67	
PAY FACT.	105.0	37.3		98.8	95.8	

TOTAL PAY FACTOR= 84.2

UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

JOB MIX SUBLOT A B C D	DENSITY 94.0 ± 2.0 93.3 92.6 93.4 92.2	→ Obsolete: is currently 94.5 ± 2.5 Ave = 92.87% Std. Dev. = 0.57
QA1 QA2 QA3 QA4 QA5 QA6	92.5	
STD. DEV.	0.57	
QA COMP.	94 - 91.7	
USL	96.0	USL = 94.0 + 2.0% = 96.0%
TARGET LSL	94.0 92.0	LSL = 94.0 - 2.0 = 92.0%
n Qu Ql	4 FA	$\frac{Q_0 = \frac{USL - \overline{X}}{S}}{Q_L = \frac{\overline{X} - LSL}{S}} = (96.0 - 92.87)/0.57 = 5.49$
PWLu PWLI	100.00	
PWLt	100.00	PWL+ = (PWLu + PWLI) - 100
PAY FACT.	105.0	PF = 0.50(PWL ₁) + 55 = 0.50(100)+55

201	raw	eled	www.m.	v I mt	Testing Resu	ılte
AND STATE OF	DOGN'S NO.	Marrowni II	24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALL STATE OF THE S	100000 (En)	arged
GAL GAL FIG CRY SA CERM GAL GAL GAL GAL GAL GAL GAL GAL GAL GAL	911 237 9-117 9-2 107 107 107 107 107 107 107 107 107 107	5H 5P (1-4) 10 11 11 11 12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	102 164 165 165 165 175 175 175 175 175 175 175 175 175 17	10 (44 0) 75 15 19 19 19 19 19 19 19 19 19 19 19 19 19	GT 18 SALV GLIN SALV GLIN SALV GLIN SALV GLIN SALV Fin Manuter (in 4.12)2 VII VII A SALV VII A	~
TOTAL UNCORP	Chie Legione in 1	•	BUILDES (ATT) UNCONF I		SOLVE ON WITHOUT TO STATE OF S	
TOT	AL \$ V	ALUE OF	ADJUS'	TMENT	-\$21,330.00	48

QL & PWLL

***************************************	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD										
QUALITY	PER						AMPLE S	IZES			
(Q _u or Q _i)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10			
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19			
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38			
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58			
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78			
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96			
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15			
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33			
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52			
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70			
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87			
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04			
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22			
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39			
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56			
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72			
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88			
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05			
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21			
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37			
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52			
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67			
1.48	100.00	99.33	95,80	94.84	94.39	94.12	93.95	93.83			
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98			
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13			
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27			
1.52	100.00	100.00	9 6.57	95.51	95.02	94.73	94.54	94.41			
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54			
1.54	100.00	100.00	₿6.94	95.84	95.33	95.02	94.83	94.68			
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82			
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95			
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08			
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20			
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33			
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46			
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58			
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70			
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81			
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93			
1.65	100.00	100.00	98.72	97.42	96.81	96.45	96.22	96.05			
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16			
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27			
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37			
1.69	100.00	100.00	99.22	97.90	97.27	96.90	96.65	96.48			

Qu & PWLu

VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD												
QUALITY INDEX	PERO	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES										
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10				
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98				
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98				
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99				
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99				
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99				
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99				
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99				
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00				
2.64	100.00		100.00	100.00	100.00	100.00	100.00	100.00				
2.65	100.00	100.	100.00	100.00	100.00	100.00	100.00	100.00				

Traveled Way Lot Testing Results

Pay Factor 5.01 7/6/200

		QC	C/QA TEST RESULTS B	Y SUBLOTS				Sample ID 0
ONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX#:S	P190	LOT#: 5		
PROJECT:	0	DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45,00	% AC % MA	5.2 94.8	
100.1111	DENSITY	ASPHALT CONT	NT VMA	AIR VOIDS	Gmm	REMA		
JOB MIX SUBLOT	94.0 ± 2.0	5.2 ± 0.3	13.0 -0.5/+2.0	4.0 ± 1.0				
A	93.3	5.7	13.3	3.9		<u> </u>	·····	
В	92.6	5.2	13.8	3.7			· .	
<u> </u>	93.4 92.2	5.4 4.6	13.5	3.0				
	92.2	4.5	12.3	3.1				
							T. T. T. T. T. T. T. T. T. T. T. T. T. T	
QA1	92.5	5.2	13.0	3.8				
QA2 QA3		5,5 5,6	13.8 13.0	3.4 3.8		<u> </u>		
QA4		0.0	14.4	<u> </u>				***************************************
QA5								
QA6								
AVE. X	92.87	5.22	13.22	2.42		QC TSR	DATA'	
STD. DEV.	0.57	0.46	0.64	3.42 0.44		Lots/Sublots		
	V.V.	V-7V	V.V-1			Quantity Represented		10000.0
DA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %		72.0
101				4.4		Pay Adjustment (Sec 403.23	1.5)	98.0
JSL TARGET	96.0 94.0	5.5 5.2	15.0 13.0	5.0 4.0				1
SL	92.0	4.9	12.5	3.0		Value of Adjustment		-\$9,000.00
						•	·	
30	<u>4</u> 5.49	<u>4</u> 0.61	2.78	4 250		Contractor Lab	Co	ntractor Laboratory
20 21	1.53	0.61	1.13	3,59 0.95		TSR results and pay adjustment	ent for tops	ane
						represented based on requirem	ent of one	test per
WLu	100.00	70.33	100.00	100.00		10,000 tons or fraction thereof.	This is app	
PWLI	100.00	73.33	87.67	81.67		separate from the PWL pay adju	isiment.	İ
WLt	100.00	43.66	87.67	81.67				ľ
AY FACT.	105.0	37.3	98,8	95.8	····			
AT TAVILE	103.0	31,4	50,0	83.0				
						•		
TOTAL	PAY FACTOR= 8	34.2	tion per entre control to the first transfer of the sage of the			TOTAL \$ VALUE OF ADJUST	WENT	-\$21,330.00
UNCONE. JO	OINT FACTOR=	90 TONS / SQ YD	OF SUBLOTS WITH UNCONF	JOINT 3000		an attraction of the traction		
0,100,111	omit thoton [01 0002010 111111 01100111	. 00.111	•	Parties and the Arter Artificial published in the	3 130,50	To a sea of the season of the
		•						
TOT	AL DAVE	ACTOR= 84.2						
1017	MLFAIF	ACTUR- 04.2						
							l l	
4557								
							.,	
							ı	
							1	
							T	
						•	▼	
							_	
тот	ΔΙ Φ	\/ \\\	OF ADJU	ISTMEN	JT	_	<u>.</u> ¢2	1,330.

Unconfined Joint Deductions

- Pay reduction applied to full width of lane for a given lot
- The lowest adjustment factor (PF_{total} or the PAF for average unconfined joint density) will apply to the lot
- $^{\circ}$ Exception: If the PAF = 100% and the PF_{total} is over 100 (use the PF_{total})
- $\,^{\bullet}$ PF $_{\text{total}}$ includes PFs for binder content, air voids, VMA, and density)

49

49

Unconfined Joint Deductions

- Example: For a given lot, if
 PF_{total} = 95% and PAF = 90%
 The 90% controls the whole lot.
- Example: For a given lot, if

 PF_{total} = 105% and PAF = 100%

 The 105% controls the whole lot.
- 403.23.6 and EPG 403.1.21

50

50

Unconfined Joint Factor

Pay Factor 5.01 7/6/200

		Q	C/QA TEST RE	SULTS B	Y SUBLOT	S			Sample ID
CONTRACT:	0	ROUTE: 0	COUNTY: 0			MIX#: \$	SP190	LOT#: 5	0
								% AC	5.2
PROJECT:	0	DATE: 01/00/00	TONS/MG	3000.0	UNIT BID	PRICE MIX	\$45.00		9.2 94,8
	DENSITY	ASPHALT CONT		VMA		R VOIDS	Gmm	REMARK	
JOB MIX	94.0	5.2		13.0		4.0			
SUBLOT		± 0.3	-0	.5/+2.0	±	1.0		1	
Α	93.3	5.7		13,3		3.9			
В	92.6	5.2		13.8		3.7			
<u>c</u>	93.4	5.4		13.5		3.0			
D	92.2	4.6		12.3		3.1			
QA1	92.5	5,2		13.0		3.8			
QA2		5,5		13.8		3.4			
QA3		5.6		13.0		3.8			
QA4	******								
QA5									
QA6								<u></u>	
l								QC TSR DA	TA*
AVE. X	92.87	5.22		3.22		3.42			
STD. DEV.	0.57	0.45).64		0.44		Lots/Subiots	***************************************
<u> </u>								Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5	5 - 11.9	4	.3 - 2.5		TSR %	72.0
USL.	65.4							Pay Adjustment (Sec 403.23.5)	98.0
TARGET	96.0 94.0	5.5 5.2		15.0 13.0		5.0			
LSL	94.0	5.2 4.9		13.0		3.0		Makes of Advantaged	
Lot	92.0	4.9		2.5		3.0		Value of Adjustment	-\$9,000.00
 	4	4		4		4	·····	Contractor Lab	Contractor Laboratory
Qu	5.49	0.61	2	2.78		3.59		Contractor Lan	Leciliacioi caporatory
ŎĬ	1.53	0.70		1.13		0.95		* TSR results and pay adjustment	for tonnano
	.,	****						represented based on requirement	
PWLu	100.00	70.33	10	0.00		100.00		10,000 tons or fraction thereof. The	
PWLI	100.00	73.33		7.67		81.67		separate from the PWL pay adjustr	
PWLt	100.00	43.66		7.67		81,67			
PAY FACT.	105.0	37.3	9	8.8	······	95.8			

TOTAL PAY FACTOR= 84.2

Use smaller of 90% or 84.2%

UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

(3000 tons)(\$45.00/ton)(0.842-1.000) =

TOTAL \$ VALUE OF ADJUSTMENT

-\$21,330.00

	TSR	% of Contract price
	≥90	103
Ď.	75-89	100
	70-74	98
	65-69	97
177	<65	Remove

TSR Results

Pay Factor 5.01 7/6/200

		Q	C/QA TEST RESULTS	BY SUBLOTS			Sample ID
CONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX#: S	P190	LOT#; 5	0
PROJECT:		DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45.00		.2 .8
I	DENSITY	ASPHALT CONT	ENT VMA	AIR VOIDS	Gmm	REMARKS	
JOB MIX	94.0	5.2	13.0	4.0		1	
SUBLOT	± 2.0	± 0.3	-0.5/+2.0	± 1.0			
<u> </u>	93,3	5.7	13.3	3.9			
В	92.6	5.2	13.8	3.7			
С	93,4	5.4	13,5	3.0			
D	92.2	4.6	12.3	3.1			
QA1 QA2	92.5	5.2	13.0	3.8			
QA3		5.5	13.8	3.4			
QA3		5.6	13.0	3.8			
QA5		***************************************					
QA6							
- CAO							
AVE. X	92.87					QU ISK DAI	4
STO, DEV.		5.22	13.22	3.42			
STO, DEV.	0.67	0.46	0.64	0.44		Lots/Sublots	
01.001/0						Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
L.,						Pay Adjustment (Sec 403.23.5)	98.0
USL	96.0	5,5	15.0	5.0			
TARGET	94.0	5.2	13.0	4.0			
LSL	92,0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
n	4	4	4	4		Contractor Lab	Contractor Laborato
Qu	5.49	0.61	2.78	3.59			
QI	1.53	0.70	1.13	0.95		TSR results and pay adjustment for	
			_			epresented based on requirement of	one test per
PWLu	100.00	70.33	100.00	100,00		0,000 tons or fraction thereof. This	is applied
PWLI	100.00	73.33	87.67	81.67		eparate from the PWL pay adjustme	
PWLI	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			

TOTAL PAY FACTOR= 84.2
UNCONF. JOINT FACTOR= 90 TONS / S (0.98-1.00)(10,000 tons)(\$45/ ton)= -\$9000

QUALITY INDEX		VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES								
(Qu or QL)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98		
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98		
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
2.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		

Pay Factors (%AC)

- USL = Target + Tolerance = 5.1 + 0.3 = 5.4
- LSL = Target Tolerance = 5.1 0.3 = 4.8

$$\left|Q_{\cup} = \frac{\cup SL - \overline{X}}{S}\right| = (5.4 - 5.0)/0.12 = 3.33 = 3.3 \rightarrow PWL_{\cup} = 100.00$$

 $\left|\overline{X} - LSL\right| = (5.0 - 4.8)/0.12 = 1.67 = 1.7 \rightarrow PWL_{\cup} = 98.97$

$$Q_L = \frac{\overline{X} - LSL}{S} = (5.0 - 4.8)/0.12 = 1.67 = 1.7 \rightarrow PWL_L = 98.97$$

- PWLT = (PWLU + PWLL) 100 = 98.97 = 99.0
- $PF_{AC} = 0.50(PWL_{T}) + 55 = 0.50(99.0) + 55 = 104.4$
- PF_{T} = (104.4 + 101.2 + 96.8 + 99.6)/4 = 100.8

					PROCEDUI METHOD					
QUALITY INDEX		PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES								
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
2.56	100.00	100.00	100,00	100,00	100.00	100.00	100.00	99.98		
2.57	100,00	100.00	100.00	100.00	100,00	100.00	100.00	99.98		
2.58	100.00	100.00	100.00	100.00	100,00	100.00	100,00	99.99		
2.59	100,00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.60	100.00	100.00	100.00	100.00	100,00	100.00	100,00	99.99		
2.61	100,00	100.00	100.00	100.00	100.00	100.00	100,00	99.99		
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99		
2.63	100.00	100,00	100.00	100.00	100.00	100.00	100,00	100.00		
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
2.65	100.00	100,00	100.00	100,00	100.00	100.00	100.00	100.00		

