Aggregate Technician 2022

Proficiency Pack

Date: _____

Name: _____

Employer: _____

AASHTO R90: Sampling of Aggregates PROFICIENCY CHECKLIST

Revised on 08/31/2020

	Applicant:		
	For all QC/QA or Acceptance sampling, record the time or location or both.		
Co	nveyor Belt Sampling – Sampling Device – Coarse/Mixed Aggregate	Trial	Trial
	TE: Automatic belt samplers may be used if properly maintained and inspected.	1	2
1.	Plant was operating at the usual rate.		
2.	Random samples taken from a conveyor belt discharge taken from production. (avoid beg. or end)		
3.	Sample taken from entire cross-section once in each direction without overflowing the device.		
4.	Included all material from the sampling device into an clean empty container.		
5.	Obtained 1 or more increments to form a field sample.		
Conv	eyor Belt Sampling – Template - Coarse/Mixed Aggregate		
1.	Conveyor belt stopped, locked and tagged out.		
2.	Random samples taken from production.		
	 Avoided sampling at the beginning or end of a run 		
3.	Template placed on the belt to yield one increment.		
4.	All material inside the template scooped into a proper container including fines.		
5.	Obtained 1 or more increments to combine for a field sample.		
Stock	pile Sampling – Flat Board – Coarse/Mixed Aggregate		
1.	Created a horizontal surface with a vertical face.		
2.	Inserted board vertically against a vertical face to prevent sloughing.		
3.	Discarded sloughed material.		
4.	Obtained a sample from the horizontal surface close to the vertical face.		
5.			
	the stockpile.		
	Combined to form a field sample.		
	pile Sampling - Sampling Tube - Fine Aggregate Only		[
	The outer layer of the stockpile removed.		
2.			
	Combined to form a field sample.		
	pile Sampling – Loader – Coarse/Mixed Aggregate		[
1.	Segregation avoided by re-blending the pile.		
2.	Loader entered the pile with bucket at least 1 foot above the ground.		
3.	Discarded first bucketful.		
4.	Re-entered stockpile to obtain a full loader bucket of material		
5.	Bucket tilted just enough for free flow, created small sampling pile. (Can go back for more).		
6.	Back dragged the small pile to form a sampling pad.		
7.	Randomly collected a min. of 3 increments with a shovel at least 1 foot from sample pile edge.		
8. 9.	Inserted the shovel excluded underlying material, placed in a clean dry container Combined increments to form a field sample.		
			<u> </u>
	way Base Sampling – In-Place – Coarse/Mixed Aggregate		
1.	Obtained at least 1 increment, using random number set for a QC/QA sample before compaction.		
2.	If not a QC/QA sample, obtained at least 1 or more random increments for a field sample.		
3.	Used a square nose shovel and or a metal template to mark the area.		
4. 5	Shoveled the full depth of the material excluding underlying material. Combined increments to form a field sample.		
5.		PASS	PASS
		L499	L499

AASHTO R76: Reducing Field Samples of Aggregate to Testing Size **PROFICIENCY** CHECKLIST

Revised on 10/14/2020

Applicant: _____

Trial #	1	2
Method A – Splitting		
(8 chutes for Coarse CA, 12 chutes for Fine FA)		
1. Material in an air-dried condition.		
2. Adjusted the openings to be 50% larger than the largest particle.		
3. Material spread uniformly on feeder from edge to edge.		
4. Rate of feed slow enough so that sample flows freely through chutes.		
5. Material in one receptacle re-split until desired weight was obtained.		

Method B - Quartering	
1. Moist sample placed on clean, hard, level surface.	
2. Mixed by turning over at least 3 times with shovel.	
3. Conical pile formed.	
4. Pile flattened to uniform thickness and diameter of 4-8 times thickness	
5. Divided into 4 equal portions with shovel or trowel.	
6. Removed two diagonally opposite quarters, including all fines.	
7. Remaining quarters, mixed and quartered until reduced to desired sample	
size.	
NOTE: The sample may be placed upon a canvas quartering cloth and a stick or	
pipe may be placed under the tarp to divide the pile into quarters.	

