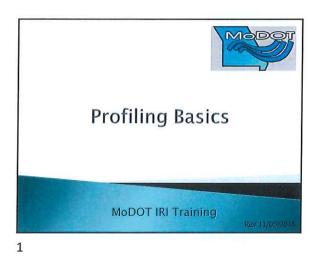


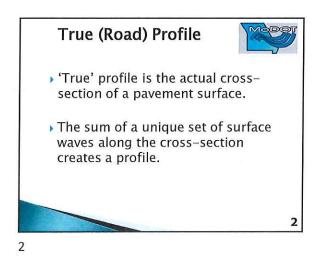
Technician Certification

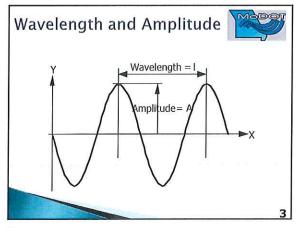
International

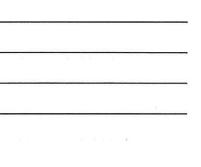
Roughness Index

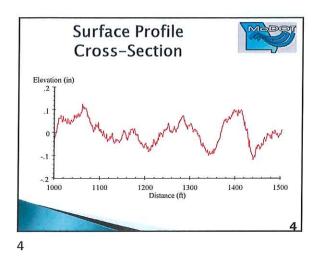
Missouri Department of Transportation

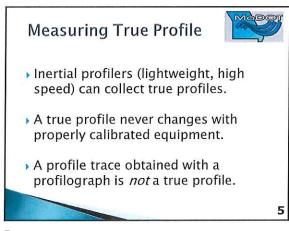

"

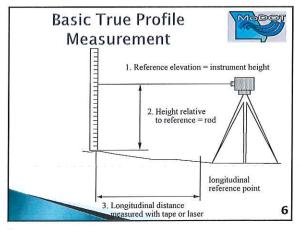

IRI Table of Contents

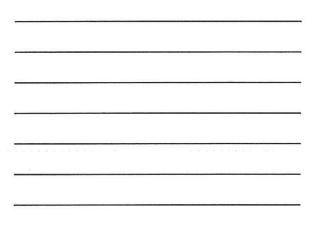

- Profiling Basics
- Specification Section 610
- MoDOT TM59 Test Method
- Glossary
- Performance Checklist

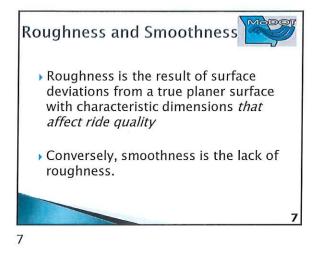

Profiling Basics

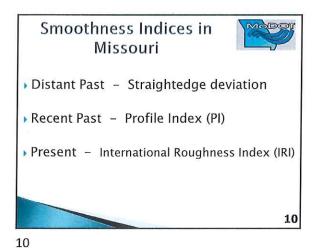


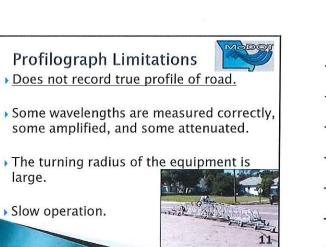


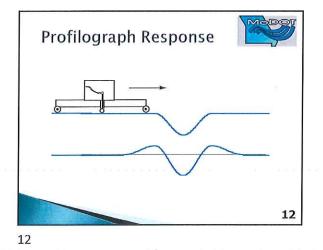


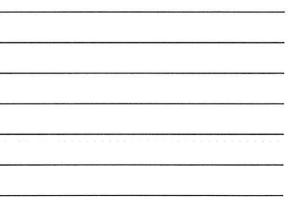


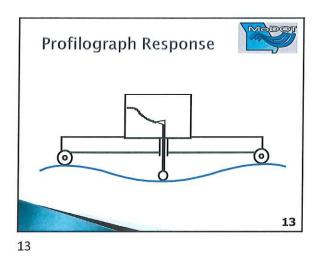


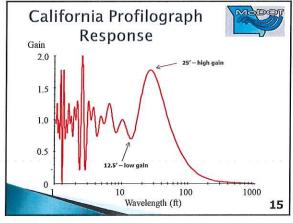


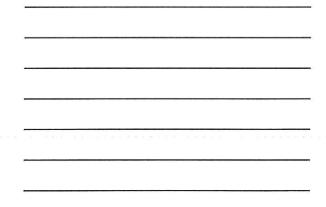


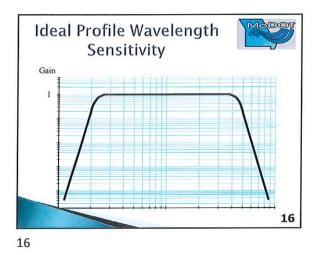


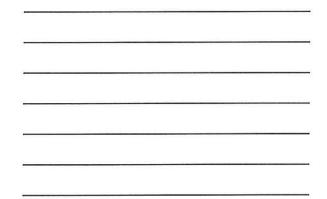


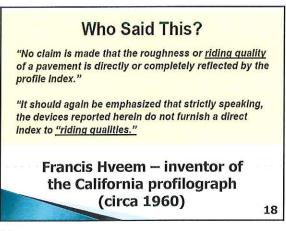


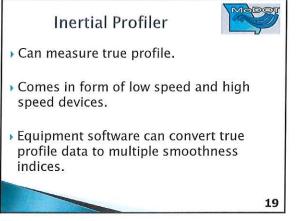


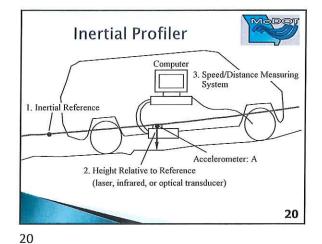




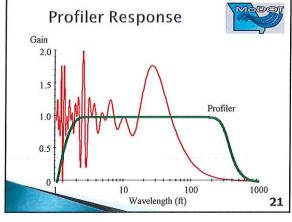

Profilograph Response

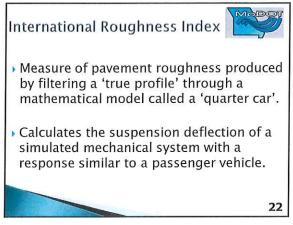


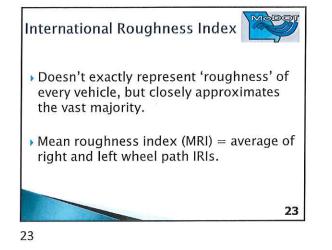


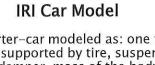

 Profilograph Limits PI Usefulness
 The fact that a profilograph cannot measure true profile degrades the effectiveness of the profile index (PI) itself.
 PI is an aggregate of surface irregularities with variable wavelength gains.

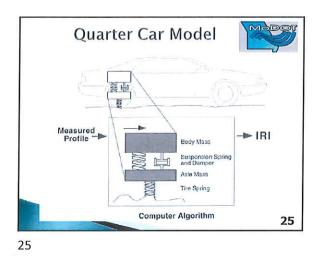
17

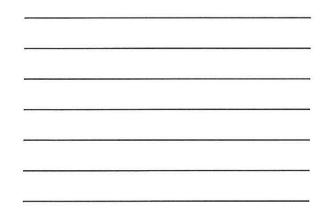




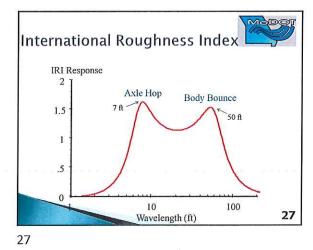


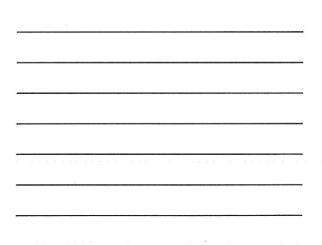


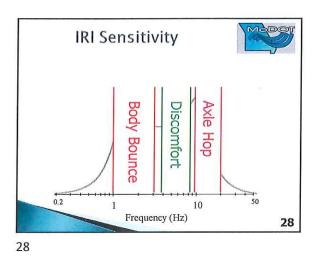


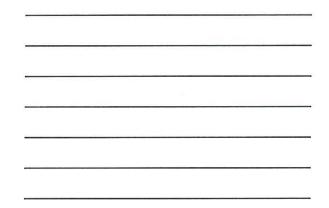


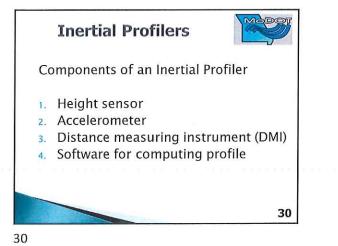
- Quarter-car modeled as: one tire, mass of axle supported by tire, suspension spring and damper, mass of the body supported by tire.
- Simulation speed is 50 mi/hr.
- Suspension motion is accumulated by vertical displacement and divided by distance traveled to give IRI in inches/mile.

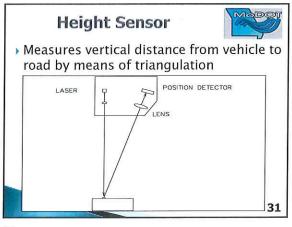

```
24
```

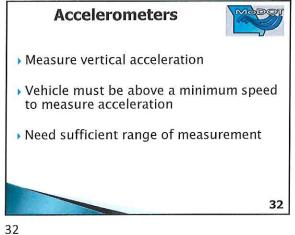




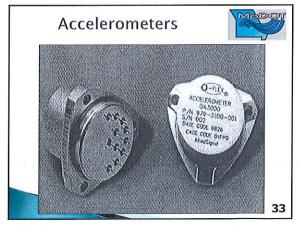

Vehicle Response to Wavelengths Madon Gain 50 mph = 73 fps Pickup edan Frequency (Hz)