■ 3.3 → 100.00

		V	ARIABILITY-U STANDARD-	DEVIATION M					
QUALITY INDEX	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES								
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
1,27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90,19	
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38	
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58	
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78	
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96	
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15	
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33	
1.34	100.00	94.67	92.74	92,16	91,88	91.71	91.59	91.52	
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70	
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87	
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04	
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22	
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39	
1,40	100.00	96.67	94.12	93.37	93.02	92,81	92.67	92,56	
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72	
1.42	100.00	97.33	94.55	93.75	93,37	93,15	93.00	92.88	
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05	
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21	
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37	
1.46	100.00	98,66	95.39	94.49	94.06	93.81	93.64	93.52	
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67	
1.48	100.00	99.33	95.80	94.84	94,39	94.12	93.95	93.83	
1.49	100.00	99,67	96.00	95.02	94.56	94.28	94.11	93.98	
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13	
1.51	100.00	100.00	96.39	95.35	94,87	94,59	94.40	94.27	
1.52	100.00	100.00	96.57	95.51	95.02	94.73	94.54	94.41	
1,53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54	
1.54	100,00	100.00	96.94	95.84	95.33	95,02	94.83	94,68	
1.55	100.00	100,00	97,13	96,00	95.48	95.17	94.97	94.82	
1.56	100.00	100.00	97.30	96.15	95,62	95.30	95.10	94.95	
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08	
1,58	100.00	100.00	97.63	96,45	95.89	95.57	95.36	95.20	
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33	
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46	
1.61	100.00	100.00	98.12	96.88	96,30	95.96	95.74	95.58	
1,62	100.00	100.00	98.27	97.02	96.43	96.08	95,86	95,70	
1,63	100.00	100.00	98.42	97,15	96.55	96.21	95.98	95.81	
1.64	100.00	100.00	98.57	97.29	96,68	96.33	96.10	95.93	
1.65	100.00	100.00	7	97.42	96.81	96.45	96.22	96.05	
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16	
1.67	100.00	100.00	98.97	97.66	97.04	96,67	96.44	96.27	
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37	
1.69	100.00	100.00	λ.	97.90	97.27	96.90	96.65	96.48	

TAB Module 12

Module 12

Quality Level Analysis (QLA)

Quality Level Analysis

- Pay Factor computation
- Favorable comparison between QC and QA results:
 - Do QC's results represent the entire population of data from the lot? (does QA's result fit within QC's).
 - If not, add QA's result to QCs to include it in the population.

2

2

Quality Level Analysis Comparison of QA to QC

Comparison of hotmix QA results to QC results:

To consider the QC data to be valid (worthwhile), the QA result must be within 2 standard deviations of the QC mean (\overline{QC}) for a lot:

 $[\overline{QC}-2(S)] \le QA \le [\overline{QC}+2(S)]$

Or

Within $\frac{1}{2}$ of the specification tolerance, whichever is **greater.**

This applies to air voids(Va), VMA, %AC, and mat density.

3

г

Example 1 Comparison QA to QC • For a certain lot, QC results: • Mean air voids = 3.43% • Standard deviation = 0.44% • QA result is 3.8% • Can the contractor's results be used for calculating the pay factor?

Comparison QA to QC, cont'd.

First, should you use **2 (S)** or 1/2 **the spec.** tolerance to establish the acceptable range??

- $^{\bullet}$ Allowable range is -1.0% to + 1.0%, so the spec tolerance is 1.0%.
- Half of this is 0.5%.

On the other hand:

• 2(S) = 2(0.44) = **0.88**

7

7

Ω

Comparison QA to QC cont'd.

- Compared to 2(S)= 2(0.44)= **0.88**, the 0.88% is greater than the 0.5%, so the 0.88% should be used for evaluation.
- If 2(S) had turned out to be less than 0.5%, the half-spec rule would apply, and the 0.5% would be used.

10

10

Comparison QA to QC cont'd.

- QC 2(S)= 3.43 2(0.44)= 2.6%
- QC + 2(S)= 3.43 + 2(0.44)= 4.3%
- QA (3.8) lies within 2.6 to 4.3
- Yes, use QC's results

11

11

Example 2 Half Tolerance

- VMA: Allowable range is -0.5% to + 2.0%, so the spec tolerance is 1.25%.
- Half of this is 0.6%.
- $^{\circ}$ So, to be valid, QA must be between \pm 0.6% of the mean of the QC results for a given lot.

12

На	If Spec Range: EPG 403.1.21	i
Parameter	Spec Tolerance (%)	1/2 Spec Tolerance (%)
Air Voids (Va)	1.0	0.5
Binder Content (Pb)	0.3	0.15
Mat Density	2.5	1.25
VMA	-0.5 to 2.0 = 2.5 (1.25 each "side")	0.6

QC:	8 BOZ	DC-QA	Darison	JOB MIX SUBLOT A B C	DENSITY 94.0 ± 2.0 93.3 92.6 93.4 92.2	ny famon'n famo
finot i	### ### ### ### ### ### ###	13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Visit 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
GA1 GA2 GA3 GA3 GA3 GA3 GA4	91	31	03 03 03 03	QA1 QA2	92.5	
re x to sev	017 027 037 040 040	122 046 61-61	1322 6 14 48 - (1) 6 11 0 12 0 12 0 12 0	QA3 QA4 QA5 QA6	91.7 < 92.87 OK	< 94.0
G U	100 to 10	(h) (h)	41 22	AVE. X STD. DEV.	92.87 0.57	porto:
ATTACT	HIS D FACTOR+ \$42	D)	p er 161	QA COMP.	94 - 91.7	-PCIDIN

Quality Level Analysis - TSR

TSR - favorable comparison is when QA and QC are within 10% of each other.

If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.

If difference is >10%, initiate dispute resolution.

QC and QA retained samples should be kept for extended periods.

16

16

17

	ole: QA First Co		Suspect, son	1 /2
Example 1- QA Pb.x	ls		Initial QA re	esults:
			Pb	4.1
			Gmm	2.472
Initial Comparison:			Gmb	2.381
Target Pb=	5.2		Gsb	2.634
QC	5.7		Va	3.7
	5.2		VMA	13.3
п	5.4			
	5.2			
QC avg	5.38			
QCS	0.24		7.0	
Range,lower	4.90	QCavg -	2 (0.24)	
Range,upper	5.85	OCave +	2 (0.24)	
QA	4.1	386		
Fit?	no			
	unfavorab	le		18

Unfavorable Comparison Loose Mix cont'd. Step 2. If both QA & QC's data appear ok, for all 3 parameters (Air Voids, VMA, Binder Content), one solution is to add all of QA's independent results to the data sets, now: n = (4 + 1) = 5 Re-run all 3 PWL analyses [Pb, VMA, Va] QL = X - LSL S (Mean & S are now different) New PWL New PF 20

	Pb5	VMA5	Va5	
n	5	5	5	
QC	5.7	13.3	3.9	-
QC	5.2	13.8		So,
QC	5.4	13.5	3.0	choose to
QC	5.2	12.3		re-run
QA	4.1	13.3		QA
Avg, n=5	5.12	13.24	3.48	
S	0.61	0.56	0.40	
USL	5.5		5	split.
LSL	4.9		3	
Qu	0.63	3.12	3.78	
QL	0.36	1.31	1.19	
PWLu	71.95			
PWLL	62.73		88.97	
PWLt	34.68	92.03	88.97	24
PF	19	101	99	21

Unfavorable Comparison Loose Mix cont'd.

Step 3a. Or could jointly test a retained loose mix sample (QA or QC on suspect sublot):

22

22

Unfavorable Comparison Loose Mix

- **cont'd.** Favorable comparisons between loose mix splits (original vs. retained) is defined as:
 - G_{mm}: within 0.005
 - G_{mb}: within 0.010
 - P_b: within 0.1%
- If this step verifies that all 3 original test results are valid, keep using the original results.

Step 3a:	QA		
	Retained	Original:	Close?
Pb	4.1	4.1	yes
Gmm	2.475	2.472	yes
Gmb	2.388	2.381	yes

23

23

Unfavorable Comparison Loose Mix cont'd.

- Add QA's independent results to the 3 data sets (Pb, VMA, Va), now n = (4 + 1) = 5
- Re-run all 3 PWL analyses.

(This is shown in Step 2, previous slide 22)

Unfavorable Comparison Loose Mix cont'd.

Step 3b. Alternate outcome of Step 3a. If running the retained loose mix split shows the original to be invalid, substitute all results (Pb, Gmm, Gmb) from the retained split. Re-calculate Va and VMA.

Now you have new QA test values for each parameter (air voids, VMA, binder content).

25

25

Step 3b: QA's Retained Pb Very Different Step 3b: QA Retained Original: Close? Pb 5.3 4.1 no 2.475 2.472 Gmm yes 2.388 2.381 Gmb yes Va 3.5 3.7 **VMA** 14.1 13.3

26

Unfavorable Comparison, Loose Mix cont'd.

For each parameter (Pb, VMA, Va), re-run the lot comparison of QA vs QC:

• If all 3 are favorable, use these results to re-run PWL (n = 4).

27

26

Comparison Using	g QA	Reta	ined Sar	nple Val	ues
		nL	37848	3/2	1

	10	VIVIA	va	
QC	5.7	13.3	3.9	
QC	5,2	13.8	3.7	
QC	5,4	13.5	3.0	
QC	5.2	12.3	3.1	
QC avg	5.38	13.2	3.4	
S	0.24	0.65	0.44	
Range,lower	4.90	11.93	2.54	
Range,upper	5.85	14.53	4.31	
Retained QA	5.3	14.1	3.5	
Fit?	yes	yes	yes	
	favorable	favorable	favorable	28

Ιf	Αli	3	Are	Favorable,	Use These	Results to

(n	=	4)
\		

	Re-run l	PWL .	
	Pb	VMA	Va
n	4	4	4
QC	5.7	13.3	3.9
QC	5,2	13.8	3.7
QC	5,4	13.5	3,0
QC	5,2	12.3	3.1
[
Avg, n=4	5,38	13.2	3.4
5	0,24	0.65	0.44
USL	5.5	15.0	5.0
LSL	4.9	12.5	3.0
Qu	0.53	2.73	3,56
QL	2,01	1.12	0,96
PWLu	67,67	100	100
PWLL	100	87.33	82
PWLt	67.67	87.33	82
PF	85	99	96

29

Unfavorable Comparison, Loose Mix cont'd.

* Step 4.

If QA vs QC comparison is still unfavorable, add QA's **independent** results (Pb, VMA, Va) to the 3 data sets. Now n=(4+1)=5

* Re-run all 3 parameters' PWL analyses.

$$Q_L = \frac{\overline{X} - LSL}{S}$$

30

Example	: QA	Core	is	Suspect
From	First	Com	na	rison

Om instead	inpunso
QC	93.3
QC	92.6
QC	93.4
QC	92.2
QC avg	92.9
QCS	0.57
Range,lower	91.7
Range,upper	94.0
QA	91.2
Fit?	no
	Unfavorable

32

CORES

- Case: QA core is taken at the same location as one of the QC core sample locations.
- Step 1 check core and G_{mm} data, etc.
- Step 2 There is no "retained QC" sample, so the QC core at the same location can function as a retained sample: QA & QC jointly should re-weigh QA and QC cores; if QC sample is comprised of more than 1 core, use the average of the QC cores.

33

32

CORES, cont'd.

- Step 3 Compare G_{mc}'s: QA to QC.
- $^{\bullet}$ If $G_{mc}{}^{\prime}s$ are within 0.010, the QA core is verified, as is the QA % Density.
- Add QA's % Density result to the QC % Density data set, now n = (4 + 1) = 5
- Re-run density PWL analysis.

34

34

CORES, cont'd.

- Step 4- If the QA and QC G_{mc} 's do not compare, then average the QA and QC G_{mc} 's-call this the new QA G_{mc} . Re-compute the QA % Density.
- Also call this the new QC Gmc for the sublot.
 Re-compute the sublot's QC % Density
- Re-compute the lot's QC % Density average and standard deviation

35

35

Step 4: Gmc Comparison
New QC %Density Average and Standard Deviation.

QC Gmc	2.304
QA Gmc	2.254
Avg	2.279

This is new QA Gmc, so %density =		92.4	(using QC Gmm, no QA Gmm from Lot C)	
Also, this is new QC Gmc for sublot C, s	o %Density =	92.4	(using QC Gmm)	
	QC		93.3	
	QC		92.6	
	new QC		92.4	
	QC		92.2	
	new avg		92.63	
	new S		0.48	

QC	93.3
QC	92.6
new QC	92.4
QC	92.2
QC avg	92.63
QCS	0.48
Range, lower	91.67
Range,upper	93.58
QA	92.4
Fit?	yes
	favorable

QC Data		%Density	
	n	4	
	QC	93.3	
	QC	92.6	
	new QC	92.4	
	QC	92.2	
	Avg, n=4	92.63	
	S	0.48	
	USL	97	
	LSL	92	
	Qu	9.14	
	QL	1.31	
	PWLu	100	
	PWLL	93.66	
	PWLt	93.66	
	PF	102	39

Step 7: Still Non-Favorable Comparison
Step 7 - If QA vs QC comparison is not favorable, add QA's % Density into QC's % Density data set for the lot, re-compute the lot's average and standard deviation.
Re-run the PWL (n = 5).

40

Retained Samples • If a retained sample is to be tested: • Reheat just enough to become workable-remove it from the container. • Spread in a pan(s) to heat quicker. • Quarter. • Run entire suite of tests.