Method C – Miniature Stockpile (Damp Fine Aggregate Only)	
1. Moist fine aggregate sample placed on clean, hard, level surface.	
2. Material thoroughly mixed by turning over three times.	
3. Small stockpile formed.	
4. Obtain at least 5 samples taken at random with sampling thief, small	
scoop, or spoon, combined to attain appropriate sample size	

PASS PASS

AASHTO T 255: Total Evaporable Moisture Content of Aggregate by Drying **PROFICIENCY CHECKLIST**

Revised on 12/06/2019

Applicant: _____

Employer: _____

			- · · · <i>u</i>	1	2
			Trial #		
	ive test sample secured				
2. Test sample	mass conforms to follow	wing from the T255	AASHTO Table:		
	Nominal Maximum Size	Minimum Sample			<u>.</u>
	of Aggregate	Mass			
	in. (mm)	Lbs. (g.)			
	#4 (4.75)	1.1 (500)			
	3% " (9.5)	3.3 (1,500)			
	1⁄2" (12.5)	4.4 (2,000)			
	¾ " (19.0)	6.6 (3,000)			
	1" (25.0)	8.8 (4,000)			
	1 1⁄2" (37.5)	13.2 (6,000)			
3. Mass determ	nined to the nearest 0.1	%			
4. Loss of mois	ture avoided prior to de	etermining the mass	5		
5. Sample dried	d by a suitable heat sou	rce			
6. If heated by	means other than a col	ntrolled temperature	e oven, is sample		
stirred to av	oid localized overheating	g	-		
7. Sample dried	d to constant mass and	mass determined to	o nearest 0.1%		
8. Moisture content calculated by:					
% moisture	= wet sample mass - dri	ied sample mass	00		
	dried sampl	e mass	00		

PASS PASS

AASHTO T11: Materials Finer Than No. 200 by Washing **PROFICIENCY CHECKLIST**

Revised on 10/14/2020

Applicant: _____

Trial #	1	2
1. Test sample dried to constant mass at 230 \pm 9°F (110 \pm 5°C).		
2. Test sample allowed to cool, and mass determined to 0.1%.		
3. #200 sieve checked for damage. Cover the #200 with a #8 or #16 sieve.		
4. Sample placed in a container and covered with water.		
5. Wetting agent added. (optional)		
6. Sample and contents of container vigorously agitated.		
Note: Mechanical washers maximum time is 10 min of washing.		
7. Wash water poured through the sieve nest.		
8. Wash water free of coarse particles.		
9. Operation continued until wash water is clear.		
10. Material on sieves returned to washed sample.		
11. Excess water decanted from washed sample only through the #200 sieve.		
12. Washed aggregate dried to constant mass at 230 \pm 9°F (110 \pm 5°C).		
13. Washed aggregate mass cooled and determined to 0.1%.		
14. Calculation: % less than $\#200 = \frac{\text{Orig.dry mass} - \text{Final dry mass}}{2} \times 100$		
$\frac{14. \text{ Calculation}}{\text{Orig. dry mass}} \times 100^{-1}$		

PASS PASS

AASHTO T 27: Sieve Analysis of Fine and Coarse Aggregate PROFICIENCY CHECKLIST

Revised on 12/06/2019

Applicant: _____

Trial#	1	2
Fine Aggregate		
1. Reduce per AASHTO R76		
2. Minimum sample mass 500 g		
Coarse Aggregate		
1. Reduce per AASHTO R76 used sample size determined from nominal maximum aggregate		
size, and MoDOT' s EPG chart		
 Sample dried to constant mass at 230 ± 9°F (110 ± 5°C), weighed to nearest 0.1% and recorded 		
 AASHTO T11 may be performed at this point, washing material finer than 		
No. 200 sieve, dried to a constant mass at 230 ± 9°F (110 ± 5°C), weight recorded,		
and weight loss calculated to nearest whole number		
3. Stacked appropriate sieves in descending order		
4. Poured sample in the top sieve without losing material		
5. Agitated Manually or Mechanically		
 Manual Sieving continued until not more than 0.5% by mass of the total sample 		
passes a given sieve during 1 minute of continuous hand sieving		
 Mechanical Sieving Verified annually 		
 Timer verified/calibrated for sieving thoroughness. (Established by trial or checked 		
by measurement on the actual test sample to meet the 0.5% criteria as in hand		
sieving above. (Records kept in the lab)		
 Set at verified/calibrated time approximately 7-10 min. 		
 Or if timer not verified/calibrated, hand sieved afterwards for sieving accuracy 		
6. Precautions taken to not overload sieves		
7. Weighed material in each sieve either by Non-cumulative or Cumulative method		
8. Total mass of material after sieving agrees with mass before sieving to		
within 1 gram per sieve used (If not, do not use for acceptance testing)		
9. Percentages calculated to nearest 0.1% and reported to nearest whole number		
10. Percentage calculations based on original dry sample mass, including the		
passing No. 200 fraction if T 11 was used		