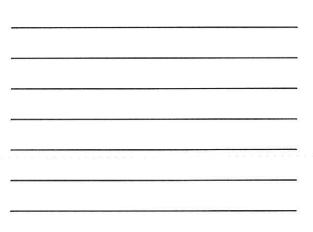


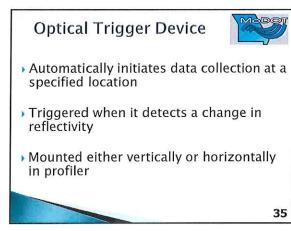


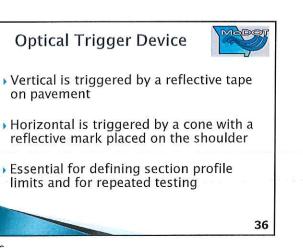


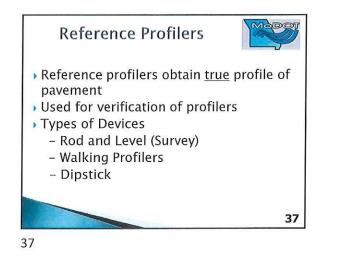
Profiling Equipment

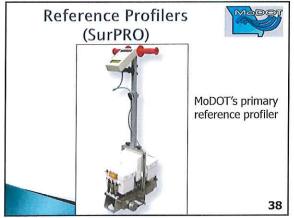


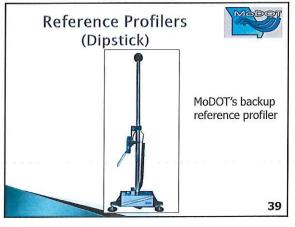


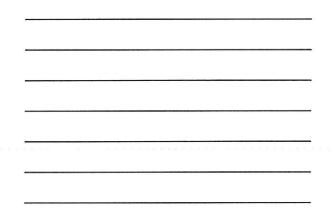


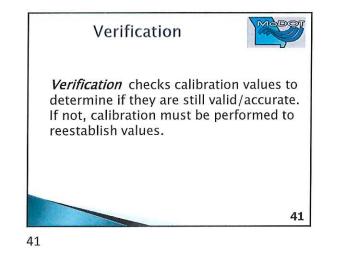


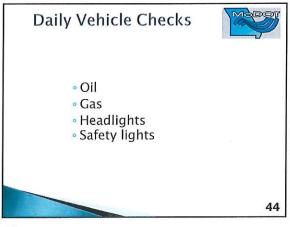


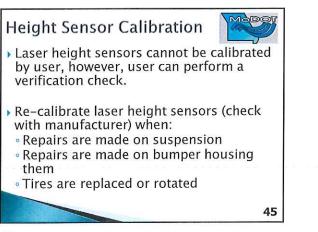


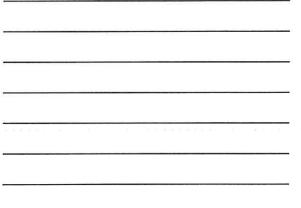


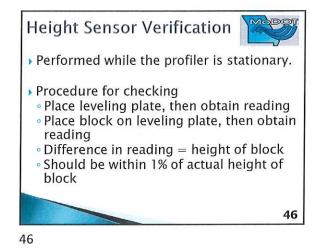


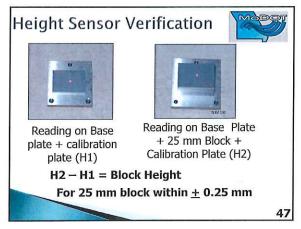


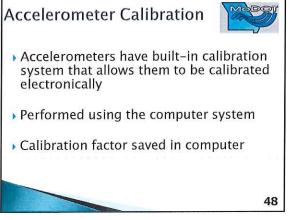

Calibration

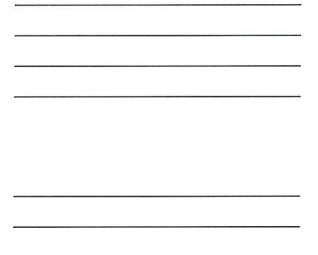


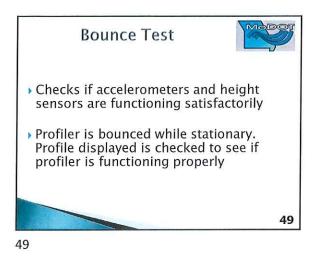

Calibration re-establishes target values in which the profiler operates by correcting the scale of a transducer.

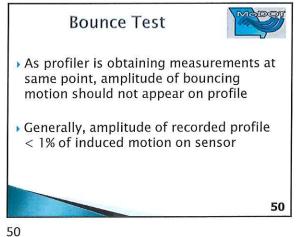

Calibration usually requires highly precise equipment, that isn't available in the field, and is typically conducted in a controlled environment (usually at the manufacturer).

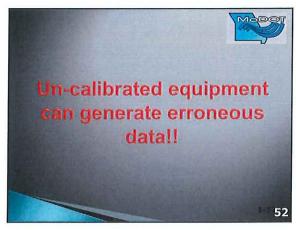




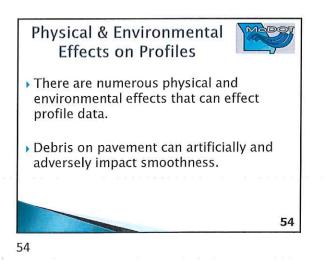


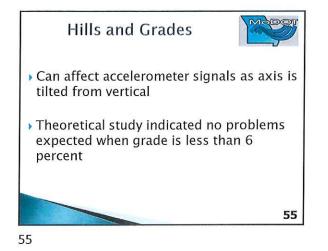


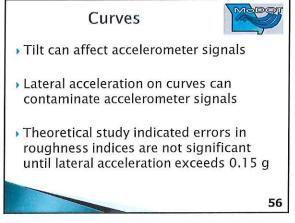


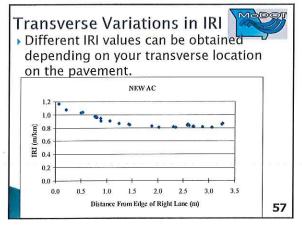


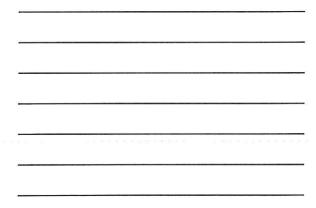
DMI Calibration

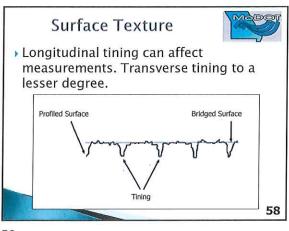


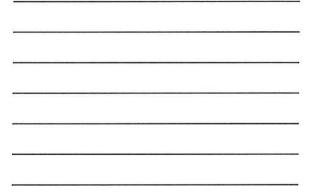

- > Section of known length laid out
- Tire pressure checked and adjusted if necessary
- Profiler driven to warm up tires
- Profiler driven over section
- Actual distance of section entered to computer
- Calibration factor computed by computer

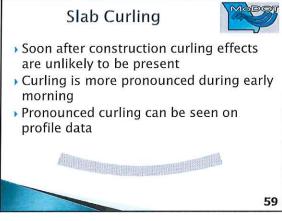


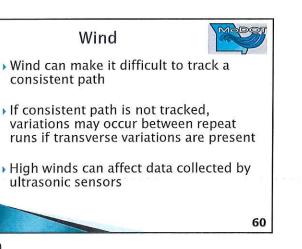




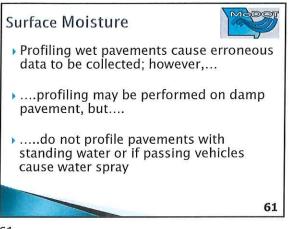


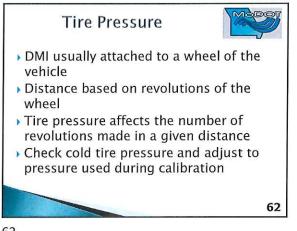


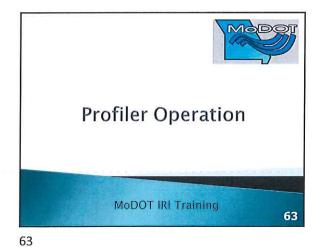


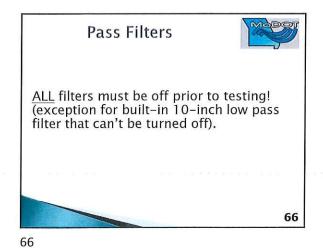


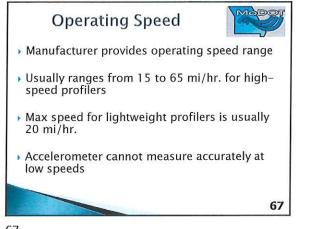


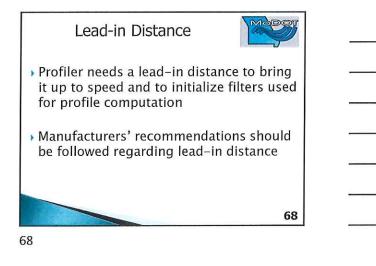


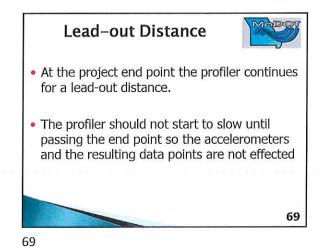









(Table 1)	Electronic ppf file Naming Convention*
Abbreviation	Definition
YYMMDD-###_	Contract ID (Letting date-Call Number)
YYMMDD_	Test Date
Q_	Type of quality test (C for control, a for assurance)
D	Direction of Lane (N,E,W or S)
L	Lane number (1 for inside lane, increasing by one for each lane to the right)
w	Wheel path (L, R, or B)
S	Beginning Log Mile or Station (Rounded to nearest thousandth log mile or foot)
YYMMC 100528	100528-501_111103_C_N2R105045.ppf DD-###_YYMMDDDLWS.ppf -501_111103_C_N2R105045.ppf #, Test Date, QC, North, Lane 2, Right Wheel Path, Station #(1050+4



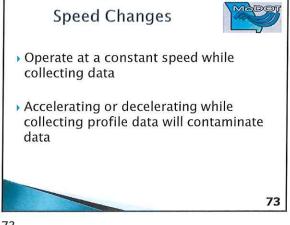
Starting the Measurement

The optical trigger should be used to automatically start the profiler when the machine crosses the testing start point.

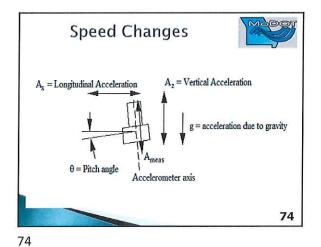
• If conditions preclude using the optical trigger, then the start and end point may be manually triggered, but the profile data must be adjusted to precisely superimpose over the profile length. 70

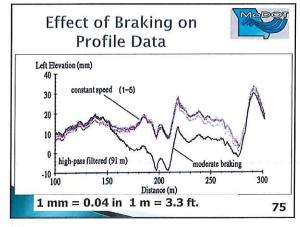
70

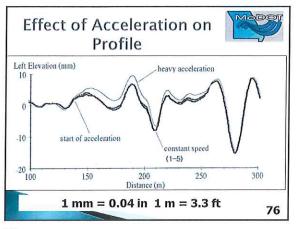
Advantages of Automated Triggering

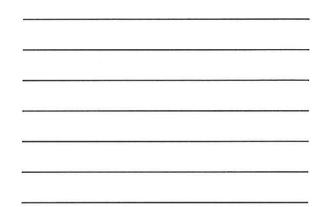

Made

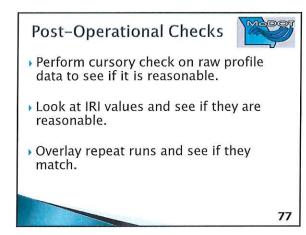
- Data collection can be initiated at exact start of the section
- Roughness features can be identified at correct location in the field based on profile data
- Repeatability of profile data and roughness indices can be evaluated


71



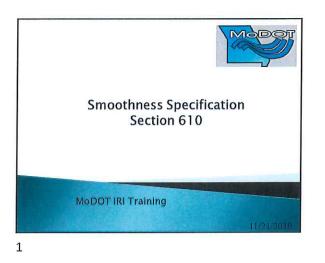


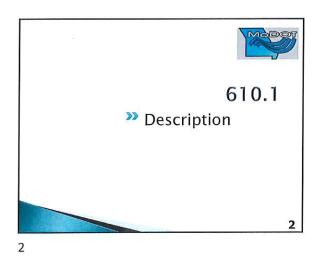


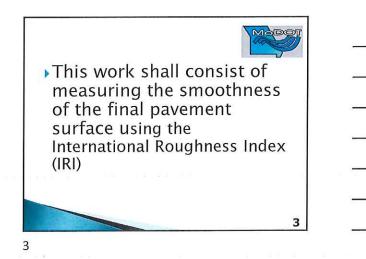


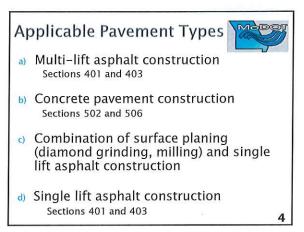
77

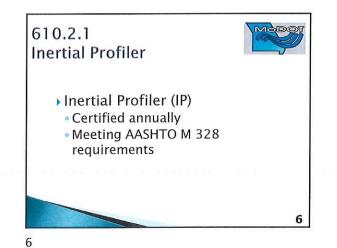
Post Profiling

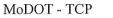

- Save ppf file data to flash drive or other electronic media. Raw data must be submitted to the Engineer within 24hr of testing.
- Raw profiles shall be analyzed by MoDOT in ProVAL.