41

Outliers Lot data may be examined for outliers via ASTM E 178. Eligible tests: Gmb, Gmc, Gmm, Pb Process is somewhat moot with the advent of the retained split testing procedure now in place. See Appendix.

44

Pay Adjustment Factors

- QLA Pay Factors
- TSR Pay Adjustment Factor (403.23.5)
- Density Pay Adjustment Factor [403.23.7.4.1(b)]
- Longitudinal Joint Pay Adjustment Factor [EPG]
- Smoothness Pay Adjustment Factor
- From JSP's:
 - Intelligent Compaction: Passing/Deficient Segments
 - Infrared Thermal Profiles: Thermal Segregation Categories
 - Performance Testing (Cracking)
 - Elevated Density

45

Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 subjois	
Integral shoulder	none			HELEN
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined		Considered p	art of the traveled way	1
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudina Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	2222	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/sublot	Density Pay Adjustment Factor

	TSR	% of Contract price
/ -	≥90	103
	75-89	100
	70-74	98
	65-69	97
· Virginia	<65	Remove

Density Pay Adjustment Factor		
Field Density, % of Gmm	% of Contract price	
92.0-97.0	100	
91.5-91.9 or 97.1-97.5	90	
91.0-91.4 or 97.1-97.5	85	
90.5-90.9 or 97.6-98.0	80	
90.0-90.4 or 97.6-98.0	75	
Below 90.0 or above 98.0	Remove & replace	

Longitudinal Joint Density Pay Adjustment Factor (PAF)			
Field Density, % of Gmm	% of Contract Unit Price		
90.0 - 96.0	100		
89.5 - 89.9 or 96.1 - 96.5	90		
89.0 - 89.4 or 96.6 - 97.0	85		
88.5 - 88.9 or 97.1 - 97.5	80		
88.0 - 88.4 or 97.6 - 98.0	75		
Below 88.0 or above 98.0	Remove & replace		

Non-Integral shoulders & Small Quantities • Use the Density Pay Adjustment Table • Use of the factors for non-integral shoulders is at the Resident Engineer's discretion

50

Confined Longitudinal Joint Density Evaluation

• Density in confined joints is handled with the traveled way coring. Required density is same as for the traveled way (94.5 \pm 2.5%).

Smoothness	Pay Adjustment (IRI)	
Table 1 (> 45 mph)		
IRI (in/mile)	% Contract Price	
40.0 or less	105	
40.1-54.0	103	
54.1-80.0	100	
80.1 or greater	100 after correction to 80.0	
	Correction = diamond grinding	
	Table 2 (≤45 mph)	
IRI (in/mile)	% Contract Price	
70.0 or less	103	
70.1-125.0	100	
125.1 or greater	100 after correction to 125.0	
	52	

Gradation Samples

- MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample.
- An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock.
- RAP gradation in the field can be determined with ignition oven.

53

53

Remove & Replace

- All lots with a PF_T < 50.0
- Any sublot with < 90.0 or >98.0% density
- Any sublot with < 2.5% air voids
- If TSR < 65%
- If unconfined joint density is < 88.0% or > 98.0%
- Actual limits of removal up to the specified amount is at the RE's discretion.

54

Remove & Replace If QA results fall below removal limits (density and/or air voids) but QC's results do not, and there is favorable comparison, the mix stays. If QA results fall below removal limits (density and/or air voids) and favorable comparison is not achieved, initiate dispute resolution.

55

Remove & Replace • Replacement mix will be sampled & tested to calculate PWL

56

Pay Factors (PF's) are multipliers of the contract price to adjust for quality. New QLA PF's are calculated for each lot (say, 3000 tons). PF's are based on the mean and standard deviation of the test results from a lot.

Performance Testing

- Moving from materials & methods specifications to performance specifications.
- What properties of the final product are we interested in, rather than some component of the final product.
- Via JSP's at this point.
- Started in 2018.

58

58

Record Keeping and Exchange of Data

59

Record Keeping Samples

- · Contractor samples retained for the engineer:
 - clean covered containers
 - readily accessible
 - *ID'd: Job mix no.,sampler, sample location, time & date sampled
 - stored until test results accepted)
- QC gradation samples: retain the portion of the QC sample not tested after reducing the sample to testing size.
- *All samples labeled

61

61

QC Record Keeping

- *Record and maintain all test results
- *Up-to-date test results
- *Paper backup of results
- *Maintain printouts from gyro and binder content devices
- *Pay Factor records
- Maintain an inventory of major sampling, testing, & calibration equipment.

62

62

Documents On Hand

- *Job mix
- *QC plan
- *Current copies of all test method procedures

63

Test Equipment & Plant Calibration/Verification Records

- · Results of calibration
- Description of equipment calibrated
- Date of calibration
- Person calibrating
- Calibration procedure ID
- Next calibration due date
- ID of calibration device & trace ability of calibration

64

64

Calibration			
Equipment	Requirement	Interval (month)	
Gyro	Calibrate	12	
Gyro	Verify	Monthly; when moved	
Gyro molds	Dimensions	12	
Thermometer	Calibrate	6	
Vacuum	Pressure	12	
Pycnometer	Calibrate	Daily	
Ignition oven	Verify	12 or when moved	

65

Calibration, Cont'd			
Equipment	Requirement	Interval (month)	
Nuclear gage	Drift & stability	1	
Shakers	Sieving thoroughness	12	
Sieves	Physical condition	6	
Ovens	Verify settings	4	
Balances	Verify	12 or when moved	
Timers	Accuracy	6 6	

QC Records Maintain 3 years from completion of project. • test reports, including raw data calibrations technician training personnel

67

67

• What:

Exchange of Data

- QC furnishes raw data (including gyro, and binder printouts) and test results to QA not later than the beginning of the next day following the
- QC data, control charts, etc., readily available to QA at all times.
- QA raw data & results made available to QC no later than the next working day.
- QA will make the QLA within 24 hours of receipt of the QC test results.

68

TAB Module 13

Module 13

Performance Testing

Balanced Mix Design Performance Testing and Increased Density

- Moving from materials & methods. specifications to performance specifications. (Balanced Mix Design = BMD).
- What properties of the final product are we interested in, rather than some component of the final product.
- Via Job Special Provisions (JSP's) at this point.

2

2

QC/QA BMD Projects • QC: 1 per 10,000 tons • QA: 1 per 20,000 tons • Up to 3% incentive for CT_{Index} in range and • Hamburg is <12.5 mm • 1% incentive for greater field density (>94 for non SMA and with unconfined joint density >90.0%). • Favorable comparison: QA and QC are within 20%.

Performance Test	Min # of Pucks/Set	Molded Ht. mm
CT _{Index}	3	62
HWT	4	62
AMPT	5	180
Hamburg W	lerance Index – (/heel Track – HW nples for Researc	Ī

Tested according	CT _{Index} to ASTM D8225 @ 25±1°C MA Mixtures
CT _{Index}	% of Contract Price
< 45	97%
45-97	100%
>97	103%
SMA	Mixtures
CT _{Index}	% of Contract Price
< 135	97%
135 - 240	100%
>240	103% 13

Hamburg Wheel Track

5.0 Hamburg Wheel Track (HWT). HWT testing will be completed in accordance with AASHTO T324 at test temperature of 50 C and 62 mm specimen height.

PG Grade High Temperature*	Minimum Wheel Passes	Maximum Rut Depth (mm)
58S-xx	5,000	12.5
64S-22	7,500	12.5
64H-22	15,000	12.5
64V-22	20,000	12.5

*Determined by the binder grade specified in the contract.

14

14

Design Gyrations

6.0 Design Gyrations. The number (N) of gyrations required for gyratory compaction shall be in accordance with Sec 403.4.5. For Non-SMA mixtures, at the option of the contractor the number of gyrations and air volds may be lowered. Mixtures having lowered gyrations shall have a minimum volume of effective asphalt, equal to the VMA minus the air voids, as shown in the chart below, with design air voids between 3.0% to 4.0%. The minimum VMA shall be the design air voids plus the volume of effective asphalt.

Mixture	Volume of Effective Asphali (percent)	
SP125	11.0	
SP095	12.0	
SP048	13.0	

The minimum gyration level shall be in accordance with the following:

Design	Ndesign	Ī
F	35	Ī
E	50	
С	60	
В	65	Ī

More Information You can find more and current information on the MoDot Web Site under Missouri Standard Specifications for Highway Construction. Job Special Provisions NJSP2001 or newer

16

Alternate to Rutting Test: IDT Indirect Tensile Test (ASTM D6931) • Test is run on Volumetric Specimen (150x115mm) • Placed in bags in 52° water bath for 30-60 minutes. • Broke with TSR Apparatus, Speed • Results correlate closely with Hamburg On the Horizon

- **1.0 Description.** This work shall consist of providing asphalt mixture in accordance with Sec 403 and meet the Balanced Mix Design (BMD) performance requirements of cracking and rutting resistant properties at an increased density level. The BMD performance requirements will be applied to SuperPave mainline wearing surface mixtures. Bituminous binder and base, level course, shoulder, and pavement repair mixtures are excluded from the BMD requirements.
- **2.0 Performance Testing.** Acceptable test results meeting the 100% pay criteria for both Cracking Tolerance Index (CT_{Index}) and Hamburg Wheel Track (HWT) tests shall be submitted with the mix design for approval. The contractor shall conduct Quality Control (QC) testing for CT_{Index} and HWT tests at a frequency of 1/10,000 tons for the mainline pavement. The random testing location will be determined by the engineer.

Incentive/disincentive payment will be calculated based upon the mixture cost for the tonnage represented by each sample, generally 10,000 tons. An incentive of 3% of the asphalt mixture item cost will be paid if the CT_{Index} results are within the incentive range and HWT results are below 12.5 mm. The engineer will conduct performance testing at a frequency of 1/20,000 tons for Quality Assurance (QA). A favorable comparison will be achieved if the results for QA and QC are within 20%.

In addition, a 1% incentive is being offered for sublots with qualifying density results above 94% for non-SMA mixtures and with unconfined joint density of 90.0% or above.

Gyratory compacted samples for the Asphalt Material Performance Tester (AMPT) shall be fabricated at a minimum of once per project or as directed by the engineer and submitted to the MoDOT Central Laboratory for informational purposes only.

3.0 Mix Sampling and Preparation. Laboratory mixed samples for mix design submittal shall be short term conditioned in accordance with AASHTO R30 prior to conducting performance testing. Loose mix samples from the plant shall be taken during production in accordance with AASHTO R 97 and split to the appropriate size in accordance with AASHTO R 47. No conditioning is required on plant mixed samples. Samples shall then be heated to the compaction temperature +/- 3° C prior to compacting necessary samples for QA/QC testing. QA personnel shall be present during the sampling, splitting, and molding process. QC shall fabricate all test specimens. QA will randomly select the specimens to submit to the MoDOT Central Laboratory for performance testing. The following table details the minimum number of specimens required:

Performance Test	Minimum Number of Specimens per Set	Molded Specimen Height (mm)
Cracking Tolerance Index (CT _{Index})	3	62
Hamburg Wheel Track (HWT)	4	62
AMPT Samples for Research Purposes	5	180

When QA testing is to be performed, three sets shall be fabricated for CT_{index} and HWT performance testing: QC, QA, and an additional set for QA retention.

AMPT samples for BMD research shall be fabricated in accordance with AASHTO PP 99-19, carefully following the exceptions noted herein:

- 1) Pour the mixture into the center of the mold to minimize air void variation between samples. Pouring material down the sides of the mold will result in lower air voids on that side of the mold.
- 2) Charge the mold in two equal lifts. After each lift, use the spatula to scrape the walls of the mold, inserting the spatula 8-10 times around the circumference of the mold. Insert the spatula into the center of the mixture 10-12 times in an evenly distributed pattern. Insert the spatula as far as possible into the mixture without damaging aggregates.
- **3.1 Molding Samples.** The specimens shall be compacted to an air void content of 7.0 +/- 0.5% or $6.0 \pm 0.5\%$ for SMA mixtures. The gyratory specimen weight for each performance test shall be submitted with the mix design. The compacted test specimens shall be allowed to cool to 25 +/- 3° C prior to determining the air void content.
- **3.2 Determining Air Voids.** The bulk specific gravity of the test specimen will be determined in accordance with AASHTO T166. Specimens shall be air dried for 24 +/- 3 hours before preconditioning the test specimens for CT_{Index} testing. Test specimens shall be preconditioned as specified in the test methods. If a water bath is utilized, it is critical that samples are kept dry.
- **3.3 Records.** Compaction temperature, times in and out of the oven, gyratory specimen weight, and sample identification shall be recorded.
- **4.0 Cracking Tolerance Index (CT**_{Index}) **Testing.** The CT_{Index} testing shall be completed in accordance with ASTM D8225 and at a test temperature of 25 C +/- 1° C. Incentive/disincentive payment will be calculated based upon the mixture cost for the tonnage represented by each sample, generally 10,000 tons. An incentive of 3% of the asphalt mixture item cost will be paid if the CT_{Index} results are within the incentive range and HWT results are below 12.5 mm.

Non SMA Mixtures		
Cracking Tolerance Index	Percent of Contract	
(CT _{Index})	Price	
< 45	97%	
45 - 97	100%	
> 97	103%	

SMA Mixtures		
Cracking Tolerance Index Percent of Contr		
(CT _{Index})	Price	
< 135	97%	
135 - 240	100%	
> 240	103%	

5.0 Hamburg Wheel Track (HWT). HWT testing will be completed in accordance with AASHTO T324 at test temperature of 50 C and 62 mm specimen height.

PG Grade High Temperature *	Minimum Wheel Passes	Maximum Rut Depth (mm)	
58S-xx	5,000	12.5	
64S-22	7,500	12.5	
64H-22	15,000	12.5	
64V-22	20,000	12.5	

^{*}Determined by the binder grade specified in the contract.