PASS PASS

FAIL FAIL

Examiner: _____

Date: _____

AASHTO TM71: Deleterious Content of Aggregate **PROFICIENCY CHECKLIST**

Revised on 12/06/2019

Applicant: _____

 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 			Trial #	1	2
Note: Surplus this amount for sleving Maximum Size Minimum Sample Size of Inches (mm) +4 material 2 (50) 10,000 grams 1/2 (37.5) 9,000 grams 1 (25.0) 5,000 grams 1/2 (19.0) 3,000 grams ½ (12.5) 2,000 grams 1/2 (19.0) 3,000 grams ½ (12.5) 2,000 grams 1/2 (19.0) 1,000 grams ½ (12.5) 2,000 grams 1/2 (19.0) 1.000 grams 3/8 (9.5) 1.000 grams 1/2 (19.0) 1.000 grams 3/8 (9.5) 1.000 grams 1/2 (12.5) 2.000 grams 3.5 size the reduced sample over a #4 size and discard the passing material 4/2 (19.0) 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5/2 (19.0) 5. Record the weight of the plus #4 material as the Original Mass 5/2 (19.0) 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 5/2 (19.0) 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram 5/					
Maximum Size Minimum Sample Size of +4 material 2 (50) 10,000 grams 1½ (37.5) 9,000 grams 1 (25.0) 5,000 grams 3⁄4 (19.0) 3,000 grams 3⁄4 (19.0) 3,000 grams 3⁄4 (19.5) 2,000 grams Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: • Groups are defined in the test method and will vary based on product type as well as the presence of any given group • For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified,	•	0	aggregate using the TM71 table below:		
Inches (mm)+4 material2 (50)10,000 grams $1/2$ (37.5)9,000 grams $1/2$ (37.5)9,000 grams $1/2$ (37.5)2,000 grams $3/4$ (19.0)3,000 grams $3/4$ (19.0)3,000 grams $3/4$ (19.2)2,000 grams $3/4$ (19.2)1,000 grams $3/4$ (19.2)2,000 grams $3/4$ (19.2)1,000 grams $3/4$ (19.2)2,000 grams <td></td> <th></th> <td></td> <td></td> <td></td>					
2 (50) 10,000 grams 11/2 (37.5) 9,000 grams 1 (25.0) 5,000 grams 3/4 (19.0) 3,000 grams 3/4 (19.0) 3,000 grams 3/4 (19.0) 1,000 grams gr					
$1\frac{1}{2}$ (37.5) 9,000 grams 1 (25.0) 5,000 grams $\frac{3}{4}$ (19.0) 3,000 grams $\frac{1}{2}$ (21.5) 2,000 grams $\frac{3}{6}$ (9.5) 1,000 grams Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material	Inches (mm)	+4 material			
1 (25.0) 5,000 grams $\frac{3}{4}$ (19.0) 3,000 grams $\frac{1}{2}$ (12.5) 2,000 grams $\frac{3}{8}$ (9.5) 1,000 grams $\frac{3}{8}$ (9.5) 1,000 grams Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. 5. Record the weight of the plus #4 material as the Original Mass 6. 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram 7. NOTES: Groups are defined in the test method and will vary based on product type as well as the presence of any given group For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = $\frac{C}{W} \times 100$<!--</td--><td>· · ·</td><th>10,000 grams</th><td></td><td></td><td></td>	· · ·	10,000 grams			
$\frac{34}{4}$ (19.0) $3,000 \text{ grams}$ $\frac{12}{2}$ (12.5) $2,000 \text{ grams}$ $\frac{34}{2}$ (9.5) $1,000 \text{ grams}$ Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material	· · · · ·	9,000 grams			
V_2 (12.5) 2,000 grams $\frac{3}{6}$ (9.5) 1,000 grams Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material	1 (25.0)	5,000 grams			
$\frac{3}{4}$ (9.5) 1,000 grams Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. 5. Record the weight of the plus #4 material as the Original Mass 6. 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 6. 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram 9. NOTES: \diamond Groups are defined in the test method and will vary based on product type as well as the presence of any given group \diamond For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = $\frac{C}{W} \times 100$ P Where: P P = Percentage of each deleterious component C P P = Actual weight (mass) of deleterious for each group For each group For each group	³ ⁄4 (19.0)	3,000 grams			
Maximum size is defined as the smallest sieve through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert Calculate the percentage of each group identified, report to nearest 0.1% for each category P =	1⁄2 (12.5)	2,000 grams			
through which 100% of the material will pass. 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = $\frac{C}{W} \times 100$ Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	³⁄8 (9.5)	1,000 grams			
 3. Sieve the reduced sample over a #4 sieve and discard the passing material 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 	Maximum size is	defined as the smallest sieve			
 4. Reweigh the +4 material to see if the sample meets the minimum size needed from the table. 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P =	through which 10	00% of the material will pass.			
 5. Record the weight of the plus #4 material as the Original Mass 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 					
 6. Set-up a workstation with a good light, a pan or spray bottle of water and several sorting pans 7. Obtain a handful, briefly wet a few particles and visually examine each particle	4. Reweigh the +4 m	aterial to see if the sample meets	the minimum size needed from the table.		
pans					
 7. Obtain a handful, briefly wet a few particles and visually examine each particle (Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 	6. Set-up a workstation	on with a good light, a pan or spra	ay bottle of water and several sorting		
(Do not soak the particles in water) 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ◆ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = $\frac{C}{W} x \ 100$ Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	pans				
 8. Examine each piece and separate the deleterious particles into specific groups according to specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ◆ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 	7. Obtain a handful, k	5	5		
 specifications: (OFM, Hard Chert, Soft chert, Shale, etc.) 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ◆ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 					
 9. Record the weight of each group of deleterious found in the sample to the nearest whole gram NOTES: ◆ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 					
gram NOTES: \diamond Groups are defined in the test method and will vary based on product type as well as the presence of any given group \diamond For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert10. Calculate the percentage of each group identified, report to nearest 0.1% for each category $P = \frac{C}{W} \times 100$ Where: $P = Percentage of each deleterious componentC = Actual weight (mass) of deleterious for each group$					
 NOTES: ◆ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 	9. Record the weight	of each group of deleterious found	d in the sample to the nearest whole		
 ♦ Groups are defined in the test method and will vary based on product type as well as the presence of any given group ♦ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 	gram				
 presence of any given group ◆ For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 					
 For 1002 material, keep soft chert separate as it will be included in both deleterious and hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category P = C/W x 100 Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group 			ary based on product type as well as the		
hard chert 10. Calculate the percentage of each group identified, report to nearest 0.1% for each category $P = \frac{C}{W} \times 100$ Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	•				
$P = \frac{C}{W} \times 100$ Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	hard chert	· · ·			
W Where: P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	10. Calculate the perce	centage of each group identified, r	eport to nearest 0.1% for each category		
P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	$P = \frac{C}{W} x \ 100$				
P = Percentage of each deleterious component C = Actual weight (mass) of deleterious for each group	Where:				
C = Actual weight (mass) of deleterious for each group		h deleterious component			
W = Weight (mass) of test sample for the portion retained on the #4 sieve	U v	, 0 1	ed on the #4 sieve		