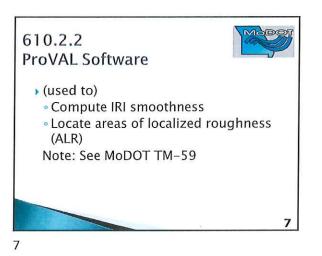

78

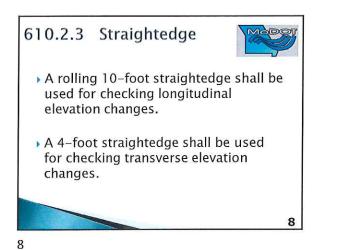


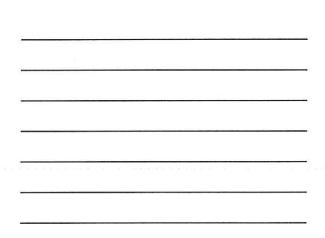

Smoothness Specification



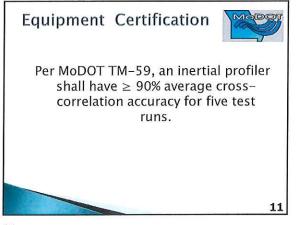




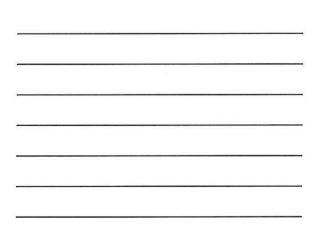




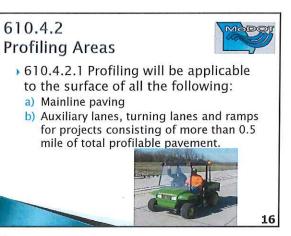




MODE


10

11



610.4.1 Smoothness Increments a) Section - A section is a day's paving and shall begin and terminate at the construction joints. Interruptions designated by the engineer which cause placement to cease and begin at a new location will be considered as a separate section for that day's operation if the separate section is greater than 250 feet.

610.4.1

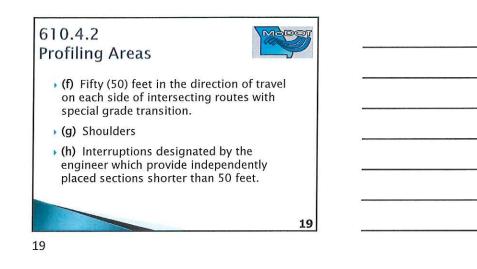
- b) Segment Sections shall be divided into segments of 0.1 mile (528 ft.) lengths with the exception of the last segment.
- If the last segment is greater than 250 feet and less than 0.1 mile, the segment shall be measured as an independent segment.
- If the last segment is 250 feet or less, the profile for that segment shall be included in the evaluation for the previous segment.
- The combined segment IRI shall be weighted for the length. 15

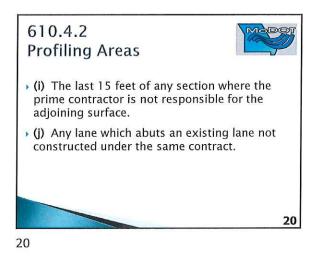
610.4.2 Profiling Areas

- 601.4.2.2 Profiling will not be required for the following exceptions:
- (a) Bridge decks, bridge approach slabs and concrete approach pavements.
- (b) Pavement on horizontal curves with a centerline radius of curve less than 1000 feet and pavement within the super elevation transition of such curves.

17

17

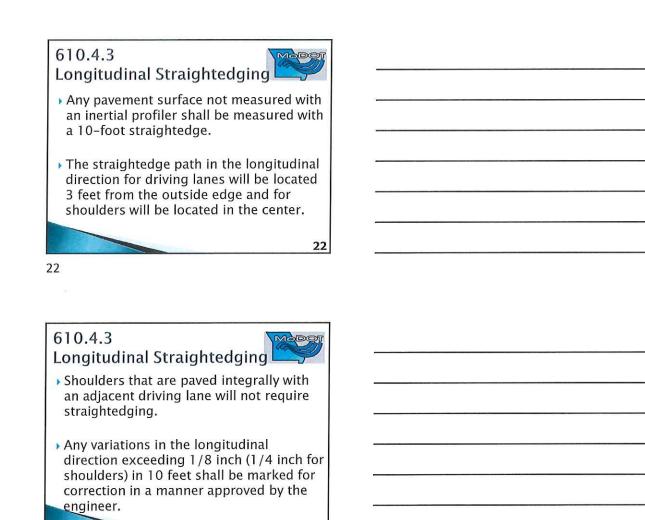

610.4.2 Profiling Areas



18

- (c) Pavement on vertical curves having a "K" value less than 90 and a length less than 500 feet.
- (d) Pavement width transitions.
- (e) Fifty (50) feet in the direction of travel on each side of utility appurtenances such as manholes or valve boxes.

1



610.4.2 Profiling Areas

• 610.4.2.3 - In addition to the exceptions in Section 610.4.2.2, profiling may be waived by the engineer if staging of the overall project; such as multiple entrance lane gaps, lane staging, etc.; affects the normal paving operation, or if multiple profile exceptions continuously exist on a large portion of the same roadway. Upon waiver, exempted areas shall be checked with a 10-foot straightedge.

24

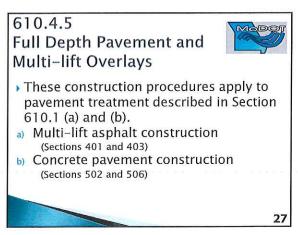
Mado

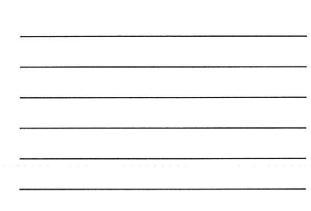
23

610.4.3 Longitudinal Straightedging cont. • Regardless of the smoothness

measurement method used, the engineer may check any location of the paved surface with a straightedge for unacceptable bumps or low spots.

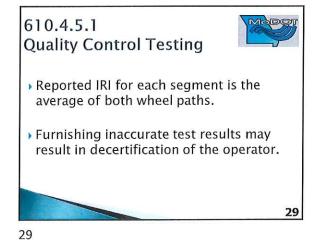
610.4.4 Transverse Straightedging




25

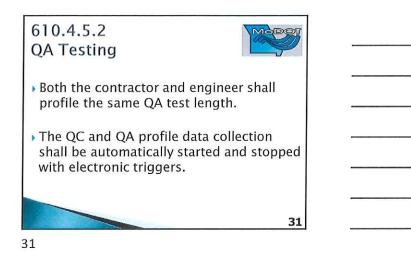
- The engineer shall randomly check driving lanes for variations in the transverse direction with a 4-foot straightedge.
- Any variations in the transverse direction more than 1/4 inch shall be marked for correction in a manner approved by the engineer.

26



The contractor shall perform quality control (QC) testing in accordance with MoDOT TM-59 procedures on all eligible profiling areas and provide electronic files for smoothness in .PPF format. QC testing may be performed daily or the contractor may elect to profile at the end of paving.

28



610.4.5.2 Quality Assurance Testing

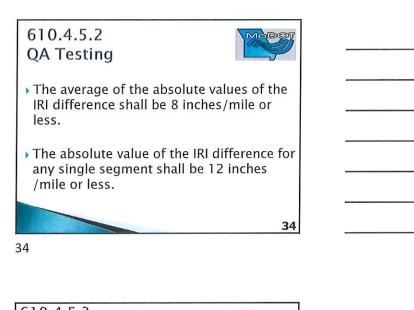
- The engineer will perform quality assurance (QA) testing with a MoDOT inertial profiler to verify the QC test results.
- The engineer shall select a continuous portion of roadway that constitutes at least 10 percent of the project lane-miles.

30

610.4.5.2 QA Testing

- QA test length is independent of previous QC section boundaries. The contractor may use it for a QC section if previously untested.
- The contractor shall provide the electronic file for the QA test length run in .PPF format to the engineer within 24 hours of testing.

32


33

610.4.5.2 QA Testing

32

- The IRI value for each segment within the QA test length shall be computed as the average of both wheel paths.
- The absolute value of the difference between the contractor and engineer IRIs shall be computed for each segment within the QA test length.

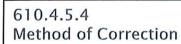
610.4.5.3 Areas of Localized Roughness All areas of localized roughness (ALR)

- shall be corrected
 ALRs are defined as
 any length of pavement, having a final posted
- speed greater than 45 mph, with a continuous section 25-foot average IRI of 125.0 inches or greater

any length of pavement, having a final posted speed of 45 mph or less (or AADT ≤ 3500 for ≤ 3" overlays), with a continuous section 25-foot average IRI of 175.0 inches or greater.

35

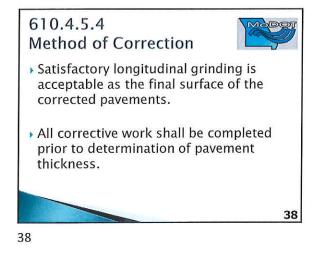
610.4.5.3

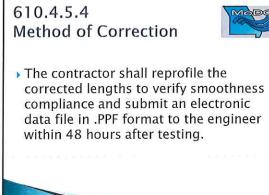


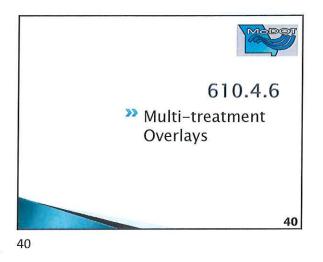
Mado

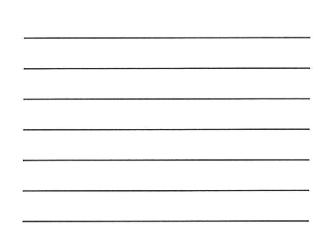
Areas of Localized Roughness After correcting ALRs, additional

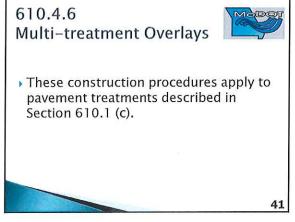
correction may be necessary to reduce any profile segment in a pavement with a final posted speed greater than 45 mph, to an average IRI of 80.0 inches or less; or reduce any profile segment in a pavement with a final posted speed of 45 mph or less to average IRI of 125.0 inches/mile or less.

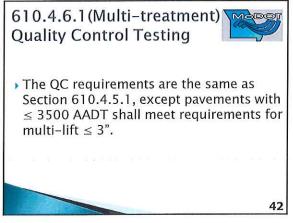

36

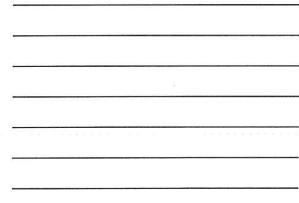


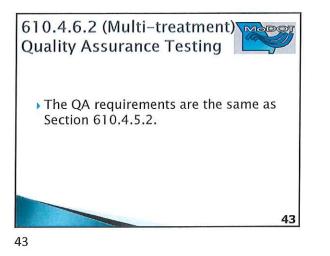

- Corrective action to eliminate ALRs and improve the average IRI shall be accomplished by a method approved by the engineer. Diamond grinding may be used, but the use of an impact device will not be permitted.
- Total grinding depth shall be limited to ¼ inch.

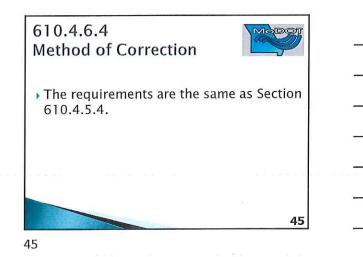

37

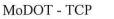


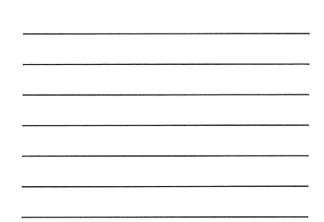


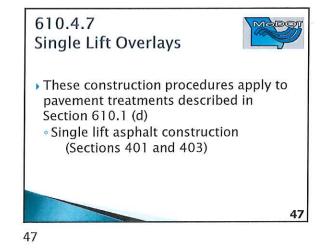

39

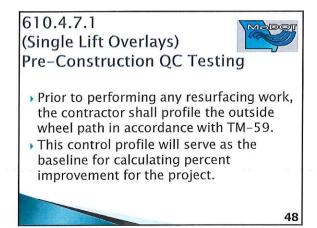


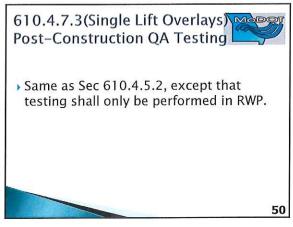


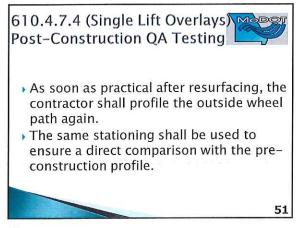


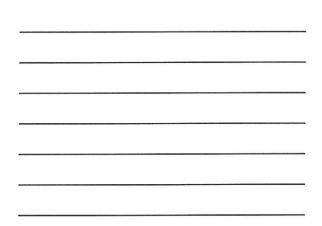


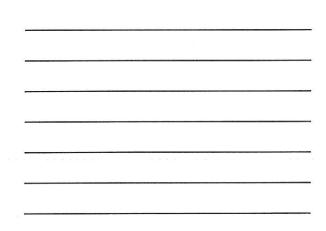

610.4.6.3 Areas of Localized Roughness • All ALRs, as defined in Sec 610.4.5.3, exceeding 175.0 inches/mile shall be corrected.