6.0 Design Gyrations. The number (N) of gyrations required for gyratory compaction shall be in accordance with Sec 403.4.5. For Non-SMA mixtures, at the option of the contractor the number of gyrations and air voids may be lowered. Mixtures having lowered gyrations shall have a minimum volume of effective asphalt, equal to the VMA minus the air voids, as shown in the chart below, with design air voids between 3.0% to 4.0%. The minimum VMA shall be the design air voids plus the volume of effective asphalt.

Mixture	Volume of Effective Asphalt (percent)
SP125	11,0
SP095	12.0
SP048	13.0

The minimum gyration level shall be in accordance with the following:

Design	N _{design}
F	35
Е	50
С	60
В	65

7.0 VFA Requirements. Section 403.4.6.3 Voids Filled with Asphalt shall be omitted provided that the HWT requirements described above are satisfied and the CT_{Index} is 45 or greater.

8.0 Sec 403 Revisions.

Delete Section 403.5.2 and replace with the following...

403.5.2 Density. The final, in-place density of the mixture shall be between 92.0 and 97.5 percent of the theoretical maximum specific gravity for all mixtures except SMA. SMA mixtures shall have a minimum density of 94.0 percent of the theoretical maximum specific gravity. The theoretical maximum specific gravity shall be determined from a sample representing the material being tested. Tests shall be taken not later than the

day following placement of the mixture. The engineer will randomly determine test locations.

Delete Section 403.23.7.3 and replace with the following...

403.23.7.3 Removal of Material. All lots of material with a PFT less than 50.0 shall be removed and replaced with acceptable material by the contractor. Any sublot of material with a percent of theoretical maximum density of less than 90.0 percent or greater than 98.0 percent shall be removed and replaced with acceptable material by the contractor. For SMA mixtures, any sublot of material with a percent of theoretical maximum density of less than 92.0 percent shall be removed and replaced with acceptable material by the contractor. Any sublot of material with air voids in the compacted specimens less than 2.0 percent shall be evaluated with Hamburg testing and removed and replaced with acceptable material by the contractor if the rut depth is greater than 14.0 mm at the designated number of wheel passes above. No additional payment will be made for such removal and replacement. The replaced material will be tested at the frequencies listed in Sec 403.19. Pay for the material will be determined in accordance with the applicable portions of Sec 403.23 based on the replacement material.

Delete Section 403.23.7.4.1 and replace with the following...

403.23.7.4.1 Small Quantities. Small quantities are defined in Sec 403.19.3.2.1. Unless the contractor has elected to use the normal evaluation in the Bituminous QC Plan for small quantities, the following shall apply for each separate mixture qualifying as a small quantity

- (a) QLA and PWL will not be required.
- (b) Mixtures shall be within the specified limits for VMA, V_a, AC and density. In addition to any adjustments in pay due to profile, the contract unit price for the mixture represented by each set of cores will be adjusted based on actual field density above or below the specified density using the following schedule:

Field Density (Percent of Laboratory Max. Theoretical Density) For all SP mixtures other than SMA:		Pay Factor (Percent of Contract Unit Price)	
		92.0 to 97.5 inclusive	100
97.6 to 98.0	or	91.5 to 91.9 inclusive	90
	or	91.0 to 91.4 inclusive	85
	or	90.5 to 90.9 inclusive	80
	or	90.0 to 90.4 inclusive	75
Above 98.0	or	Below 90.0	Remove and Replace
For	SMA m	ixtures:	
		>94.0	100

93.5 to 93.9 inclusive	90
93.0 to 93.4 inclusive	85
92.5 to 92.9 inclusive	80
92.0 to 92.4 inclusive	75
Below 92.0	Remove and Replace

- **9.0 Elevated Density.** Sublots with a QC density test result which compares favorably with QA, has a density result of 97% 94% and have unconfined joint densities of 90% or greater shall receive a 1% incentive based on the bituminous mixture unit price for non-SMA mixtures.
- **10.0 Basis of Pavement.** Payment for compliance with this provision will be made at the contract unit price for Item No. 403-10.56, Asphalt Performance Testing, lump sum.

TAB Module 14

Module 14

Contract Administration

2

Team Members

- Team members are representatives from MoDOT and Industry.
- Team meets regularly to discuss issues that arise and how to deal with them in a manner that is acceptable to both parties.

#1
Can I (MoDOT) direct a routine
QC loose-mix sample to an area
on the roadway that appears to
have a mix problem?

4

#2
Am I (MoDOT) restricted to testing only the locations where the random samples fall?

5

#3
Can I direct my random QA test to an area on the roadway that looks like it may have a quality problem?

#8
Can't the "self tests" be used to tweak the plant in advance of the random test?

#9
The contractor doesn't want to give me the results of the "selftests." Can I insist on getting them?

12

#11
There are test specimens in the field laboratory that I can't identify. I can't be there all the time to witness all the testing. How do I know that the correct samples are used to determine payment?

14

#12
My QA sample does not compare favorably with QC. QC says my testing is in error. Now what do I do?

We have checked everything, and it turns out that QA and QC test results are both valid. The results are still unfavorable.
What does the contractor get paid?

16

16

#14(a)

The plant is running smoothly, I have confidence in QC's testing and our comparisons are favorable. Do I need to continue running so many QA tests?

17

17

#14(b)

What about the frequency of dryback...Can we cut back if the results are consistent?

18

#17
Can I take the joint density cores at the same longitudinal location as the random mat density samples, or should I use a separate random number?

Due to stage construction, less than 4 sublots in a particular lot have an unconfined joint. Should the deduction for low unconfined joint density apply to the entire lot?

22

22

#19

What is this QC/QA project checklist that I'm hearing about?

23

23

Checklist Items

- Review QC Plan
- Random No. Method
- Sample Identification
- Location of QC Lab
- Rice Dryback?
- Dispute Resolution
- Paperwork Sharing
- Pay Factor Spreadsheet Version
- Test Method Options
- Job Mix Approval
- Specifications to Review
- Anything Else Important to the Project

24

#25(b)

The small quantity deduction is more punitive that if PWL were calculated.

Is it an option to use PWL to calculate the deduction on a small quantity project?

32

32

#26

The contractor is using something called a notched-wedge to construct the longitudinal joint. Where is the unconfined joint density measured?

33

SECTION 403 FAQ (Revised 5-29-18) INTRODUCTION

This document was developed, and will be maintained, to clarify the intent of the specifications, reduce conflict in the QC/QA environment and improve uniformity of contract administration across the state.

This is not a contract document and cannot be enforced as such. The Resident Engineer always has the latitude to react in an appropriate way to job specific circumstances, but decisions should be consistent with the underlying intent of guiding specifications and policies.

For this discussion, QC refers to the contractor's representative performing Quality Control testing. QA refers to MoDOT's representative performing Quality Assurance testing.

QUESTIONS AND ANSWERS

#1

Can I direct a routine QC loose-mix sample to an area on the roadway that appears to have a mix problem?

It is critical that routine tests, as defined in the contractor's QC plan, be at random locations. It is critical because any manipulation of the random numbers introduces bias. Keep in mind that the QC test results are used to statistically define a population of data. Bias causes inaccuracy in that statistical calculation.

#2

Am I restricted to testing only the locations where the random samples fall?

No. QA can take a sample anywhere, at any time if there is concern about a problem area, but this should be treated as an "extra" sample. These "extra" samples are used to determine if problem areas are acceptable, or to help define limits of a problem.

#3

Can I direct my random QA test to an area on the roadway that looks like it may have a quality problem?

No. The QA random test that will be used for comparison to QC should be taken at a random location unless adjusted for a specific reason. For example, a test should not be taken in the middle of a busy intersection because that would be contrary to public interest. Also, Sec 403.23.7.1.5 allows samples to be separated by a minimum of 200 tons. Remember, bias causes problems with our statistics and is not in the interest of either MoDOT or the contractor.

Didn't you tell me earlier that QA could test anywhere any time?

Yes. The test frequencies listed in the specifications are minimums. QA always has the option to take additional tests. The random QA sample is used for comparison to QC and determines whether QC tests adequately define the characteristics of the entire lot. The "extra" QA test is used only to determine if an isolated area has a problem, or to help define the limits of a problem.

#5

Does it matter how I choose my random numbers?

Generate random numbers by using the Asphalt Random Locations spreadsheet, because that eliminates any question of bias.

QA can locate the sheet on the internal site at the following link:

http://eprojects/Templates/Forms/AllItems.aspx

Sheet Name: Asphalt Random Locations

A random number chart is okay, but be sure to choose random number pairs either row by row, or column by column. In other words, don't jump around on the chart, because that can introduce unintentional bias. Random number generators on a calculator are satisfactory as long as the selections aren't intentionally biased.

When using any method other than the spreadsheet to generate random numbers for roadway density cores, the pairs should be recorded once at the beginning of the lot and provided to QC at the completion of the lot. This will assure transparency of the random number selection process. Drawing a number from a hat can be used if no other options are available.

#6

When should I give the random numbers to QC?

This issue has caused a great deal of conflict statewide. To restore confidence in the process, the following procedures will be used:

Random numbers will be generated in advance, by lot, and a printout of those numbers will be sealed in an envelope. At least one lot should be prepared in advance and kept in a secure location. The QA inspector will also keep a copy in his possession. A best practice is to generate all of the random numbers prior to the start of the project. Both QA and QC parties sign and date the seal and then QA delivers the envelopes at the end of each lot. Random numbers will be given to QC between 100 and 150 tons in advance of the test. The intent is to give QC enough time to get any ongoing tests to a stopping point and to get out to the

roadway in time. This should not give the plant operator enough time to adjust production and work any resulting change through the silo. When the sampling for a lot is completed, the envelope for that lot will be opened to demonstrate that the random numbers were not manipulated during production.

Random numbers for density cores should also be generated in advance. They can be provided to QC when rolling is complete.

QC and QA need to work together in good faith to make this process run smoothly. Occasionally random tests will fall close together. If QC is at a critical point in a test when the next random number comes up, QA should make an adjustment QA should be aware that this policy creates some real challenges for QC and use appropriate judgment. Loose mix samples should not be collected from the roadway in handwork areas. Random cores should not be taken in areas where handwork is required due to adjacent obstructions, they should instead be moved 10 feet ahead of the affected area. Extra QA cores may be taken to monitor these areas, but should not be part of the PWL. As a professional courtesy, QA should give QC a reasonable opportunity to witness random QA roadway sampling.

#7

The contractor is sampling mix directly out of the trucks and using the results to adjust the plant. Is that okay?

Yes, but the samples should be marked as such if they are tested in the field laboratory. The contractor has the option of doing extra testing. These "self-tests" or "truck tests" are used to see how the mix is doing between random tests. Only the random QC tests are used to calculate pay.

#8

Can't the "self tests" be used to tweak the plant in advance of the random test?

Not if the random test locations are given 100 to 150 tons in advance as outlined earlier.

There would be no way to complete a test and adjust the plant in time.

#9

The contractor doesn't want to give me the results of the "self-tests." Can I insist on getting them?

There is no reason to demand "self-test" results. If the random testing is being done correctly, the results will accurately define general production characteristics. If there is reason to be concerned about an isolated area, take an extra QA test.

Can "self-test" results be used to determine removal limits?

EPG 403 reads as follows: "QC self-test results may be used to help define the limits of removal as long as the self-test(s) are well documented".

A self-test will be considered well documented if the following minimum criteria are met:

- 1. The puck is available and is clearly labeled
- 2. The gyratory printout is made available
- 3. The printout from the AC test is made available

The resident engineer has the option to determine removal limits based on puck height, provided that the self-test data is consistent with previous production.

#11

There are test specimens in the field laboratory that I can't identify. I can't be there all the time to witness all the testing. How do I know that the correct samples are used to determine payment?

There is no legitimate reason for unidentified samples to be in the field laboratory. The QA inspector should insist that all test specimens in the field laboratory be marked as soon as they are cool enough. The identifying mark should be permanent, unique, and indicate what the sample is.

#12

My QA sample does not compare favorably with QC. QC says my testing is in error. Now what do I do?

QA and QC should be given the opportunity to witness each other's sampling and testing. Doing so will head off a lot of conflict.

Copies of all test methods should be readily available in the field laboratory. Testing procedure must follow an approved test method. If either party has an issue with the other's test procedure, an objection should be raised at that time. By doing this promptly, the issue can be resolved while it is still possible to re-create the test. If a decision is made to test a retained sample, the test should be run jointly so that testing procedure is taken off the table as a variable.

EPG 403 reads as follows: "If the comparison is not favorable, the first step is to review both QC and QA test results to see if there is any noticeable error. If no errors are found, testing of the retained samples may be performed. Judgment must be used in determining which retained sample(s) to test. When testing a retained sample, the entire suite of tests (%AC, Va, and VMA) should be performed to verify the validity of the original test results. If the test results of the retained sample confirm the original test results, the original test results are used to determine the PWL. If the test results of the retained sample are used to determine the PWL."

We have checked everything and it turns out that QA and QC test results are both valid. The results are still unfavorable. What does the contractor get paid?

EPG 403 reads as follows: "If the QC and QA test results have been determined to be valid and the comparison is still unfavorable, the test results from the random, independent QA sample will be included in the PWL calculation. The QA test results of QC retained samples or the test results from any additional QA samples will not be used in the PWL calculation. As an example, lot 3 has been completed and consists of 4 sublots. A favorable comparison was not obtained but it was determined that the QC and QA test results are valid. Therefore, the PWL calculation will include the QC test results from all 4 of the sublots and the test results of the random, independent QA sample (n = 5)."

When the random QA test results are included in the PWL calculation, all volumetric properties (%AC, VMA & VA) for that sample will be used, even if only one of the three properties has an unfavorable comparison.