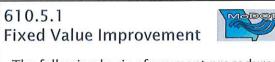












MoDOT - TCP

The following basis of payment procedures shall apply to all pavement treatments described in Section 610.1 (a), (b) and (c).

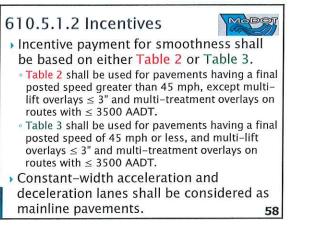
- a) Multi-lift asphalt construction contained in Sections 401 and 403.
- b) Concrete pavement construction contained in Sections 502 and 506.
- c) Combination of surface planning, such as diamond grinding or milling, and single lift asphalt construction contained in Sections 401 and 403

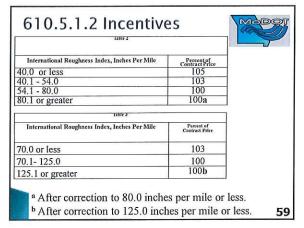
55

610.5.1.1 Smoothness Adjustment

- Smoothness adjustments will be paid per segment based on the profile index before any corrections
 - Except for the allowances in Section 610.5.1.5 (Section Correction)

Any segment with an IRI above the maximum limit in Tables 2 and 3 must be corrected through a method approved by the engineer to achieve the desired smoothness. 56


56


610.5.1.1 Smoothness Adjustment

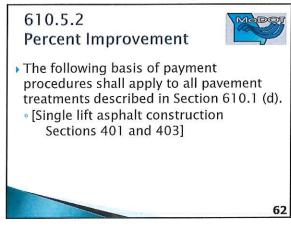
57

> When paving widths are greater than the travel lane widths, incentive payment will apply to the driving lane design driving width only.

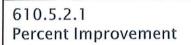
59

610.5.1.3 Segment Correction

60


 If the contractor elects to diamond grind an entire segment and the corrected surface drops below the maximum IRI limits in Table 1 or 2, then the contractor cannot receive any incentives, but the marred surface area deductions for that segment will be waived.

If the contractor elects to diamond grind an entire section then all segments within the section will be eligible for their respective incentives and the marred surface area deductions for that section will be waived.

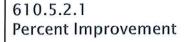

62

610.5.2.1

MODOT

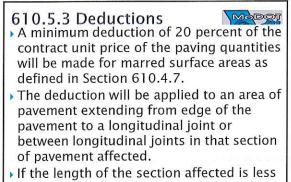
Percent Improvement The contract price for resurfacing will be adjusted based on the improvement in the profile index for each segment with an initial IRI greater than 60 inches/mile according to Table 3.

	JIE 4
Percent Improvement (Change in IRI / Initial IRI) X 100	Percent of Contract Unit Price For Pavement
35.0 or greater	103
20.0 to 34.9	100
0.0 to 19.9	97°
• After correction to 0.0 or	greater. 63

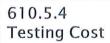


Any segment with an initial IRI less than or equal to 60 inches per mile shall receive no percent improvement price adjustment if the segment IRI after placement of the overlay is also less than or equal to 60 inches per mile.

64



64


Any segment with an initial IRI less than or equal to 60 inches per mile that has an IRI greater than 60 inches per mile after placement of the overlay shall be paid at 97 percent of the contract unit price for pavement, but no correction shall be required.

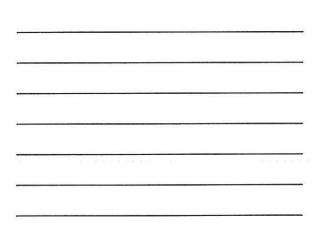
65

65

than 10 feet, the deduction will be computed for 10 feet. **66**

 The contract unit price for pavement will be considered as full compensation for all items entering into the construction of the pavement including the cost of smoothness testing.

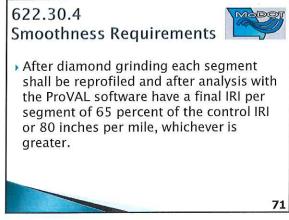
610.5.5 Dispute Resolution

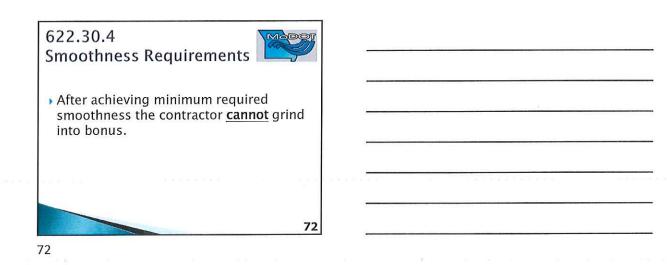


67

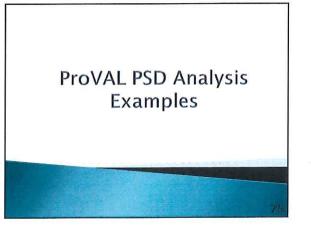
- Any dispute between the engineer and contractor regarding IRI QC/QA comparisons that cannot be settled at the project level shall be arbitrated with the MoDOT reference profiler per the test procedure in TM-59.
- The results of the reference profiler shall be binding for the engineer and the contractor.

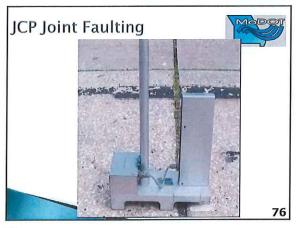
68

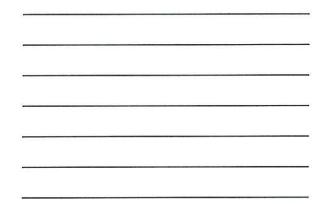


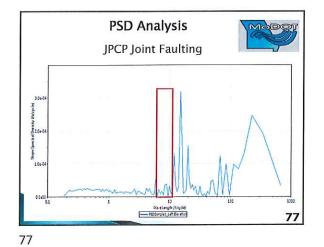


- After completion of any pavement repairs, the contractor shall run the control IRI profile in the outside wheel path in accordance with TM-59.
- Areas where excessive subsidence or faulting prevent diamond grinding coverage may be excluded from IRI testing by the engineer.

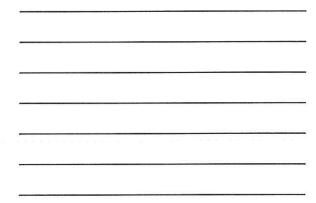

70

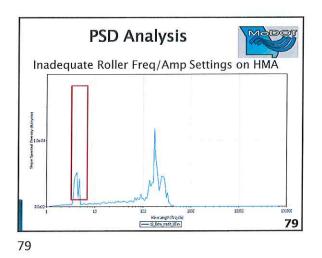


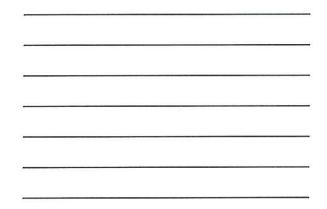


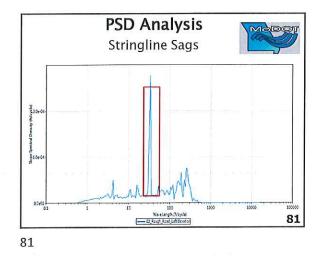

622.30.4 Smoothness Re	equirements
 The contract unit grinding will be a 	
	following schedule
according to the f	following schedule
	following schedule Increase in Contract Unit Price \$0.25
according to the I IRI, inches per mile	Increase in Contract Unit Price
according to the f IRI, inches per mile 40.0 or less	Increase in Contract Unit Price \$0.25

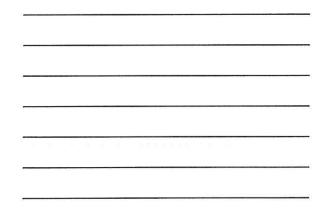








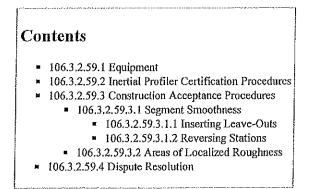




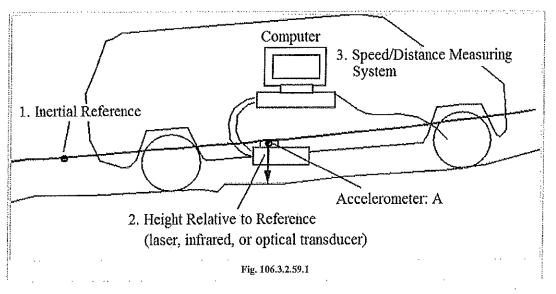
 Concrete Paving Stringline

 Image: Concrete Paving Stringline

MoDOT - TCP


MoDOT - TM59 Test Method

106.3.2.59 TM-59, Determination of the International Roughness Index


From Engineering Policy Guide

This method describes the procedure for determining the International roughness index (IRI) of pavement surfaces in English units.

106.3.2.59.1 Equipment

Inertial Profiler. The International roughness index (IRI) shall be measured with an inertial profiler (IP). The IP shall meet the equipment requirements of AASHTO M 328, which include the following three primary transducers; (1) a height sensor that measures the distance between the pavement and a vehicle reference point, (2) an accelerometer that measures the vehicle vertical acceleration in response to the pavement profile and (3) a distance sensor that provides a location reference as the vehicle moves longitudinally (see Fig. 106.3.2.59.1). The IP shall also be equipped with an automated triggering system that can automatically start and stop data collection using a reference mark. The IP shall store the profile elevation data at an interval of 2 in, or less and have a vertical measurement resolution of 0.001 in, or less. The IP equipment may be either the low speed or high speed type. The IP shall be capable of exporting unfiltered raw profile data to an electronic file (conforming to ASTM E 2560) that can be imported into the ProVAL software program.

ProVAL. The profile file shall be evaluated using the ProVAL software program. ProVAL is a free program developed by The Transtec Group under contract with the FHWA. The current program version is ProVAL 3.4 (http://www.roadprofile.com/) and can be downloaded.

106.3.2.59.2 Inertial Profiler Certification Procedures

Each IP used for construction acceptance testing on a MoDOT project shall be annually certified (verified) at the Linn State Technical Colleg

test site. The test site will have a known IRI in two wheel paths, measured with a reference profiler.

The inertial profiler (IP) shall have its low- and high-pass filters set to zero prior to the certification test. The IP shall have any other controls set according to manufacturer's specifications. The two sensors in the profiler shall be spaced 6 ft. apart.

The IP operator may perform trial profile runs prior to the certification testing. The IP shall start far enough in advance of the test section to reach data collection speed. The IP operator shall perform five profile runs on the test section collecting data in both wheel paths. The IP shall move at a constant speed over the test section. An IP with two sensors shall measure both wheel path profiles in a single pass. An IP with one sensor shall measure each wheel path profile individually. Upon completion of testing, the IP operator shall provide the certification engineer the unfiltered profiles in .ppf file format on a readable electronic storage device such as a flash drive. Each file shall be labeled in the following format:

Contractor_IP Manufacturer_IP Type_Unique Equipment ID #_Wheel Path Tested_Test Run #.ppf For "IP Type" enter "HS" for high speed and "LS"' for low speed. For "Wheel Path Tested" enter "L" for left, "R" for right and "B" for both. For "Test Run #"' enter 1,2,3,4 or 5. Ex. CBI_Ames_HS_600406_B_2.ppf.

MoDOT will analyze the submitted data using ProVAL. Based on AASHTO R 56-10, the test results of the inertial profiler (IP) shall meet the following requirements:

- Minimum average cross-correlation repeatability shall be 92%.
- Minimum average cross-correlation accuracy shall be 90%.

A ProVAL certification report shall be generated for each inertial profiler (IP) that receives acceptable test results at the certification. The report shall be digitally signed with the State Construction and Materials Engineer signature and shall be electronically stored on the MoDOT V:-drive and sent to the contractor or testing consultant. Inertial profilers that do not pass the certification test shall be corrected offsite by their respective owners and recertified at a later date.

106.3.2.59.3 Construction Acceptance Procedures

Testing Conditions. All objects and foreign material shall be removed from the pavement surface. There shall be no standing water in the wheel paths during testing. Inertial profiler high- and low-pass filters shall be set at zero.

Testing Limits. The inertial profiler shall measure the surface of a pavement section in both wheel paths, that are located 3 ft. from and parallel to the edges of the lane, running in the direction of travel.

- The starting point shall be 50 ft. before the start of the day's paving.
- The starting point shall be a known station or logmile measured to the nearest foot.
- The IP shall use an automated triggering mechanism to initiate data collection at the starting point and end data collection at the
- The starting point shall be visibly marked for the duration of the project so that subsequent profile measurements may be closely matched.

Data Submittal. The contractor shall submit an electronic file in .ppf format containing the unfiltered raw data collected at the section. Data shall be submitted within 24 hours of the testing on each section. A day's report may consist of more than one section. Inertail profiler files with QC data results shall be submitted to MoDOT using the naming convention in Table 106.3.2.59.3.

Table 106.3.2.59.3, Categories	of Warning Signs and Plaques
--------------------------------	------------------------------

Electronic Profilograph File Naming Convention*
Definition
Contract ID (Letting Date-Call Number)
Test Date
Type of quality test (C for control, A for assurance)
Direction of Lane (N,E,W or S)
Lane number (1 for inside lane, increasing by one for each lane to the right,
Wheel path (L, R, or B)
Beginning Station (rounded to nearest foot)

Data Analysis. The engineer shall use the ProVAL program to analyze the QC file. ProVAL shall also be used for quality assurance (QA) test data. The analysis will consist of two primary components: 1) *segment smoothness* evaluated with the "Ride Quality" module and 2) *areas of localized roughness* (ALR) evaluated with the "Smoothness Assurance" module.

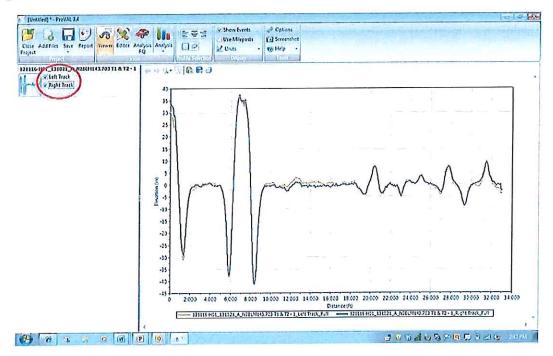
106.3.2.59.3.1 Segment Smoothness

The data will first be analyzed for ride quality, which will determine the average IRI for each wheel track on a per segment basis. The steps are as follow:

- Open ProVAL program.
- Select "New".

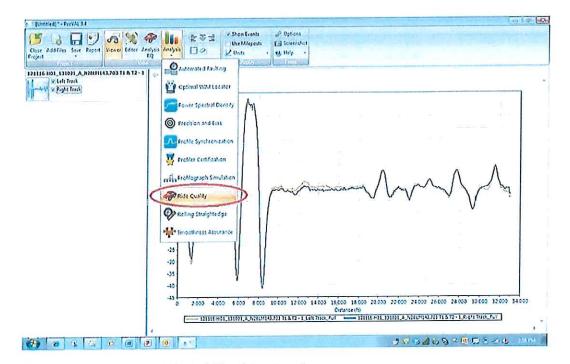
Consignated Factor	PraVAL Online
eezni Arajaets	News
	Fiday, Reventer09, 2013 Grand Opening of Online ProVAL HelpDesk
	Toustry, July 30, 2013 ProVAL 3, 40, 0297 Released
	(ndsy, Joy 12, 2013 ProVAL 3, 40, 0296 Released
	Wednesdey, April 10, 2013 ProVAL 3, 40, 0294 Released
	Wednesday, Murch D, 2013 ProVAL 3:40:0293 Released
	Workshops
	Tuerday, April 15, 2014 ProVAL Workshop in Anchorage, AK

Select "Add Files" to import PPF file with QC/QA profile data.


File(s) will contain either right and left track profiles or single wheel track profiles.

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering Pol... Page 4 of 24

A [Untaled] - ProVAL 3.4			0 0 00
COD D 5 X 4	· · · · · · · · · · · ·	1 Options	12000000000
Churchdiffen Store Freed Verset Editer Analys	ia Antypia Del Use Mieposta	Scienchat	1999
Close didfier Sive Egent Viewer Editor Andre 60	a Aniyaa LIO Vots	• (Q) Help • Tran	
0	5 9 15 18 0 B 0		
·	is an example to the first sector		
	-		
			, ^v
	() sT	·····································	Dates -


Select left elevation and right elevation.

The following example uses a file containing both wheel paths. The program will correctly align files with individual wheel paths, provided the data collection was initiated at the same starting station for both files. The next screen shot shows the actual change in elevation along the profile length.

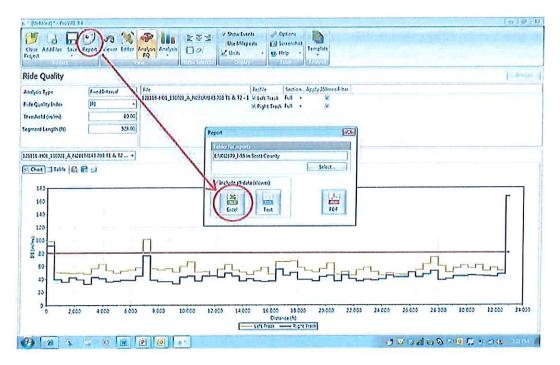
Select "Ride Quality" in the "Analysis" module.

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering Pol... Page 5 of 24

- Select "Fixed Interval" in the "Analysis Type" dropdown box.
- Change "Threshold" limit to 80 (in/mi). (Note: this threshold applies to pavement with posted speeds over 45 mph. The threshold is 125 (in/mi) for lower speed routes.) The "Segment Length" should show the default value of 528 ft. and the "Ride Quality Index" should show the default name of "IRI".
- Check box for "LElev." and "RElev." and make sure the "Apply 250mm Filter" box is checked for both.

[United] * - Provid 3.4	00
V Show Fverds Veraw Edster Aniyys Aniyys set	n Tenyste
ingo vo baild beausy took	Anth
sequely for the second	o Istoly IStonan Liter
1	
ක් පහස් සිළි ක	

Select "Analyze".


106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering Pol... Page 6 of 24

[Unstied] *- ProVAL	134		and the second second				1010 B
Cluse AddFiles San Project	· Laper View	Editor Analysis	1 2 2 3	Shew Events & Options Use Mileposts E Screens Usits + B) Help 1975	teoplate		
Ride Quality				1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		(Analyze
Analysis Type Fode Quality Index Thresheld (m/m) Segment Length (N)	FaedSetera DI	2 • Fie 121110 2000] 528.00	-H01_131021_A_12261AQ433303 T				
<u> Out</u> I tite (NE J						
B a s	e 12	e P	0			0.9 × 0 0 × × 0	

The average IRI of a wheel path for each 528 ft. long segment will be shown on the screen. The drop down menu above table at left can be used to view either left or right wheel path IRI values

. "[Untitled] . PreVAL	8	- 0 M3
Clair AddFiles Save	Part No. 67	
Ride Quality		- Analyte of
Antlysis Type Fide Quility Index Thresheld (in/m) Segmient Length (N)	Fore-Hottman Fore Product Section Apply 250mm Face [P2 10116-001_0001_0_0001_0_0001_0_0001_0_0000_0_0000 3000 <t< td=""><td></td></t<>	
1221116 HOL 131021 A. JL Chart Table (1) 120 140 140	(1.4.0.75) 11 & 17	ſ
120 (2100) (2100) (2100) (210)		_
		32,000 34,000
(P) (2) (S)	🖙 🗙 🗑 🖲 💽	ALCO DADA

· Select "Excel" in the "Report" dropdown box.

Open the Excel file.

Average IRI for each segment for both wheel paths is listed in the Excel spreadsheet.

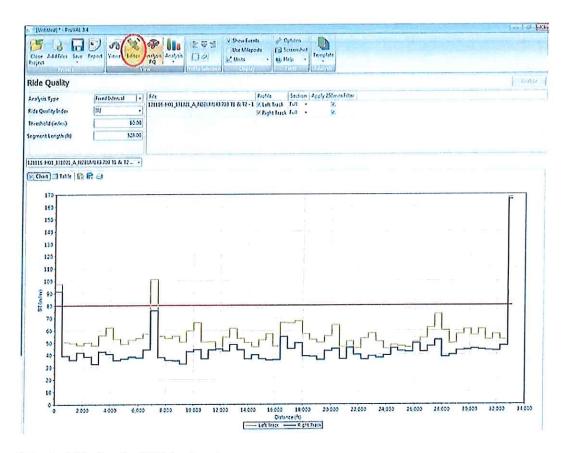
Pante	X Col 23 Copy - I Termst Fanter		• п • Л л • со• Д•	··* 📷 🖬 🦉	Sewerp ted Merge & Certer •	General S - % +	a 4	Constants Termations		Cell	iver.	Ceiete	Terral	E Actos	Z	6 1.03 A
• .	head in	feet		Angar	ent is	Houses			States	10		Cell			tating	
-			start Distance (fi	1				Million Brites								
T	A	ß	C	D	E	5	G	11	1 1	1	K	1	L	м	N	a
Sta			Length (ft) Lef	Teack -IRI (in/mi) R	ight Track + IRI (in/mi)											
	0	528		97.41158235	91.19595337											
2 3 4 5 5 7 8 0 0 1 2 3	528	1036		50.29559708	39.1097374											
	1056	1534	528	49.42414474	35.78503635											
	1554	2112	523	47.59665451	41.96693039											
	2112	2640	\$23	49.75065994	38.53723526											
	2610	3163	528	47.15056319	32 52357493											
2	3163	1655.933736	523	55.6146965	47.40565326											
	3695.999756	4224	523	61.63477707	40.55931323											
5	4224	4752	523	57.41210173	35.60459518											
1	4752	5250	523	48.52482605	36.\$4973997											
2	5280	\$\$07.999512	523	51.95555073	38.10395432											
3	5207.933512	6336	528	53.34255219	37.55791473											
1	6336	6551	523	56.82830811	41 03156535											
	6364	7391.993512	523	101.0209153	75.51222239											
1	7391.999512	7019.090512	523	54.83370514	37.8598671											
	7919.9993512	8443	\$23	\$3.05101937	35.30941467											
1	6113	5376	523	55.01288605	35.25506372											
	\$970	9504	523	50.16133351	32.50595309											
	9504	10032	525	59.10518265	42.65707611											
	10032	10560	525	65.91323034	41.0313395											
	10560	11033	523	50.29634476	35.79111099											
	11033	11615.99902	523	50.4074173	43.75574924											
	11615.99902	12144	573	41.61473129	44.35055933											
	12144	12672	528	54.19332465	42.76557376											
1	12672	13199.99902	528	61.25479126	43.24419785											
	13192.99902	13723	578	53.14354324	41.93515015											
	Rite Quality	FJ INVERSION	P 14	12 00000 103	AL CHINAM		0	1				1.1				1 1

Copy and paste this data into the "IRI Inertial Profiler Report with Bonus" Excel spreadsheet in the V:\Smoothness folder. Select the appropriate individual worksheet in the "Start" worksheet (first tab); based on posted route speed, pavement type and pay unit type. The worksheet will automatically generate pay factors for each segment.