#14

The plant is running smoothly, I have confidence in QC's testing and our comparisons are favorable. Do I need to continue running so many QA tests?

The minimum testing frequencies are shown in section 403.19.3 of the specification. The following table illustrates the differences. The frequency of testing of QC splits can be reduced when QC and QA become confident with each other's sampling and testing procedures, frequencies for evaluating the retained sample are outlined in section 403.18.1.

	Minimum by Spec	Early in project	Later in project
Random QA	1/day	1/4 sublots	1/4 sublots
QC Split	1/week	1/day	On days when there
			is no random QA

What about the frequency of dry-back. Can we cut back if the results are consistent? Section 403.19.3.1.2 explains the dry-back requirement

"The dry-back may be reduced to once per 4 sublots if the difference of the Gmm and Dry-back Gmm of the first 4 samples are within 0.002 of each other."

#15

What constitutes a favorable comparison when running a QC split?

Gmm should be within 0.005, Gmb should be within 0.010, and AC within 0.1%. If variances are larger both QA and QC should scrutinize sampling and testing procedures to identify the cause of the difference.

Isn't that a pretty tight comparison range for Gmb?

Yes, but for two technicians in the same lab it is attainable. If there are comparison

problems, the retests should be run together to ascertain the cause of the discrepancy. The 7-day requirement in Sec 403.17.2.3 notwithstanding, retained samples should not be discarded until all comparison issues with the lot are resolved. If space at the field lab is an issue, the sample should be stored at the project office.

#16

I observe extra density core holes in the mat that I can't account for. Should I be concerned?

The roadway inspector should assure that the density cores taken from the roadway are the same ones tested in the lab. The preferred procedure is for a MoDOT inspector to take possession of the cores as soon as they are cut, and deliver them directly to QA at the plant. This needs to be done promptly so that testing of the density cores can proceed without delay. When specific job circumstances make this procedure impractical, the roadway inspector may dry the core with a paper towel and mark the side using a permanent felt-tipped marker, then place and seal the core or cores in a tamper proof bag. The identifying mark should be unique and readily identifiable when the sample arrives at the plant. A signature, along with lot and sublot, is one example of an identifying mark. When marked in this fashion, it is acceptable for the contractor to deliver the QC cores to the lab.

The roadway inspector will select one QC core roadway location per lot to cut a QA core. The QA core should be taken at the same offset as the QC core and within 6 inches longitudinally. The roadway inspector will take possession of the QA core and deliver it directly to the lab. When calculating the Gmb for the QA core, the Gmm will be the same as that used for the corresponding QC Core. The comparison will be favorable when the Gmb of the QA core and the QC core at that same location (or the average of the QC cores if specified in the QC plan) is within 0.010.

If the comparison is not immediately favorable, QC and QA will rerun both cores in each other's presence to check for testing errors. If the comparison is still outside the acceptable limit, the resident engineer will determine if either core is non-representative due to damage, roadway surface irregularities etc. If both cores are representative, an average of QC and QA will be used for that sublot.

Can I take the joint density cores at the same longitudinal location as the random mat density samples or should I use a separate random number?

Either way is acceptable. If QC prefers to take the joint cores at a separate random number it should be indicated in the QC plan.

#18

Due to stage construction, less than 4 sublots in a particular lot have an unconfined joint. Should the deduction for low unconfined joint density apply to the entire lot? No. The deduction should only apply to those sublots which have an unconfined joint density sample, the spread sheet will assist with this determination.

#19

What is this QC/QA project checklist that I'm hearing about?

A checklist was developed for QC and QA to run through before work begins. It is intended to reduce conflict by working out the day to day details of how to conduct business in advance of the production pressures. A Industry/MoDOT task force developed a checklist but any other that accomplishes the same thing is acceptable. One of the key elements is to clearly define a conflict escalation procedure. Far too many conflicts lay unresolved for too long. Conflicts that QC and QA cannot resolve between themselves should be promptly escalated.

#20

I have a disagreement with QC that we can't resolve. What do I do now?

The vast majority of issues between QC and QA can be resolved by consulting the QC Plan, the Test Method or the contract documents. If a dispute cannot be resolved within a few hours of taking these initial steps, it should be escalated.

Time frames and escalation levels (including the names of the individuals) should be discussed when going through the checklist. Unresolved issues lead to an atmosphere of mistrust in the QC/QA environment.

Decisions should always be timely and made at the lowest appropriate level.

#21

Do the Specifications require that the QC lab be located at the asphalt plant?

No. The contractor is required to provide an appropriately equipped QC laboratory. The contractor is also required to provide office space at the asphalt plant for the QA inspector to work on records and reports. Usually these 2 requirements are met with one structure, but not always. The intent of the specification will be met if the QA inspector

is provided with suitable facilities at the plant, but the lab is located offsite at a location appropriate to the work under progress. For example, the contractor may elect to place the laboratory at a location between the jobsite and the plant.

My random QA test results indicate that the sublot that it fell within should be removed. The random QC results are above the removal limit. The comparison for the entire lot is favorable. What should I do?

EPG 403 under Removal of Material reads as follows: "If the QA test results fall below the removal limits for density and/or air voids, the mix should stay in place if a favorable comparison has been obtained with the QC test results. Again, a favorable comparison signifies that the QC test results adequately define the characteristics of the lot and are, therefore, acceptable. If the QA test results fall below the removal limits and a favorable comparison has not been obtained, dispute resolution should be initiated to determine whether or not the mix should stay in place."

#23

Can the TSR sample be taken at the asphalt plant?

Yes, the test method allows that. Since it is easier to take a larger sample at the plant, the QA sample should be at least 250 pounds. 125 pounds should be sent to the Central Laboratory for testing and the other half kept by the RE as a retained sample. The inspector should write the Mix Number and sample ID on the box. TSR samples need to be taken at random locations but can be taken when it is convenient to production.

#24

It seems to take an awfully long time getting results from my counterpart. Within what time-frame should I expect results?

Sec 403.17.1.1 of the Standard Specifications requires QC to provide all **raw** data to the engineer no later than the beginning of the day following the test. Raw data, of course, is subject to revision.

Sec 403.23.7.1 requires QA to make the QLA no more than 24 hours after receipt of the contractor's test results. Best management practice is for QA to review the QLA with QC before processing the report.

These should be adhered to unless there is a compelling reason to do otherwise. If problems are persistent they should be escalated quickly for resolution. In general, it is a good practice to provide PWL calculations to the contractor for work that is paid for on each estimate.

In a small quantity situation is it necessary to remove and replace mixture that is out of the specification limits by only a small amount?

In Section 403 of the EPG under Removal of the Material the following guidance exists; "The resident engineer should use engineering judgment when mixture placed under this section fails to meet specifications. If the laboratory compacted air voids are less than 2.5%, or the roadway density is less than 90.0% or more than 98%, the material should be removed and replaced. If asphalt content is above or below the target value by more than 0.3%, or if the roadway density is between 91.5% and 90%, the mixture may be allowed to remain in place with an appropriate deduction. Mixture that is out of specification by a minor amount may be left in place with no deduction"

The small quantity deduction is more punitive than if PWL were calculated. Is it an option to use PWL to calculate the deduction on a small quantity project?

Yes, if the contractor has it spelled out in the quality control plan.

26
The contractor is using something called a notched-wedge to construct the longitudinal joint. Where is the unconfined joint density measured?
The notch wedge generally looks like the sketch below:

Unconfined joint density should be measured on the first pass in the 6 inches adjacent to the vertical notch (if the contractor is taking 6 inch density cores the location should be adjusted as necessary to avoid the vertical face of the notch.) On the second pass, the entire width of the lane is fair game for random density testing, including the entire wedge section.

TAB APPENDIX

Appendix

Items:

- Outlier Evaluation ASTM E178
- 2. ASTM E178 Dealing with Outlying Observations
- 3. Mix Design Overview Binder, Rap, Shingles Module 2C(1)
- 4. Mix Design Overview Testing and Evaluation Module 2C(2)
- 5. Ignition Oven Test Cookbook
- 6. Rice Test (Maximum Specific Gravity) Cookbook

Appendix Item #1.

OUTLIER EVALUATION ASTM E 178

Applies to test values: G_{mm}, G_{mb}, % binder, core sp. gravity

1. If the largest test value (x_{max}) in the set is suspected to be an outlier, calculate the t-statistic:

2. If the smallest test value (x_{min}) in the set is suspected to be an outlier, calculate the t-statistic:

3. Compare the largest calculated t-statistic to the critical t-statistic. The critical t-statistic depends on the desired significance level and the number of test results in the set. MoDOT has set the significance level at 5%. If the evaluation is of an outlier either being too high, or too low, the following is a table of t-critical values. Typically, there are 4 sublots per lot, with one test per sublot:

No. of tests	t @ 5% in tail
3	1.153
4	1.463
5	1.672
6	1.822
7	1.938
8	2.032
9	2.110
10	2.176

If the *calculated t-statistic* is greater than $t_{critical\,(\alpha=5\%)}$, consider the test result to be an outlier. Material from the retained QA or QC sample may be tested to determine a replacement value.

QCQA/OutlierEvalE178.doc (12-18-02; revised 9-23-03; revised 3-2-09; 4-24-09))

ASTM E-178 Dealing with Outlying Observations

Example

 G_{mm} – 2.474, 2.478, 2.484, 2.522

$$\bar{x} = 2.490$$

$$s = 0.022$$

$$T_n = \frac{(x_n - \overline{x})}{s} = \frac{\max_{(2.522 - 2.490)}}{0.022} = 1.455 < 1.463$$

$$T_1 = \frac{(\bar{x} - x_1)}{s} = \frac{(2.490 - 2.474)}{0.022} = 0.727 < 1.463$$

From Table 1, 5% Significance at 4 observations the limit is 1.463. Therefore, there are no outlying data.

For specific gravity determinations, standard deviation (s) should be to the thousandth place, 0.XXX.

For asphalt content determinations, standard deviation (s) should be to the hundredth place, 0.XX.

MoDOT SUPERPAVE QC/QA TRAINING/CERTIFICATION COURSE

MODULE 2C(1)

MIX DESIGN OVERVIEW: Binder RAP & Shingles

11-24-06 Revision
11-9-07 Revision, 4-22-09 Revision
11-18-09 Revision, 12-29-09 Revision
11-17-10 Revision, 1-19-11 Revision
12-18-13 Revision, 2-26-13 Revision
12-18-13 Revision, 12-29-14 Revision
2-4-15 Revision, 12-28-16 Revision
2-16-18 Revision, 12-12-18 Revision
12-17-19 Revision, 130-20 Revision
12-17-21 Revision

OUTLINE

- *Module 2c(1)*:
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

2

ASPHALT (BINDER) GRADING

- Binder produced in grades
- Grades based on viscosity-temperature behavior
- Choice of grade depends primarily on climate

3

ASPHALT (BINDER) BEHAVIOR

- Based on *rheology*
 - Rheology: study of flow and deformation
- Asphalt cement is a viscoelastic material:
 - Elastic: spring
 - Viscous: dashpot (piston)

Λ

Binder Behavior

- Asphalt is a thermoplastic
- Behavior depends on:
 - Temperature

■ Duration of loading

■ Aging (properties change

with time)

5

SELECTION OF PG BINDER GRADE

- Based on:
 - **■** Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - ■RAP content

6

5

SELECTION OF PG BINDER GRADE Climate

- Grade chosen primarily on temperature expected:
 - to prevent *rutting*, based on cumulative hours at elevated temperatures
 - to prevent cold temperature cracking, based on average single-day low temperature

CONDITIONING/TESTING

■ Rutting: High temperature (DSR)

- Fatigue Cracking: Intermediate temperature (DSR)
- Cold-temperature cracking: cold temperature (BBR)

AASHTO M320 PG GRADING SYSTEM

■ 6 degree increments

Table 3.1 Supe	ergave Binder Grades
High Temperature Grades (Degrees C)	Low Temperature Grades (Degrees C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -46
PG 58	~16, -22, -28, -34, -4 0
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34
-	10

10

Choosing a PG Grade for a Climate

- Cleveland: say, get 30 years of weather data
- Convert air temperatures to pavement temperatures
- average high pavement temperature is 52 ° C
- Average low pavement temperature is -16 ° C
- A PG 52-16 will cover 50% of the data, thus will have a 50% Reliability
- A PG 58-22 will cover ~98% of the data, thus will have a ~98% Reliability

12

Rule-of-90 (or 92)

- If temperature range (absolute value high to low is less than 90° (or 92°), the binder is probably non-modified ("neat" asphalt)
- If range is ≥ 90°, probably is modified
- Examples:
- PG 64-22, range = 86° non-modified
- PG 70-22, range = 92°, modified
- PG 76-22, range = 98°, modified

13

TO MODIFY Optional Materials

- Polymer (eq. elastomeric polymer)
- Polyphosphoric acid (PPA)
- REOB = Re-refined engine oil bottoms
- Air-blown asphalt
- Others

14

13

DO I REALLY HAVE POLYMER IN MY BINDER?

■ M320 has the Elastic Recovery test- MoDOT has this in the 1015 spec

14

16

Elastic Recovery (%)

16

Section 1015.10.3

Grade	ER, min. %
PG 64-22, 58 58-28	-22,
PG 70-22	55
PG 76-22	65
	17

State DOTs with Binder
"Exclusions" (don't allow):
(PPA) REOB, Air Blown
Asphalt, Other)

Other DOTs handle the
problem in different ways

17

18

POLYPHOSPHORIC ACID (PPA)

- ■Can increase binder hightemp PG & performance without degrading low temp grade & performance
- Typically dosed at 0.25% to 1.5% by weight of asphalt

19

PPA Possible Issues

- May make mix more prone to moisture sensitivity
- PPA may react with amine-based Liquid Anti Strips (LAS) & Warm Mix Additives (WMA) which will lead to a partial decrease in hightemp PG improvement
- Chemically compatible LAS and WMA function should not be inhibited. Performance testing such as AASHTO T283 (TSR) or T324 (HWT) are highly recommended
- LAS and WMA suppliers make PPA-compatible materials

20

19

PPA Possible Issues, cont'd.