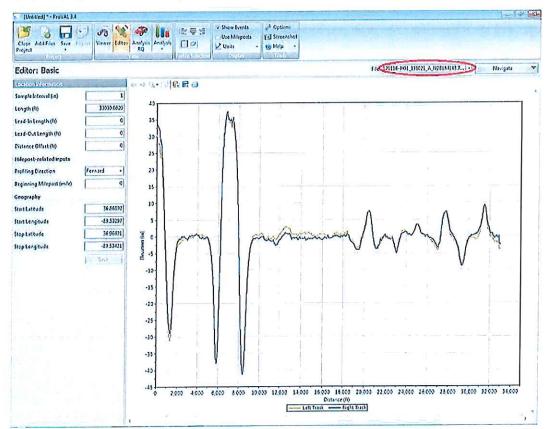
106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering Pol... Page 8 of 24

2 × Cut	nte Insert	Fage Layo Calibri	• 11 • A			trabat rap Test Ger	reral	. (12)	HIG	(1)	-	111	E AutoSum	AT
te Fom	y •	в г ц.	12.25 (1653	en e	律师 國加	S 1 2	• % • ta	Condition	nal Formal ng • as Table •	Cell Styles -	Ingert Dele	te Format	☐ fill • 2 ctor •	Soit & Find & Find & Filter - Select -
Chobeard		1	ant	6	Alignment	15	Number	91	Styles		Cell	1.	Ed	iting
A21	• (· fe	0											
A	B	C	D	E	F	G	н	1 1		J	-	ĸ	L	M
117		Contract ID:			d grinding or m _ _	HNESS INDEX (ift asphalt cons		tained in Se d: d:	acs 401 ar	-			
		Route:						Direction	1					
	Prime	Contractor:			1			umber/Type			-			
		contractor:			-			n Station/LN			.			
	Testing	Type/Stage:			-		En	d Station/LM			-			
1973	10.012		States of	Sec. 15 Filler	news contraction of the	And the second second		1	1200010		-	Dane		
			C Rono	**					A CALL STORY		GA	Rent	T	
1.200	Sell Series	C	C Repo	rt		San Andrew Mark	a free and the		144.78	12.22	QA	Repo	on	a service and
From Station/ .og Mile	To Station/ Log Mile	C Segment Length (feet)	C Repo Left Wheel Path IRI (in/mi)	rt Right Wheel Path IRI (in/mi)	Average IRI (in/mile)	Smoothness Bonus %	Comments]	QA Left Path IR		QA Rigi	1 Wheel	OA Average IRI (in/mile)	QC/QA Difference
Station/	Station/ Log Mile	Segment Length	Left Wheel Path IRI	Right Wheel			Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile	Station/ Log Mile 528	Segment Length (feet)	Left Wheel Path IRI (in/mi)	Right Wheel Path IRI (in/mi)	(in/mile) 94.3 44.7	Bonus % 0 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0	Station/ Log Mile 528 1056	Segment Length (feet) 528	Left Wheel Path IRI (in/mi) 97.41158295	Right Wheel Path IRI (in/mi) 91.19595337	(in/mile) 94.3 44.7 42.6	Bonus % 0 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528	Station/ Log Mile 528 1056 1584 2112	Segment Length (feet) 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559708 49.42414474 47.99665451	Right Wheel Path IRI (in/ml) 91.19595337 39.1097374 35.78803635 41.96693039	(in/mile) 94.3 44.7 42.6 45.0	Bonus % 0 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056	Station/ Log Mile 528 1056 1584 2112	Segment Length (feet) 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559708 49.42414474 47.99665451 49.75065394	Right Wheel Path IRI (in/ml) 91.19595337 39.1097374 35.78803635 41.96693039 38.53723526	(in/mile) 94.3 44.7 42.6 45.0 44.1	Bonus % 0 3 3 3 3 3 3	Comments	-			QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 528 1056 1584 2112 2640	Station/ Log Mile 528 1056 1584 2112 2640 3168	Segment Length (feet) 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559708 49.42414474 47.99665451 49.75065994 47.38086319	Right Wheel Path IRI (in/mi) 91.19595337 39.1097374 35.78803635 41.96693039 38.53723526 32.52357483	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0	Bonus % 0 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168	Station/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998	Segment Length (feet) 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559708 49.42414474 47.99665451 49.75065594 47.38086319 55.6146965	Right Wheel Path IRI (in/mi) 91.19595337 39.1097374 35.78803635 41.96693039 38.53723526 32.52357483 42.40865326	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0	Bonus % 0 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168	Station/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998 4224	Segment Length (feet) 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559703 49.42414474 47.99665451 49.75065594 47.38086319 55.6146965 61.88477707	Right Wheel Path IRI (in/mi) 91.19595337 39.1097374 35.78803633 41.96693039 38.53723526 32.52357483 42.00865326 40.58981323	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 528 1056 1584 2112 2640 3168 1695.9998 4224	Station/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998 4224 4752	Segment Length (fcet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559703 49.42414474 47.99665451 49.75065394 47.38086319 55.6146965 61.88477707 52.41210175	Right Wheel Path IRI (in/mi) 91.19595387 39.1097374 35.78803635 41.96693039 38.53723548 32.52357483 42.40865326 40.58981323 35.60459510	(in/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2 44.0	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 1695.9998 4224 4752	Station/ Log Mile 528 1056 1584 2112 2640 3168 3695:9998 4224 4752 5280	Segment Length (fcet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/rni) 97.41158295 50.29559708 49.42414474 47.99665451 49.75065594 47.38086319 55.6146965 61.88477707 52.41210175 48.52482605	Right Wheel Path IRI (in/mi) 91.19595337 39.1097374 35.78803615 41.96693039 38.53723576 32.52357483 42.40865316 40.58981123 35.60459518 36.84973907	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2 44.0 42.7	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 8595.9998 4224 4752 5280	Station/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998 4224 4752 5280 5807.9995	Segment Length (feet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559708 49.42414474 47.99665451 49.75065394 47.38086319 55.6146965 61.88477707 52.41210175 48.52482605 51.98965073	Right Wheel Path IRI (in/mi) 91.19595337 39.1097374 35.78803645 41.96693039 38.53725326 92.52357483 42.40865326 40.58981833 35.60159518 36.84973507 38.10395432	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2 44.0 42.7 45.0	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 1695.9998 4224 4752 5280 807.9995	Slation/ Log Mile 528 1056 1584 2112 2640 3168 3695,5998 4224 4752 5280 5807,5995 6336	Segment Length (feet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path [R] (ir/mi) 97.41158295 50.29559708 49.42414474 47.39065451 49.75065394 49.75065394 47.38086319 55.6146965 61.88477707 52.41210175 48.52482605 51.98865073 53.34255219	Right Wheel Path IRI (in/mi) 91.19595337 35.78603635 41.9669303 38.53723526 32.522357483 42.40865326 40.58981323 35.60459510 36.84973907 38.10395432 37.55791473	(In/mite) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2 44.0 42.7 45.0 45.5	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 1695.9998 4224 4752 5280 1807.9995 6336	Slation/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998 4224 4752 5280 5807.9995 6336 6364	Segment Length (fcet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41152295 50.29559703 49.42414474 47.99665451 49.75065394 47.38086319 55.6146365 61.88477707 52.41210175 48.52482605 51.98965073 53.34255219 56.82830811	Right Wheel Path IRI (in/mi) 91.19595337 35.78603635 41.96693039 38.53723526 32.522357483 42.0665326 40.58981323 35.60159518 36.64973907 38.10395432 37.55791473 44.09456635	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 49.0 51.2 44.0 42.7 45.0 45.5 50.5	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 3168 31695.9998 4224 4752 5280 5307.9995 6336 6864	Slation/ Log Mile 528 1056 1584 2112 2640 3168 3695.9998 4224 4752 5280 5807.9995 6336 6864 7391.9995	Segment Length (feet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41158295 50.29559703 49.42414474 47.99665451 49.75065394 47.38086319 55.6146365 61.88477707 52.41210175 48.52482605 51.98965073 53.34255219 56.82830311 101.0209198	Right Wheel Path IRI (in/mi) 91.19593337 39.1097374 35.78803633 41.96693039 38.5372356 32.52357483 42.00865326 40.58981321 35.60159518 36.84973907 38.10395432 37.55791473 44.04566635 75.512222229	(In/mile) 94.3 44.7 42.6 45.0 44.1 40.0 51.2 44.0 51.2 44.0 42.7 45.0 45.5 50.5 88.3	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	
Station/ .og Mile 0 528 1056 1584 2112 2640 3168 3168 31695.9998 4224 4752 5280 5307.9995 6336 6864	Slation/ Log Mile 528 1056 1594 2112 2640 3168 3695.9998 4224 4752 5280 5807.9995 6336 6364	Segment Length (fcet) 528 528 528 528 528 528 528 528 528 528	Left Wheel Path IRI (in/mi) 97.41152295 50.29559703 49.42414474 47.99665451 49.75065394 47.38086319 55.6146365 61.88477707 52.41210175 48.52482605 51.98965073 53.34255219 56.82830811	Right Wheel Path IRI (in/mi) 91.19595337 35.78603635 41.96693039 38.53723526 32.522357483 42.0665326 40.58981323 35.60159518 36.64973907 38.10395432 37.55791473 44.09456635	(In/mile) 94.3 44.7 42.6 45.0 45.0 44.1 40.0 49.0 51.2 44.0 49.0 51.2 44.0 45.5 50.5 50.5 88.3 46.4	Bonus % 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Comments				QA Rigi	1 Wheel	OA Average	

There may be exempted areas per Sec 601.4.2.2 (http://www.modot.org/business/standards_and_specs/SpecbookEPG.pdf#page=9) within the section profile limits. The engineer should verify that the limits do not go beyond the eligible exemption area. The contractor may elect to:


1) Stop the profile run at the beginning of the exemption and begin a new section profile at the end of the exemption.

2) Manually enter exemption boundaries in the data acquisition software during the profile run (typically performed with high speed IPs).


3) Enter a "leave-out" area in ProVAL during the ride quality analysis. The instructions for performing this are as follows:

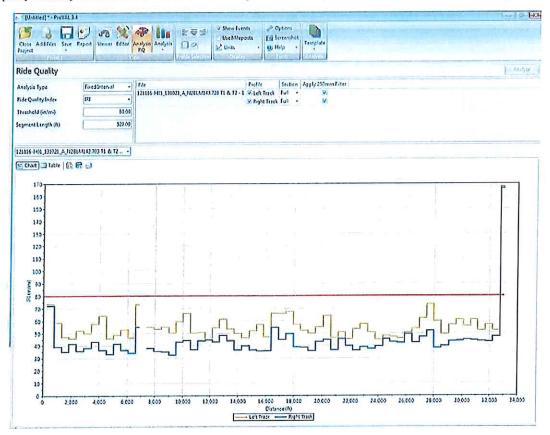
* Select "Editor". Select the file from the File dropdown menu.

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering Pol... Page 9 of 24

Select the IP file from the "File" dropdown box.

Select "Sections in the "Navigate" dropdown box.

- Select "Add Section".
- Enter section(s) Start Distance, Stop Distance, Type (Leave-out) and Name.


For this example, assume there are two leave-out areas: one at the beginning where a bridge approach on the upstream side is within limits and another over a mile farther where there is another bridge.

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 11 of 24

Select "Analysis" and select "Ride Quality".

The ride quality summary shown below now excludes the exempted areas of the profile and abbreviates the associated segments accordingly.

- Select "Excel" in "Report" dropdown box.
- Open the Excel report.

Since the first leave-out was at the beginning of the project, ProVAL has shifted the boundaries of the original segments to maintain 528-ft. lengths. However, it truncates the segment preceding the second bridge, so that it can again begin with 528-ft. lengths on the other side of the bridge. This means leave-outs should be established and analyzed in ProVAL prior to exporting the results to the "IRI Inertial Profiler Report with Bonus" Excel spreadsheet in the V:\Smoothness folder.