- Good communication with contractor regarding potential use of aminebased LAS
 - Ensure compatibility with WMA & LAS

21

Simple Test to Detect PPA in Asphalt

22

21

22

Other Analysis Methods

- To detect PPA in Asphalt
 - XRF detect presence of phosphorous
 - DSR detect drop in binder high PG stiffness
- Note Just because binder contains Phosphorous does not mean it has been modified with phosphoric acid
- It could be Engine Oil Additives - REOBs can contain a heat stabilizing additives that can contain up 8% Phosphorous, 8.5% Zinc

SELECTION OF PG BINDER GRADE Climate

- Specify a higher upper number-grade to prevent rutting eg. 58→ 64
- Specify a lower numbergrade to prevent cold temperature cracking, eg.
 -28 → -34

24

23

SELECTION OF PG BINDER GRADE

- Based on:
 - ■Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - ■RAP content

28

SELECTION OF PG BINDER GRADE

Depth in Pavement

■ Place better binder ("modified" binder) in surface mix and first underlying layer (top 4")

29

SELECTION OF PG BINDER GRADE

- Based on:
 - **■** Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - ■RAP content

30

29

30

32

Binder Grading Specs

■ The following slides refer to traditional M 320 binder grades (not M 332 "MSCR") unless noted

31

SELECTION OF A BINDER GRADE

- Can "bump" up a grade (increase the high temperature number) for high traffic levels (greater than 30 million ESAL's)
- Ex: PG 64-22 →PG 70-22

32

Effect of Traffic Amount on Binder Selection 1 80 kN ESALS 10400 1 00

- 10 to 30 x 106 ESAL
 - Consider increasing - one high temp grade
- ≥ 30 × 106 + ESAL
 - Recommend increasing - one high temp grade
 - > Equivalent Single Axle Loads

33

SELECTION OF PG BINDER GRADE

- Based on:
 - **■**Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - RAP content

34

33

Vehicle Speed

- Slower → increased rutting
- Stopped → worst case for rutting

Why?

■Longer duration of load

35

34

Effect of Loading Rate (Vehicle Speed) on Binder Selection

- Can bump up a grade (increase high temperature number) for slow moving (less than 35 mph) traffic [MoDOT uses 12-45 mph]
- MoDOT bumps 2 grades for <12 mph
- Grade bumps apply to the surface mix and the top lift of the underlying mixture
- Grade bumping: no effect on low temp grade 36

36

SELECTION OF PG BINDER GRADE

- Based on:
 - Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - ■RAP content

38

37

SELECTION OF PG BINDER GRADE

Reliability

- Can increase reliability for a given climate & depth by increasing the high and/or low temperature values (this may lead to a modified binder)
- PG grades chosen to match average high & low temperatures will give ~ 50% reliability
- 98% reliability is typically chosen for more critical situations
- Some DOT's choose 98% reliability for all binder grades

39

SELECTION OF PG BINDER GRADE

- Based on:
 - Climate
 - ■Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - ■RAP content

40

39

40

RAP/RAS Binders

- RAP has aged-stiffer than virgin binder
- **RAS** roofing binder is much stiffer
- Combined virgin & recycled binder → stiffer
- May be too hard

41

Solutions

- Limit the % of recycled effective binder (eg. 30% max)
- Use a softer virgin grade binder (eg. PG 58-28)
- Add a rejuvenator/viscosity modifier (eg. 3% Hydrogreen)
- Combinations of the above

42

41

"Effective Binder"

When dealing with recycled materials, interested in "effective binder", not total binder

43

ABSORPTIVENESS OF AGGREGATE

44

42

BINDER CONTENT

Conceptually:

- $P_b = P_{ba} + P_{be}$
 - P_b= total binder content
 - ■P_{ba} = absorbed binder
 - ■P_{be} = effective binder

45

RAP & SHINGLES (RAS)

- If effective virgin binder is less than 70% (more than 30% replacement by RAP+RAS), more binder testing (use of "blending charts") is required to assure that the combined binder meets the JMF specified binder grade
- So, typically contractors are limiting the effective recycle binder content of their mixes to ≤30%

46

12

45

SHINGLES (RAS)

- Shingles only allowed for contract specified grade of PG64-22 (if PG 70 and greater, shingles not allowed)
- If effective virgin binder is 60-70% (RAP+RAS = 30 to 40%), must use PG 52-28 or 58-28 (no binder testing required)

47

MoDOT Binder Grade PG 64-22

- Climate= whole state
- Position in pavement=
 - surface layer and first underlying layer (lower traffic)
 - Lower lifts (~all traffic)
- Traffic speed > 45 mph
- Traffic volume < 30 million ESALS
- Reliability= ~98%
- Upper number (64) is bumped up for increased traffic and/or slower speeds in top layer/top underlying 48

48

46

47

Appendix Item #3

M 320 PG GRADES

MoDOT typically specifies:

- PG 64-22 in the base course and for lower traffic levels mph in the surface course
- PG 70-22 for traffic levels
 >3500 AADT and/or traffic
 12-45 mph in the surface
 course
- PG 76-22 for some metropolitan areas (<12 mph) or steep grades with slow speeds

49

MODIFIED PG BINDERS

- How a material handles, compacts, etc., may be greatly affected if the binder is modified, eg. with a polymer.
- The supplier of the binder should be contacted to determine if the binder has been modified and what effects this modification might have on the mixture (eg. special handling requirements)

51

MoDOT Binder Selection-Depth, Traffic Volume, Vehicle Speed

Corridor	Layer	Binder Grad	
Interstates	Surface= SP125 or SMA & 1st underlying lift Remaining lifts	PG76-22 PG64-22	
Major Routes Heavy Volume	Surface= SP125 & 1st underlying lift Remaining lifts	PG70-22 PG64-22	
Major Routes Medium or Low Volume	Surface= SP125 or BP-1 Underlying lifts	PG64-22 PG64-22	
Minor Routes	All (generally BP-1 surface)	PG64-22 50	

50

BINDER TESTING PG 64-22

■ Upper PG number (eg, 64): DSR

■ Lower PG number (eq. -22): BBR

51

OUTLINE

- Module 2c(1):
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

53

ALTERNATE GRADING SYSTEMS

Original: M 320

■ ~New (MSCR): M 332

54

53

AASHTO M 320 Issues and the M 332 Solution

- M 320 was developed based on neat asphalts and does not do PMAs justice
 - > Therefore some Agencies have added "Plus Tests", such as % Elastic Recovery (% ER).
 - > However empirical tests such as % ER only show the presence of, but not the effectiveness of polymer-modification.

54

Polymer Modification

- Same polymer, same amount of polymer, but different behavior
- Not well characterized with M320 and PG+ tests

55

AASHTO M 320 Issues and the M 332 Solution

- The MSCR specification M332 corrects the M320 deficiencies by testing at the project climate temperatures and at the stress level commensurate with the expected traffic.
 - M332 uses the nonrecoverable compliance % (Jnr) and % Recovery to better qualify the type of modification.

57

Type of Modification

■ M332 (MSCR) is blind to the **type** of modifier (because the test is physical, not chemical)

58

57

M 332 (MP 19) Binder Test/Specification

- MSCR = Multiple Stress Creep Recovery test
- Extra DSR test
- Alternate AASHTO binder specification (M 332) to supplement M 320

59

58

M 332 Binder Grades Section 1015.10.3.1

- Introduces "traffic grades" increasing $S \rightarrow H \rightarrow V \rightarrow E$
- Before M332, to bump a grade for more traffic, raise upper PG number (eg, PG 64 → PG 70)
- New: Stay in climate grade (PG 64-22 for Missouri), but bump up by traffic

		£	and a superior of the control of the	×
7 Y	320		M 352	100
16.8	N S E V		CIATERIA	2
	1 00	21	-22 Grade 5	ż
0	4-22	04	-22 Grade 3	ŝ
a addition managed and	European en en el en el		22 6	
7	0-22	64	-22 Grade H	
				•
			スペンジョン	
- 1	6-22	64	-22 Grade V	į
			Kwasani in wasani kata	i

59

M 332 (MSCR) System

- Test for J_{nr} = non-recoverable creep compliance
- Creep is the plastic deformation from the wheel load (bad → rutting)
- We want the asphalt to recover from creep
- Non-recoverable portion of creep is **bad**
- So, we want a low Jnr
- To grade bump for higher traffic ($S \rightarrow H \rightarrow V$), lower the maximum allowable J_{nr}

62

■ To do that, must add more modifier

62

Relationship Between J_{nr} and Rutting

y=4.7367x-1.1666
R*=0.5197

Jacobs Relations and Relationship Relatio

Grade.	Traffic/ Speed	MoDOT Class
5 (Standard)	<10 million ESALS AND > 44 mph	F, E, some C
H (Heavy)	10-30 million ESALs <i>OR</i> 12 - 44 mph	Some C
V (Very Heavy)	>30 million ESALS OR < 12 mph ("standing")	В
E (Extra Heavy)	>30 million ESALS AND "standing"	В

64

MoDOT SUPERPAVE QC/QA TRAINING/CERTIFICATION COURSE

MODULE 2C(2)

MIX DESIGN OVERVIEW:

Testing & Evaluation RAP & Shingles Mixing & Compaction Temperatures

> 11-24-06 Revision 11-9-07 Revision, 4-22-09 Revision 11-18-09 Revision, 12-29-09 Revision 11-17-10 Revision, 1-19-11 Revision 3-2-12 Revision, 2-26-13 Revision 12-18-13 Revision, 12-29-14 Revision 2-4-15 Revision, 12-28-16 Revision 2-16-18 Revision, 12-12-18 Revision 12-17-19 Revision, 1-30-20 Revision 1-20-21 Revision

OUTLINE

- Module 2c(1):
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

2

1

M 332 Spec DSR Tested at 64° C

ľ	o,	c	Le	٧ē		1	lΧ					e	Ī	li,	
								· //	Ţ	?	ľ				
		S								4,	5				
		Н								2.	0				R
		٧								1.	0				
 13.1	100 M	Е								0.	5				

Note: decreasing max. allowable Jnr for more severe traffic conditions

3

Binder Grade System Transition: M 320 → M 332

- Contracts & EPG: still M 320 grades
- Many suppliers now supply M 332
- M 332 grades are cheaper than corresponding M 320 grades (less polymer), so contractors prefer
- [MoDOT did not adopt the Appendix in M 332]

4

3

4

M 332 APPENDIX MSCR % Recovery

- 2 bits of data from your MSCR test: MSCR % Recovery (R3.2) & Jnr
- Plot: see where your point falls

5

Example JMF Showing Substitution of purchased grade M 332 (PG 64-22V) for contract grade M 320 (PG 74-22) SMA: No RAP/RAS allowed No additives, so in-line grade = PG 64-22V

6

What's My Grade? Different Example

- "Contract Grade" = the PG grade in the contract, eg. PG 70-22
- "Purchased Grade" = what contractor buys from supplier (terminal), eg. PG 58-28 (if RAP/RAS will be used)
- "In-line Grade" = Purchased grade + additive (warm mix, anti-strip, etc.) eg. PG 58-28
- "In-line Grade" = Purchased grade + modifier (rejuvenator)
 eg. PG 52-28

7

What's My Grade, cont'd.

- "True Grade" = shows at what temperatures the binder actually met the required specs, eg., PG 59.2-29.7
- "Mixture Grade" = what the grade is after mixed with recycled binder in RAP/RAS

8

7

How Recycle Affects Binder Grade Strategy

- Contract Grade is what MoDOT wants for performance (eq. PG 64-22)
- RAP/RAS binder is stiff
- To meet Contract Grade. contractor may need to start with a softer Purchased Grade (eq. PG 58-28)
- RAP/RAS will provide additional stiffness
- Mixture grade, hopefully, will be close to the Contract Grade

ADDITIVES vs MODIFIERS

- Additives:
 - Compactibility
 - Warm mix
 - Anti-strip
 - Usually a low amount (0.25-1.75% of binder)
 - Doesn't affect PG grade (Purchased grade and In-line grade ~ same)
- Modifiers:
 - Rejuvenators, viscosity modifiers, etc.
 - Changes the PG base asphalt
 - Usually a greater amount: 2-5 % of binder) 10

10

9

Example of Contract Grade, Purchased Grade, In-Line Grade (after additives/modifiers)

- Has RAP/RAS
- Has modifier
- Contract > Purchased > In-Line

11

What is Sampled & Tested for Acceptance?

- Purchased (Terminal) Grade
- In-line Grade (HMA plant)
- The results of the testing determine whether the sample passes; if rejected, penalties are assessed per Section 460.3.13 EPG:
 - If M 320 binder, the high temperature True Grade will be determined
 - If M 332 binder, penalties will be assessed based on the Jnr (except Grade S-test as if M320)

M 320 Binder Tested On Non-Aged ("Original") Condition Example: PG 64

Spec	DSR Testing	Penalty
DSR≥1,00 kPa	DSR > 0.90 kPa	No penalty
	If sample fails:	
Spec temp	Hi-Temp True Grade Temp	Penalty
64°	∢ 2° low	No penalty
64°	> 2° & < 4° low	3% of mix unit price
64°	> 4° & < 6° low	10% of mix unit price
640	ه 6° low	16% of mix

unit prite

M332 Binder
Tested On RTFO-Aged Condition
For Grade H

Spac	Jnr Tested	Penalty
Jnr ≤ 2.0 kPa-1 Jnr ≤ 2.0 kPa-1	And the Control of Commencer and the control of	والمناسية والمستنبسية والمناسية ويرواه والمرا
Jnr≤2.0 kPa-1	> 2.7 & < 4.0	10% of mix unit price
Jnr ≤ 2.0 kPa-1	> 4.0	16% of mix unit price
	with ingesting the control	184 1
		14

14

13

M332 Binder Tested On RTFO-aged Condition For Grade V

Spec Jan	Tested	Penalty
Jnr ≤ 1.0 kPa-1 ≤ 1	1 kPa-1	No penalty
	And the Market of the Control of the	
Jnr≤1.0 kPa-1 > 1.	1 & < 1.3	3% of mix unit
		price
Jnr ≤ 1,0 kPa-1 → 1.3	3 & < 2.0	10% of mix
		unit price
Jnr≤1,0 kPa-1	> 2,0	16% of mix
		unit price
ensilates. Para terminan atrial and a work		
		15

What is Sampled & Tested for Acceptance, cont'd.

- Mixture Grade not normally tested for acceptance (technically, it has been aged in the drum, so would be difficult to compare to the specification [some criteria require that the binder not be aged at all])
- Hopefully, the Mixture Grade is close to the Contract Grade
- More likely to be true if the % recycle is kept below 30%₆

15

TYPICAL TRENDS

- Most mixes are designed at less than 30% effective binder replacement
- Most products added are additives, not modifiers
- Small majority substitute M 332 for M 320
- Mixes with more than ~20% binder replacement use a softer Purchased Grade than Contract Grade; mixes with less than 20% replacement stay with Contract Grade
- Most softer Purchased Grades drop both upper & lower numbers

OUTLINE

- Module 2c(1):
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

18

17

RECYCLED ASPHALT PAVEMENT (RAP): Considerations

- OK in all mixes except SMA
- Can use a maximum of 30% virgin effective binder replacement without changing the binder grade
- >30% effective binder replacement can be from RAP+RAS if binder testing (use of blending charts) shows that the combined binder meets the contract specified grade
- Aggregate must meet deleterious spec 1002 (1004 if a 401 mix)
- Aggregate must pass Micro-Deval test spec (waived if RAP is from a MoDOT project)

18

RAP

Micro Deval

- Remove binder coating by extraction or ignition
- Test aggregate
- % loss should be within 5% of the virgin aggregate utilized in the new mix design
- Ex.: New mix virgin MD = 21 RAP MD should be 16-26
- 1 test per 1500 tons
- Waived if from MoDOT roadway

20

19

RECYCLED ASPHALT SHINGLES (RAS)

- May be used in any mix that has a specified contract grade of PG 64-22
- If virgin effective binder <
 70% of blended total binder:
 drop virgin grade to PG 5828 or PG 52-28
- Other restrictions

21

Re-Calculation of RAP/RAS Binder

- The % effective virgin binder replacement content Pbv must be re-calculated when:
 - Change in % RAP or RAS from a field mix adjustment
 - Change in % binder content in the RAP (tested 1 per 4 sublots via T164 or T308)

22

21

OUTLINE

- Module 2c(1):
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

23

& COMPACTION TEMPERATURES

Develop the temperatureviscosity curve

24

23

24

TEMPERATURE - VISCOSITY

- As temperature increases, binder viscosity decreases (it gets thinner)
- This can be plotted.
- Viscosity is important to:
 - pumping
 - spraying
 - aggregate coating in mixing
 - absorption by aggregate
 - laydown and compaction
 - rutting

25

TEMPERATURE-VISCOSITY, cont'd.

- Establish the curve by running viscosity tests at 2 different temperatures
- Old method: capillary tubes
- New method: Brookfield rotational viscometer
- The curve is used to establish mixing and compaction temperatures necessary to achieve the required viscosity for these operations.

26

25

26

27

TEMPERATURE-VISCOSITY, cont'd.

- The steepness of the curve is called "temperature sensitivity"--that is, how sensitive is a particular binder to a change in viscosity resulting from a change in temperature.
- We don't like change--so we don't like a sensitive material-we want a relatively flat curve. Modifiers help get the viscosity change under control.

29

30

LAB MIXING & COMPACTION TEMPERATURES

- For non-modified binders:
 - Mixing temperature range = what it takes to get a viscosity of 0.17 ± 0.02 Pa·s
 - Compaction temperature range= what it takes to get a viscosity of 0.28 ± 0.03 Pa·s
- For modified binders: follow manufacturer's recommendations.

30

29

Plant Mixing & Roadway Compaction Temperatures

- May be different than lab temperatures
- Determine compaction temperature using test strips-- typically 275-310F
- Set plant mixing temperature somewhat higher, say 300-330F
- Maximum recommended temperature is 338F, should avoid exceeding 350F.

31

.....

31

Appendix Item #5

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Asphalt Binder Correction Factor (C_F) Determination

(formerly "aggregate correction factor")

- 1. Run a butter mix through the mixing equipment.
- 2. For a given mix, prepare two asphalt binder correction factor (C_F) specimens at the design asphalt content using oven dry aggregate. It is recommended that the C_F and field verification specimen sizes be the same.
- 3. Obtain the tare weight of the baskets, pan, and lid.
- 4. Place the hot mix into the sample basket. If the mix has cooled, oven dry at 110 ± 5°C to constant mass prior to placing in the basket. Spread the mix in the basket, being careful to keep the mix away from the sides. Allow at least 3/4" clearance.
- 5. Test (burn) the specimens as discussed in "Test Procedure."
- 6. If the difference between the measured binder contents of the two replicate specimens is more than 0.15%, test two more specimens. Discard the high and low values.
- 7. Calculate the C_F by determining the difference between the actual and measured asphalt binder contents [Actual %AC Measured %AC] for each sample, and averaging the two differences. The "Actual %AC" is the amount weighed out in the batching process, expressed as a percent by weight of the mix.
- 8. If the C_F exceeds 1.0%, MoDOT Standard Specification Section 403.19.3.1.1 modifies AASHTO T 308-18 in the following manner:
 - A. According to AASHTO T 308-18, if the C_F exceeds 1.0% at the typical chamber temperature of 538°C (1000°F), lower the chamber temperature to 482 \pm 5°C (900 \pm 8°F). If the C_F determined at this lower temperature is less than or equal to 1.0%, use that C_F for subsequent testing on that particular mix.
 - B. However, according to MoDOT Standard Specification Section 403.19.3.1.1, if the C_F determined at 482 \pm 5°C (900 \pm 8°F) exceeds 1.0%, lower the chamber temperature to 427 \pm 5°C (800 \pm 8°F). Use the C_F obtained at 427°C even if it exceeds 1.0%.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Asphalt Binder Correction Factor (C_F) Determination

Sample	Lab No	Date_	Initials_	
Replicate	1	2	3	4
Test Temperature		The state of the s		
Tare (basket, etc.) Mass (g)				
Total Dry Mass (g)				
Initial Dry Specimen Mass (g)				
Loss in Weight (g)				
%AC, measured = M				
%AC, actual = A				
%AC _{diff} (M ₁ – M ₂)		> 0.15%? If	so, 2 more rep	olicates
$C_F = M - A$		f.		
C _F , average				

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Specimen size: Use the following table. It is recommended that the field verification specimen size be the same as the correction factor specimen size.

NMS (mm)	Sieve Size	Minimum Specimen Size* (g)
4.75	#4	1200
9.5	3/8"	1200
12.5	1/2"	1500
19.0	3/4"	2000
25.0	1"	3000
37.5	1 1/2"	4000

^{*}Specimen sizes shall not be more than 500g greater than the minimum.

POSSIBLE SETTING CHANGES

- To change the Stability Threshold:
 - A. With oven off, press the "Calibration Factor" key while simultaneously pressing the Power Switch "on."
 - B. Enter new Stability Threshold value. Observe the Percent Loss window for the new value. Maximum allowable = 0.02.
 - C. Press the Power Switch "off" then "on" to return oven to normal operation.
- 2. To change filter (afterburner) temperature (750°C typically):
 - A. Press #5 key while simultaneously pressing the Power Switch "on."
 - B. Enter new temperature.
 - C. Press "Enter."
 - D. New setpoint will be displayed.

MAINTENANCE

- 1. To check to see if the venting system is clogged, use the "Lift Test" procedure while the oven is at room temperature. With the power on, initiate a test (push "Start" button) without anything in the oven chamber. The blower fan will turn on. Watch the balance display. The display should read between -4 and -6 grams if the venting is adequate.
- 2. Burn accumulated soot out of the chamber by running the testing procedure at an elevated temperature without a sample.

TEST PROCEDURE

- To change setpoint (furnace) temperature (538°C is typical):
 - A. Press "Temp"
 - B. Enter new setpoint
 - C. Press "Enter"
 - D. Press "Temp" again to verify new setpoint
- 2. To change the Asphalt Binder Correction Factor (C_F):
 - A. Press "Calib. Factor"
 - B. Enter new C_F
 - C. Press "Enter"
 - D. Press "Calib. Factor" again to verify
- 3. Preheat the oven to the setpoint, typically 538°C.
- 4. If the moisture content will not be determined, oven-dry the specimen at 110 ± 5 °C to a constant mass.
- 5. Weigh the empty basket, etc. on an external scale to the nearest gram.
- 6. Place half the sample in the bottom basket and the other half in the top. Keep the specimen at least 3/4" away from the basket sides. For larger samples, some operators make a hole in the middle of the mix.
- 7. Cool the loaded assembly to room temperature.
- 8. Weigh the loaded assembly. Calculate the mass of the specimen.

- 9. Press the "Weight" key and enter the specimen mass. Press "Enter."
- 10. Press the "Weight" key again to verify specimen mass entry.
- 11. Press the "0" (zero) key to tare the internal balance.
- 12. Don your clean gloves, safety face shield, and safety attire.
- 13. Carefully load the specimen into the oven by inserting the basket until the handle tines touch the back of the oven. Make sure the basket is centered and is not touching the walls. Shut the door.
- 14. Observe the internal scale reading. The displayed value should check with the external scale value of basket assembly + dry specimen within ± 5 grams.
- 15. Press the "Start/Stop" key to initiate the ignition procedure.
- 16. When weight loss stabilizes (the change in %AC readings will not exceed 0.01% for three consecutive minutes), the oven will automatically end the test and print out the results. Depending on the oven setup, an alarm may sound and one may have to press the "Start/Stop" key to unlock the door.
- 17. Remove the printed results before opening the door as the tape is heatsensitive.
- 18. Again don the safety gear, open the door, and remove the basket and mount it on the cooling plate. Cover with the cooling cage and allow to cool to room temperature.
- 19. Determine and record the final mass of the specimen, M_f.
- 20. From the total % loss, the oven will automatically subtract the C_F and the Temperature Compensation to give the %AC (by weight of mix). The %AC by weight of aggregate is the "Bitumen Ratio."
- 21. Check for unburned asphalt (coke). If present, start with a new specimen.

NOTE: Read the manufacturer's manual for additional information on safety and more detailed instructions on maintenance and operation.

tgnition Oven Test (3-22-19).docx Appendix Item #5 Page 5

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Manual Weighing Method

Project No.	Job No.	Route	County					
Technician	Date	Sublot No.	Mix No.					
Empty Basket Asse	Empty Basket Assembly Weight (g), [T _e]							
Initial Basket Assembly + Wet (or dry) Sample Weight (g), [T _i]								
Initial Wet (or dry) S	ample Weight	(g), $[W_i = T_i - T_e]$						
Final Basket Assem	bly + Burned S	Sample Weight (g), [T _f]						
Loss in Weight (g),	[L= T _i - T _f]							
% Loss, [P _L = (L / W	_i) x100]							
Aggregate Correction (Calibration) Factor (%), [C _f]								
Calibrated %AC, $[P_{bcal} = P_L - C_f]$								
% Moisture Content, [MC]								
% AC, corrected (by	weight of mix), [P _b = P _{bcal} – MC]						

Ignition Ovens Forms.doc (11-24-06;12-28-06;12-12-08;3-9-10;12-14-10;4-14-11; 12-18-13; 4-22-15;12-9-15; 12-28-16; 12-26-18)

Appendix Item #6

Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures: AASHTO T 209-20

This test method shall be used to determine the maximum specific gravity (G_{mm}) of uncompacted asphalt mixtures. However, an option exists to obtain samples from pavement cores (AASHTO R 67) but that procedure is not presented, here.

APPARATUS	MINIMUM SAMPLE SIZE (MoDOT)		
	NOM. MAX SIZE (in.)	SAMPLE (g)	
Balance	1	2500	
Container (pycnometer)	3/4	2000	
Thermometers	1/2	2000	
Vacuum Pump/System	3/8	2000	
Water Bath	#4	2000	

PROCEDURE

Sample Preparation and Agitation

1. Dry the paving mix to a constant weight (mass repeats within 0.1%) at a temperature of 105 ± 5 °C. This drying step shall be combined with any warming of the sample necessary to prepare it for separation.

NOTE: The drying of the mix to constant weight prior to separation may be waived provided AASHTO T 329 shows the moisture content to be less than 0.1%. If the drying step is waived due to T 329 results, this fact must be documented and included in the T 209 results.

- 2. Separate the particles of the paving mix by hand. A small trowel can be used, but care must be taken not to fracture the mineral aggregate. Continually work the mix while, ultimately, cooling to room temperature. The particles of the fine aggregate portion should not be larger than ¼" at the completion of the separation step. Periodically, shake the pan back and forth to bring the larger clumps to the top.
- 3. Determine and record the weight of the empty pycnometer (without the lid).
- 4. When the specimen is at room temperature, place and level the sample in the pycnometer.
- 5. Determine and record the combined weight of the specimen and pycnometer.
- 6. Subtract the weight of the pycnometer from the combined weight of the specimen and pycnometer.
- 7. Record the net dry sample weight (A).
- 8. Add sufficient water at a temperature of approximately 25°C (77°F) to cover the sample completely (≈1 inch).
- 9. Wet O ring of vacuum lid and secure lid on pycnometer (use vacuum grease if necessary to obtain a good seal).