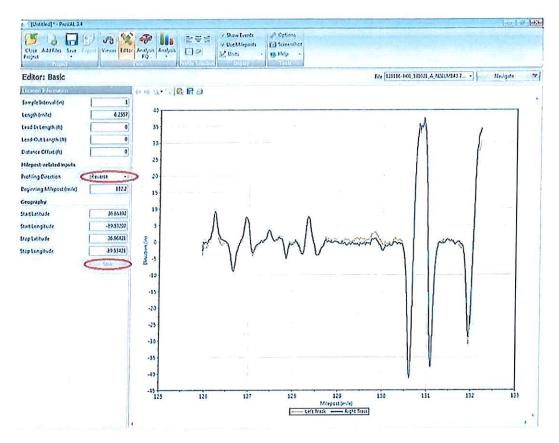
Iste		ert Fagelappul	fernute) Dati	Review Vie	w Arrebat					-	-		1		-	000
1	× cut	Calibri .	11 · A a 1	· = = >	Sewop lest	General				-st		3		2: AutoSum	27	Chu .
aste	47 COS1 .	B / U · 13	· 1		of Hear & Center	5 . 16	· 13 5		al Farant		Intel	De'ele	Foreist	2 6411 1	Sen & F	
	Format Fainter			1 m 1 m 1 m 1 m		her		Ternsthe	stafes	. 20/61 .		Cata			Filer+ 5 otna	select .
-	Choboud r.	and the second		Aster	ated .	- Inci	W 62 1		1911	Concernance of the	21 AT 14		144111			
	AL	• (- J. St	art Distance (It)				-					T				-
	۸	18	¢ .	D	E .	F	6				1 1	¢	L	2.1	N	0
51					light Track - IRI (in/mi)											
<	250,0333435	773.093313	525	73.22575977	71.7877578											
	773.033313	1306.033374	523	59.61169167	39.2416065											
	1309.033374	1831.033252	523	46.82253505	35.2226325											
1	1834.033252	2362.033252	528	45.94316433	41.6177253											
	2362.083252	2890.093252	528	52.16239624	35.9092025											
t.	2890.033252	3418.033252	523	50.03710938	38.0974151											
	3418.083252	39-16.033-196	523	57.55150604	43.2002905											
	3946.053496	4474.033008	525	63.99251175	36,4951782.											
1	4174.033003	5002.033496	523	45.7021904	33,1823580											
	\$002.033496	5530.033003	523	49.59315216	41.559979											
ł .	5530.083008	6038.033008	528	52.76331325	36.59399033											
	6053.033008	6526 033496	523	46.5533633	34.24635315											
<	6516.081436		77.916656	72.89504242	54.7372815											
	7392.033003	7920.033003	528	51 89325529	37.86279678											
	7920.033003	8448.083003	528	53.06097412	35.51432419											
	8449.093003	\$976.093003	523	55.01615143	35.25502777											
	\$976.083008	9503.083008	523	50.15512411	32.50376236											
	9501.033008	10032.08301	528	59.10093307	42.66545267											
	10032.03301	10360.08301	525	65.55438385	44.0354505											
	10560.09301	11033.03301	523	50.23153992	16.79426956											
	11083 08101	11616.03301	528	50.10076833	43.76152039											
	11616.03301	12144.03301	528	41.61027786	41.33939539											
	12141.05301	12672.08301	528	54.19159309	42.77285055	8										
	12672.03301	13200.03301	528	61.26639794	43.23555756											
	13200.03301	13728.03301	523	53.13506915	43.92832919											
	13728.03301	14256 03203	528	49.9071579	36.54707336											
	14256.03203	14724.03301	528	46.25279877	39.07977905											
	14784.03301	15312.03301	523	51.99739312	36.60266495											
	15312.03301	15540.03203	523	56.5596341	35.36884308											
	15540.03201	16163.03101	523	46.95311031	35.82534409											
	16368.03301	16556.03393	528	65.9559356	54.52581406											
	16396.09393	17424.03203	523	65.75164032	44.77365975			15								
	17424.03203	17532.08203	528	67.2498703	49,41431045											
	17552.08203	16460.03393	528	56.87303543	13.72161773											
	18450.05393	19008.03203	528	52.30033354	18.47500992											
	19003-05203	19536.09203	528	49.96130369	35.90664291											
	19516-03203	20061.08393	528	51.92561722	43.12007504											
	Bile Quality	20592 03203	528	63 57650715	L1 81141417			1.								ŝ

106.3.2.59.3.1.1 Inserting Leave-Outs

Prior to analyzing ride quality some reformatting of the stationing will probably be necessary. In this example, assume the beginning of the inertial profiler run is at log mile 132.2.

- Select "Navigate" dropdown box
- Select "Basic"
- Enter 132.2 in "Beginning Milepost (mile)" box
- Select "Save"

ProVAL has now reformatted the stations to represent actual project limits for the profile section.



106.3.2.59.3.1.2 Reversing Stations

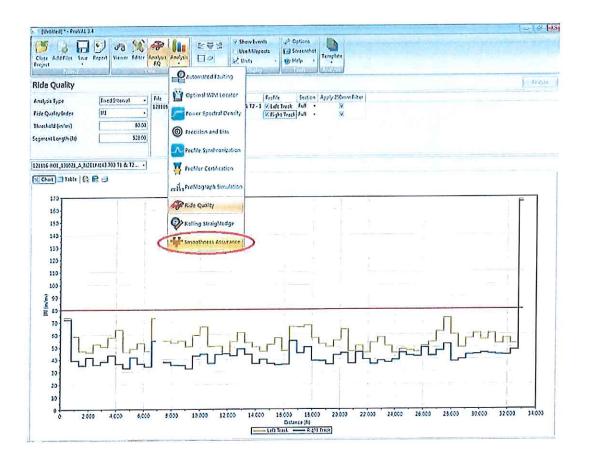
Another situation that may arise is when the direction of travel is in a station descending direction. ProVAL can also easily make this adjustment in the "Editor" mode. For this example, the starting log mile 132.2 will be retained.

- Select "Profiling Direction" dropdown box
- Select "Reverse"
- Select "Save"

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 15 of 24

Rerunning the ride analysis and creating the Excel report file will provide segment data in the reverse direction.

- Select "Analysis" and select "Ride Quality".
- Select "Excel" in "Report" dropdown box.
- Open the Excel report.


106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 16 of 24

1.1	and the second second			enalss Dst		CONT STORY				(8.3)	(110)	100	9	m.	1111	E Aut	asun .	And	(4)	
	La Cest .	Calibri			····	Wrop let	Ge	otal	÷	15	1.1	1.3		ė.		(a) F10		21	un	
Patte	I Tornat Frieter	D 1	¥• 🖽•+	3. V.	医骨部 化化	Mergetto	enter · S	. %	14 14	Condition Formattion	al faina a as fable	- Stafes -	Intert	Delete	Farmat	200		1.10	Find Selec	
	Cipbend G		Fort	14	Augemen	t		Barber			Styles		1	Cells			10	top		
	620 -	1.	1.																	
11	A	1	B	6	Ó	1	E	F	1 0			1 [1	K		1	M	1	. 14	T
1 5		Stept			Left Track - IRI (in/mi	Right Trat	k · IRI (In/n	ni)		0										
2	132.152613		132.0526276		73 2287597		71.78775													
3	132.032627	5	131.5526357	528	53.6116316	57	39.24360	537												
4	131.9526153	,	131.8526105	528	46.3226590	6	15.22263	295												
5	131.852610	5	131.7526393	523	45.9131610	0	41.61772	537								1				
6	131.752615	3	131.6526337	523	52.3523962	4	35.90920	153												
7	131.6526333	,	131.5526275	528	50.0371093	8	33.09744	6-14												
	131.5526276	5	131.4526167	528	57.5515060	4	43.200254	263												
3	131.4526357		131.3526305	523	63.9925117	5	16.43517	322												
0	131.3376100		131.2526393	573	45.702150	4	31.188558	103												
1	131.2526193		131.1526137	523	48.5951521	6	41.5999	191												
2	131.1526337		131.0526276	523	52.7533132	9	36.593990	33												
3	131.0526276		130.9526367	523	46.553363	3	34.246351	115												
4	130.9526367		130.8999939	277.916656	72.8950424	2	\$4.73722	15												
5	130.7999378	í.	130,6999317	523	54 8332352	9	37.562756	73												
6	110.6959817		130.5999735	528	53.0603741	2	35 514324	19												
7	110.5559756	6	130,4595847	528	55.0151514	3	35.255027	77												
3	110,4999847		110.3399786	523	50.1551241	L	32.508762	16												
9	130.3999785		130.2599378	523	59.1000330	7	42.669452	67		-										
0	110.2555878		130.1559317	528	65.9543838	s	41.03548			_										
1	110.1999317		120.0999756	528	50.2315399.	2	16.794269	\$5												
2	130.0999755		129.9999347	525	50.3997693	3	43.761520	32												
3	129.5955317		129.6999785	528	41.6102775	5	41.359556	39												
	129.8999789		129.7959378	578	54,19188304	3	42.772220													
5	129.7939573		129.6999317	523	61.26539734	1	48.235557													
5	129.6599317		129.5999755	523	53.13506915		43.928929													
7	129.5559755		129.4559347	528	49.9071575		36.547073													
	129.4555847		129.3559786	528	46 23279377		19.671779													
)	129.3999785		129.2999378	523	51.99738312		16.602664													
)	129.2555973		129.1555617	523	56.5596344		35.3688411													
	129.1559317		129.0959755	523	46.95511031		35.825344	5 C ()												
2	123.0999756		128.9999247	523	65.95\$9316		54 525814													
	123.5555317		128.8959785	523	65.75164032		44.773658													
	123.8559755		178.7559875	528	67.2498703		49,414310													
	123.7559878		128.6999317	523	56.87303543		33.721637.													
	128.6999817		128.5999756	523	52.30093384		18.475009													
	128.5599755		123.4559317	528	49.95130959		35.9066129													
	128.4199847		125.3559785	528	54.92551722		43.1200750													
	128 199974A	Sec. in	132 2444278	578	61 A7640715		JA 9154561	17	63-					11						35

106.3.2.59.3.2 Areas of Localized Roughness

Select "Smoothness Assurance" in "Analysis" dropdown box.

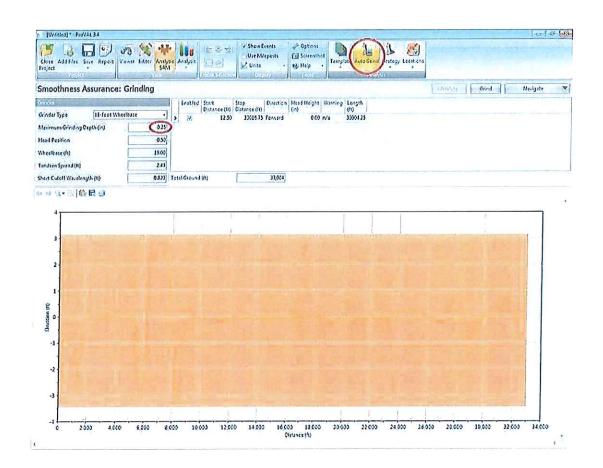
106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 17 of 24

- Change "Threshold" value for "Short Continuous" analysis to 125 (in/mi) in the "Ride Quality" section. (The segment length for "Short Continuous" should be set at the default value of 25 ft.). Change "Threshold" for "Long Continuous" and "Fixed Interval" in the "Profile" section to 80 (in/mi). (The "Segment Length" for both "Long Continuous" and "Fixed Interval" should be set at the default value of 528 feet.)
- Check "Right Elevation" only in the "Profile" section (ensure "Apply 250mm Filter" is also checked).
- " Select "Analyze".

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 18 of 24

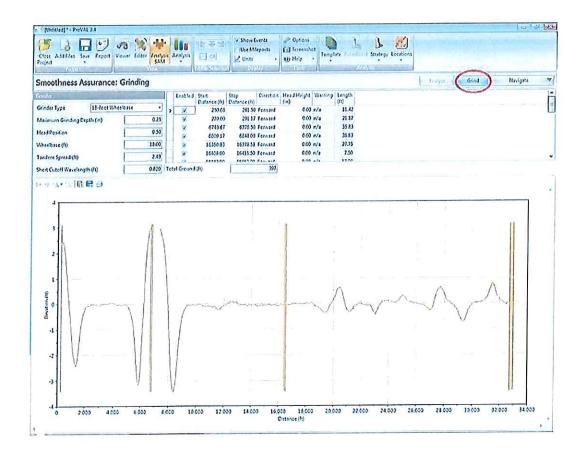
Smoothness Assurance: Inputs	Aniya D CAL D Response
rage ar	File Freite Section Apply Blown Filter
Rde Quality Indea Anslysia Segment Length Threehold Histogram US Stort Continuous 25 Long Certinuous 25 Faced Secural 252 Back Secural 252	101(16-50),10001_A307(M1030) 71 & 12-1 (-101100) (
Rempletion	
Type tione -	
file there	

· Select "Grinding" in the "Navigate" dropdown box.

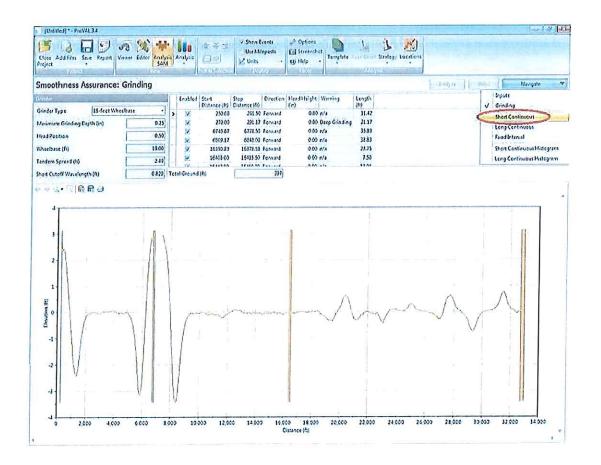

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 19 of 24

Close Add Files Sove Report Vienes Editor Analysis Analysis	E Sover frenkt Uter Mitgeste Kotskover Version Versio	
Smoothness Assurance: Inputs		Aufra Good Nedgate
stragater	File Profile Section Apply 250mm Filter	V Inputs Grinding
File Quility Index UI • isslytis Segment Length Proceedia Hitegram hert Centinueus 23 123 Estingueum ong Centinueus 523 83 Hitegram add Interni 523 83 Hitegram	111116-1101_110021_AJ78EUUU0370311.6(17-1_2)1681704 [] 	Shert Continuous Long Continuous Field Interval Shert Continuous Histogram
Syse (Hane) Syse (Hane) unghetedge Length (N) (Store) äter Inter		

Enter 0.25 inches for "Maximum Grinding Depth" in "Grinder" section. (The following parameters should show the default values, which are Head Position = 0.50, Wheelbase (ft) = 18.00, Tandem Spread (ft) = 2.49 and Short Cut-Off Wavelength (ft) = 0.820 ft.)

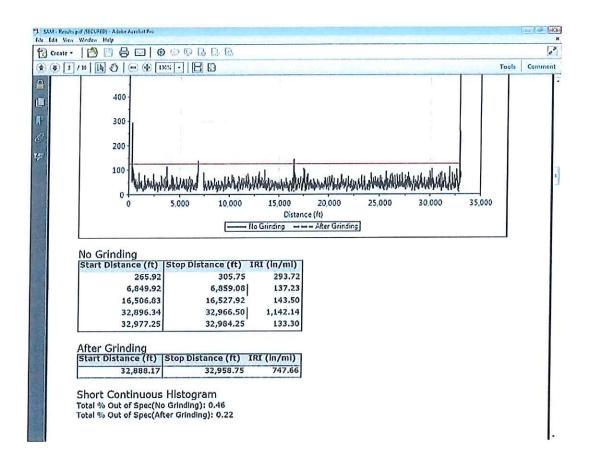

Select "Auto Grind".

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 20 of 24


Select "Grind".

106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 21 of 24

» Select "Short Continuous" in "Navigate" dropdown box.


106.3.2.59 TM-59, Determination of the International Roughness Index - Engineering ... Page 22 of 24

" Select "PDF" in "Report" dropdown box.

p - [Untiled] *= ProVAL 3.4	(a)\$;1
Close Add Fies Syn Report Viewer Editor	Image: State
Smoothness Assurance: Short Con	Ninuous
Smoothness Assurance: Short Converting (n) The provide (n) Part of the provide (n) Par	Inducts

The grinding report is generated showing locations of areas of localized roughness (ALR). The grinding simulation numerically indicates what the expected improvement in smoothness should be when the ALRs are diamond ground. This information serves as a guide for both the contractor and the engineer for determining which ALRs can be corrected with conventional grinding and which may require other corrective measures.

Comparisons for IRI before and after grinding are shown in tabular and bar graph form.

106.3.2.59.4 Dispute Resolution

In the event that the QC/QA results are not within tolerance (after the absolute value of the difference between the contractor and engineer IRIs are computed for each segment within the QA test length, the average of the absolute values of the IRI difference shall be 8 in./mile or less and the absolute value of the IRI difference for any single segment shall be 12 in./mile or less), the MoDOT SurPro reference profiler shall arbitrate the dispute. The engineer shall randomly select a 528 ft. area within the disputed pavement length and run the MoDOT reference profiler in the left and right wheel paths. The arbitration profile shall be correlated with its corresponding QC and QA profiles in ProVAL. Whichever of the average QC/QA IRI profiles is closer to the arbitration IRI profile shall be the binding profile for the purpose of construction acceptance.

Retrieved from "http://epg.modot.org/index.php?title=106.3.2.59_TM-59, Determination_of_the_International_Roughness_Index&oldid=37513"

Category: 106.3.2 Material Inspection Test Methods

This page was last modified on 8 June 2016, at 12:39.

Glossary

Glossary

Accelerometer – a sensor that measure acceleration. An inertial profiler uses the signal from the on-board accelerometer(s) to compute the inertial reference value (i.e., relative height) that can be combined with the height sensor data to produce a complete profile. See also Height Sensor.

Accuracy – Lack of error. The root-mean-square value of the error when comparing measured values with "deemed correct" or reference values. See also Repeatability.

Amplitude – the maximum value of a periodic curve measure along its vertical axis with reference to the horizontal axis.

Bias Error – Error stemming from systematic problems, including inaccurate calibration, physical damage, or a defect in the profiler's design.

Blanking Band – A band that is placed over a profilograph trace to "mask" the portion of the trace that is not counted as roughness.

Bode Plot – A frequency response plot made on log-log axes.

Bounce Test – A test performed on an inertial profiler when stationary in order to check the measurement system.

Calibration - The process of correcting the scale of a transducer.

Correlation Analysis - Analysis that describes how one variable relates to another.

Digital Filter – A calculation procedure that transforms one signal into another to eliminate irrelevant data.

Dipstick – A static, inclinometer-based proprietary device used to measure elevations at individual points (originally used for measuring floor flatness).

Distance Measurement Instrument (DMI) – A transducer used to determine the longitudinal distance that the measurement vehicle has traveled.

Frequency Response – The ratio of output amplitude to input amplitude for a sinusoid.

Gain – The ratio that a filter amplifies or attenuates an input signal component at a given wavelength or frequency.

Golden Car – The quarter-car model used in IRI computation. See also IRI.

Half-car Roughness Index (HRI) – A number calculated by applying the IRI algorithm to the average of two profiles.

Height Sensor – A sensor used in an inertial profiler to measure the vertical distance between the sensor and the pavement surface.

High-Pass Filter – A digital filter that produces an anti-smoothing effect that reduces the effect of long wavelengths. See also Low-Pass Filter.

Inertial Profiler – A profile measurement device that measures the pavement profile using an accelerometer to form an inertial reference and a height sensor to measure the pavement surface height relative to that reference.

International Roughness Index (IRI) – A statistic that summarizes the roughness qualities impacting vehicle response based on the Golden-Car vehicle model at a standard simulation speed of 49.7 mph (80 km/h).

Lead-In – The distance required for an inertial profiler to reach an acceptable speed and for the data collection filters used in the profile computation to stabilize. See also Lead-Out.

Lead-Out – A safe distance for an inertial profiler to operate to a stop position or until the data collection system is turned off. See also Lead-In.

Light-Weight Profiler – An inertial profiler that is relatively light-weight (golf cart, ATV, etc.) compared with high-speed profilers (vans, trucks, cars, etc.). It is often operated much slower than prevailing traffic speed. See also High-Speed Profiler.

Linear System – A system in which the output is directly proportional to the input.

Localized Roughness – Short sections of roadway that contribute disproportionately to the overall roughness index value. Also referenced as "hot spots"

Longitudinal Profile – A longitudinal two-dimensional slice of a road surface taken along an imaginary line that consists of elevation values and a distance reference for each elevation.

Low-Pass Filter – A smoothing filter, such as moving-average, that reduces the effect of short wavelengths. See also High-Pass Filter.

Mean Panel Ratings – A subjective rating system whereby automobile passengers rate the smoothness of a given road after driving on it.

Mean Roughness Index (MRI) – A number calculated by averaging the IRI values from the two wheelpath profiles.

Moving Average Filter – A digital filter that replaces each profile elevation point with the average of several adjacent points.

Portability – The ability to obtain consistent results when using different types of measurement devices.

Power Spectral Density (PSD) – A method that describes how the power of a signal (i.e. a time average of signal energy) or time series is distributed with frequency.

Precision – The measure of variation between multiple measurements, expressed in standard deviation.

Profile Index – A generic summary number calculated from a profile. This term should be avoided since it may be confused with PrI or RN. See also PrI and RN.

Profiler – An instrument used to measure road profiles.

Profiler Certification – A procedure used to determine whether a profiler satisfies a specific set of performance criteria.

Profiler Operator Certification – A procedure used to determine whether a profiler operator passes a specific set of written and field operational tests in order to be certified for operating profilers.

Profilograph – A device used to measure smoothness by measuring the deviations of a pavement surface using a mid-point measuring wheel from the reference established by a set of wheels (6 for a California-type) at either end of the device.

Profilograph Index (PrI) – A smoothness index that is computed from a profilograph trace. This is sometimes called Profile Index (PI), but is more specifically called PrI.

Reference Device – A device used to obtain the true profile of a pavement. Devices such as rod and level, Dipstick (TM) and walking profiler are considered reference devices.

Repeatability – The expected standard deviation of measurements obtained in repeated tests using the same device on a single, randomly-selected pavement surface.

Reproducibility – The standard deviation of the error included in a single measurement, relative to a reference measurement. The reproducibility of a device included errors that are systematic with respect to that device, but random with respect to a particular test.

Ride Number (RN) - A calculated roughness index, between 0 and 5, that approximates the Mean Panel Rating for a pavement surface. See also Mean Panel Ratings, IRI, and PrI.

Ride – Also spelled out as "Ride Quality". Measured as accelerations in the vehicle body.

Road Roughness – The deviations of a pavement surface from a true plane surface with characteristic dimensions that affect vehicle dynamics and ride quality.

Rod and Level – Static equipment used to measure elevations at individual points, commonly used for land surveying.

Rolling Straightedge – Profiling equipment generally consisting of a rigid beam (or frame) with support wheels on either end and a measuring wheel at the middle, which is rolled over the surface to be profiled.

Roughness Profile – A plot that shows the variation of roughness over a section of pavement. This is also referred to as a "continuous roughness report."

Response-type Road Roughness Measuring System (RSRRMS) – A system that measures suspension deflection of either one or two wheels of either a passenger car or a towed trailer and records these deflections as "counts" or as actual measured deflection.

Sample Interval – The longitudinal distance between captured data points.

Segment Length -- The length of section of pavement where a smoothness index is recorded.

Signal Processing – The mathematical transformation and analysis of signals.

Signal – A series of numbers.

Sinusoid – A periodic curve defined by wavelength, amplitude and phase.

Smoothness – Lack of roughness or lack of significant bumps and dips from the pavement surface that cause discomfort to motorists.

Standard Error – The portion of the total error due to random effects.

True Profile – The undistorted shape of a pavement surface.

Valid Profiler – A profiler that provides the same statistical values that would be obtained from the true profile.

Verification Site – A pavement section used to periodically check if an inertial profiler is functioning properly.

MoDOT – TCP

Wave Band – A range of frequencies. In profile analysis, wave band often refers to spatial frequencies. See also Wave Number.

Wave Number – The number of wave cycles per unit length.

Wavelength – The distance between peaks or crests of a wave or sinusoid.