- 10. Gradually increase the vacuum and hold 27.5 ± 2.5 mm Hg $(3.7 \pm 0.3 \text{ kPa})$ absolute vacuum for 15 ± 2 minutes.
- 11. Agitate the pycnometer and contents using mechanical or manual agitation during the vacuum period. Mechanical agitation is accomplished using a shaker device while manual agitation entails vigorously shaking the pycnometer at intervals of about 2 minutes.

Mass Determination: Weigh in Air Method:

- 1. At the end of the 15 ± 2 minute vacuum period, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage).
- Immediately start a 10 ± 1 minute time period. The requirement is to obtain the final weight of the pycnometer, completely filled, within this second time period. It is suggested that the timer be set for 9 minutes. Since the pycnometer is to be placed back in the water bath to bring it and its contents back to $25 \pm 1^{\circ}$ C, this will allow 2 minutes after the timer goes off to obtain the final weight.
- 3. Slowly submerge the pycnometer in the $25 \pm 1^{\circ}$ C water bath, being careful not to expose the sample to the air.
- 4. Place the capillary lid on the pycnometer ensuring the removal of all air bubbles inside the pycnometer while retaining as many fines as possible.
- 5. When the timer goes off, carefully remove the pycnometer from the bath. Dry off the exterior of the pycnometer. Add water to the lid weephole to ensure that the pycnometer is full. Dry off the exterior of the pycnometer again.
- 6. Zero the balance, then obtain and record the combined weight of pycnometer and contents (E).
- 7. Completely empty the pycnometer and re-submerge the empty pycnometer in the 25 \pm 1°C water bath.
- 8. Again, check for air bubbles clinging to the inside of the pycnometer and the bottom of the capillary lid prior to placement on the pycnometer.
- 9. Leave it in the water bath for 10 ± 1 minutes of immersion.
- 10. Remove the pycnometer and dry off the exterior. Add water to the weephole with an eyedropper until seepage occurs around the lid. Dry off the exterior again and obtain the total weight of the pycnometer filled with water (D).

Mass Determination: Weigh in Water Method:

A weigh-in-water station should be available that includes a water bath suitable for immersion of the suspended container with its deaerated sample, an overflow outlet for maintaining a default water level, a method for controlling or monitoring water temperature, a balance with a weigh-below capability, and some type of suspended platform on which the pycnometer/flask can be supported while submerged in the water bath. The platform and rod/wires that connect the platform to the balance should displace a minimum amount of water.

Rice Test (2-3-21),docx Appendix Item #6 Page 2

- 1. Prepare and vacuum sample as described earlier. After 15 ± 2 minutes of agitation and vacuum at the specified level, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage) then disassemble apparatus.
- 2. The temperature of the water bath should be adjusted to and maintained at $25 \pm 1^{\circ}$ C, the water level shall be at its default level (full, but not overflowing), then the weigh-in-water system balance shall be zeroed out (tared).
- 3. Suspend the pycnometer (without the lid) and deaerated sample in the water bath and determine the combined weight (C) after 10 ± 1 minutes of immersion.
- 4. After recording the combined weight (C), immediately remove the pycnometer from the water bath, completely remove the sample from the pycnometer, and then, without delay, obtain the mass of the empty pycnometer (B) after 10 ± 1 minutes of immersion.

Note: It is important that every weight determination begins by returning the water level to its default position; i.e. the water has just stopped dripping from the overflow.

CALCULATIONS

Weigh in Air Method: Calculation of maximum specific gravity is performed in accordance with AASHTO T 209-20, Section 12.1.3.

$$G_{mm} = \frac{A}{A+D-E}$$

Where:

 G_{mm} = maximum theoretical specific gravity (reported to three decimal places)

A = mass of oven-dry sample in air, (gm)

D = mass of pycnometer filled with water, (gm)

 $E = \text{mass of pycnometer filled with } \frac{\text{water + sample}}{\text{water + sample}}$, (gm)

Weigh in Water Method: Calculation of maximum specific gravity for this method is performed in accordance with AASHTO T 209-20, Section 12.1.2.

$$G_{mm} = \frac{A}{A+B-C}$$

Where:

G_{mm} = maximum theoretical specific gravity (reported to three decimal places)

A = mass of oven-dry sample in air, (gm)

C = mass of <u>sample + pycnometer</u> in water, (gm)

B = mass of <u>pycnometer</u> in water, (gm)

NOTE: Section 12.2 describes how to calculate a weighted average G_{mm} for large samples tested a portion at a time, if necessary.

MAXIMUM SPECIFIC GRAVITY: G_{mm} AASHTO T 209

PROJECT	ROUTE	MIX NO
LOT NO	SUBLOT	TECHNICIAN
PRE-TEST REQU	IREMENT: MIX MOISTURE (CONTENT < 0.1%
1) Results from T 3	329: Moisture Content (%) = _	
OR		
2) Mass repeats w	ithin 0.1% [percent loss < 0.1	% (based on 2 nd wt. per interval)]:
P _{MC} = Pan v		·
	ample + pan weight (g):	
$W_0 = T_0 - P$	_{MC} = Initial sample weight (g):	<u> </u>
1 st Drying In		
	ample + pan weight (g):	
$W_1 = T_1 - P$	_{MC} = 1 st DI sample weight (g):	
	/ ₁ = 1 st Loss in weight (g):	
$(L_1 / W_1) \times 1$	100 = 1 st Percent loss (%):	
2 nd Drying Ir	nterval (DI)	
$T_2 = 2^{\text{nd}} DI s$	sample + pan weight (g):	
$W_2 = T_2 - P$	_{MC} = 2 nd DI sample weight (g)	
$L_2 = W_1 - W_1$	$I_2 = 2^{nd}$ Loss in weight (g):	
$(L_2 / W_2) \times 1$	00 = 2 nd Percent loss (%):	
3 rd Drying In	iterval (DI)	
$T_3 = 3^{rd} DI s$	ample + pan weight (g):	
	_{MC} = 3 rd DI sample weight (g):	
$L_3 = W_2 - W_2$	$V_3 = 3^{rd}$ Loss in weight (g):	
$(L_3 / W_3) \times 1$	00 = 3 rd Percent loss (%):	
4 th Drying In	terval (DI)	
$T_4 = 4^{th} Dl s$	ample + pan weight (g):	
$W_4 = T_4 - P_1$	_{MC} = 4 th DI sample weight (g):	
$L_4 = W_3 - W$	t ₄ = 4 th Loss in weight (g):	
$(L_4 / W_4) \times 1$	00 = 4 th Percent loss (%):	

"DRY-BACK" PROCEDURE: REQUIRED WHEN ANY COARSE AGGREGATE FRACTION HAS AN ABSORPTION GREATER THAN 2.0%.

Procedure complete when percent loss < 0.05% based on 2^{nd} wt. per interval [mass repeats within 0.05%]

P_{DB} = Pan weight (g):	
T_0 = Initial sample + pan weight (g):	***************************************
$W_0 = T_0 - P_{DB} = Initial sample weight (g):$	
1 st Drying Interval (DI)	
$T_1 = 1^{st}$ DI sample + pan weight (g):	
$W_1 = T_1 - P_{DB} = 1^{st} DI$ sample weight (g):	
$L_1 = W_0 - W_1 = 1^{st}$ Loss in weight (g):	
$(L_1 / W_1) \times 100 = 1^{st}$ Percent loss (%):	
2 nd Drying Interval (DI)	
$T_2 = 2^{nd}$ DI sample + pan weight (g):	
$W_2 = T_2 - P_{DB} = 2^{nd}$ DI sample weight (g):	
$L_2 = W_1 - W_2 = 2^{nd}$ Loss in weight (g):	
$(L_2 / W_2) \times 100 = 2^{nd}$ Percent loss (%):	
3 rd Drying Interval (DI)	
$T_3 = 3^{rd}$ DI sample + pan weight (g):	
$W_3 = T_3 - P_{DB} = 3^{rd}$ DI sample weight (g):	
$L_3 = W_2 - W_3 = 3^{rd}$ Loss in weight (g):	
$(L_3 / W_3) \times 100 = 3^{rd}$ Percent loss (%):	
4 th Drying Interval (DI)	
$T_4 = 4^{th}$ DI sample + pan weight (g):	
$W_4 = T_4 - P_{DB} = 4^{th}$ DI sample weight (g):	
$L_4 = W_3 - W_4 = 4^{th}$ Loss in weight (g):	
$(L_4 / W_4) \times 100 = 4^{th}$ Percent loss (%):	
5 th Drying Interval (DI)	
$T_5 = 5^{th}$ DI sample + pan weight (g):	
$W_5 = T_5 - P_{DB} = 5^{th}$ DI sample weight (g):	
$L_5 = W_4 - W_5 = 5^{th}$ Loss in weight (g):	
$(L_5 / W_5) \times 100 = 5^{th} Percent loss (%):$	

SPE	CIFIC GRAVITY DETERMINATION: NO "DRY-BACK" PROCEDURE
	S = Weight of oven-dry sample & empty flask (g):
	P = Weight of empty flask (g):
	A = S – P = Weight of oven-dry sample (g):
Wei	gh-in-air Method
	D = Weight of flask filled with water (g):
	X = A + D (g):
	E = Weight of flask filled with water & sample (g):
	Y = X – E (g):
	Gmm = A / Y
<u>Wei</u>	gh-in-water Method
	C = Weight of flask & sample under water (g):
	B = Weight of flask under water (g):
	Q = C - B (g):
	Z = A - Q(g):
	Gmm = A / Z
SPE	CIFIC GRAVITY DETERMINATION: WITH "DRY-BACK" PROCEDURE
	A = Weight of oven-dry sample (g):
	A2 = Weight of surface-dry sample (g):
Wei	nh-in-air Method
	D = Weight of flask filled with water (g):
	X = A2 + D (g):
	X = A2 + D (g): E = Weight of flask filled with water & sample (g):
	E = Weight of flask filled with water & sample (g):
<u>Weig</u>	E = Weight of flask filled with water & sample (g): Y = X - E (g):
<u>Weig</u>	E = Weight of flask filled with water & sample (g): Y = X - E (g): Gmm = A / Y
<u>Wei</u> g	E = Weight of flask filled with water & sample (g): Y = X - E (g): Gmm = A / Y wh-in-water Method
<u>Weig</u>	E = Weight of flask filled with water & sample (g): Y = X - E (g): Gmm = A / Y wh-in-water Method C = Weight of flask & sample under water (g):
Weig	E = Weight of flask filled with water & sample (g): Y = X - E (g): Gmm = A / Y wh-in-water Method C = Weight of flask & sample under water (g): B = Weight of flask under water (g):

TAB GLOSSARY

Glossary

		No. (A) Garra A COLO (A) CERTA AND AND AND AND AND AND AND AND AND AN
		волийнийнийнийнийн

GLOSSARY

Maximum Size	One sieve size larger than the Nominal Maximum Size
Nominal Max Size	One sieve size larger than the first sieve retaining equal to or more than 10% of the combined gradation
G _{mm}	D, Maximum Specific Gravity of mix as determined by the Rice Method, AASHTO T 209
G _{mb}	d, Bulk Specific Gravity: specific gravity including permeable and impermeable voids of aggregates or compacted mix.
G _{mc}	Bulk Specific Gravity of core.
G_{sb}	Stone (Aggregate) Bulk Specific Gravity: weighted sum of bulk specific gravities of combined aggregates.
G _{sa}	Stone Apparent Specific Gravity: weighted sum of apparent specific gravities of combined aggregates. This excludes the water permeable voids.
G_se	Stone Effective Specific Gravity: specific gravity including asphalt permeable voids.
N _{des}	Gyrations simulating design life of mix to yield 4% air voids.
N _{ini}	Compaction ≥ 89% indicates a tender mix that may rut prematurely.
N_{max}	Gyrations simulating maximum life of pavement. At $<$ 2% air voids the mix becomes plastic.
P_b	Percent binder in total mix.
· P _s	Percent stone in total mix.
TSR	Tensile Strength Ratio: Result of AASHTO T 283 indicating the indirect tensile strength of wet cured specimens compared to dry cured specimens.
V_a	Percent air voids in compacted mix.
V_{ba}	Volume of absorbed binder.
V_{be}	Effective volume of binder not absorbed into the stone.
VMA	Voids in Mineral Aggregate: percent of voids in the aggregate structure.
VFA	Voids Filled with Asphalt: percent VMA filled with asphalt cement.

SUMMARY OF DEFINITIONS AND CONVENTIONS

NAMING CONVENTION

b = bulk

e = effective

G = specific gravity

s = stone

m = maximum theoretical

V = volume

b = binder

a = apparent (for G) or

m = mix

a = absorbed (for V and P)

DEFINITIONS

= volume of air voids

= volume of binder absorbed

= volume of effective binder V_{be}

= specific gravity of binder G_h

= bulk specific gravity of stone G_{sb}

= effective specific gravity of stone Gse

= apparent specific gravity of stone G_{sa}

G_{mb} = bulk specific gravity of mix

Gmm = maximum theoretical specific gravity of mix
Gme = bulk specific gravity of the core
Va = percent air

= percent stone (100 - Pb) Ps

= percent binder Pb

= percent binder absorbed P_{ba}

= percent effective binder Pbe

Ws. = weight of stone

VMA = Voids in Mineral Aggregate

VFA = Voids Filled with Asphalt