ASTM D 4791: Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate **PROFICIENCY CHECKLIST**

Revised on 12/06/2019

Applicant: _____

Sample	e Preparation	Trial #	1	2
1. Sam	ple in accordance with AASHTO R90			
2. Dete	ermine the Nominal Maximum size of th	ne aggregate sample		
	uce the sample using AASHTO R76 to t			
	Nominal Maximum Size	Minimum Mass		
	in. (mm)	lb. (g,)		
	<u>¾ (9.5)</u>	2 (1000)		
	1⁄2 (12.5)	4 (2000)		
	3⁄4 (19.0)	11 (5000)		
	1 (25.0)	22 (10,000)		
	<u>1 ½ (37.5)</u>	33 (15,000)		
	2 (50)	44 (20,000)		
	ermine to test either by Count or Mass			
	Mass, sample oven-dried to constant m			
	Count, sample is tested in an as is con			
	e analysis completed according to AAS	HTO T27, record the mass retained of		
	action in column A of the report			
7. Obta	ained the fractions needed to test per (Count or Mass:		
		each fraction from the #4 or 3/4" sieve		
and abo	ove as required by specification, with a	minimum of 10% retained will be		
reduced	to approximately 100 particles			
DuMa	• Use the meterial retained on the #	A or 2/4" cieve and above as required by		
		4 or 3/4" sieve and above as required by		
	EPG specifications 1002, 1005, etc.	d Dantiala Taat		
	ure: Method B - Flat and Elongate			
I. Sort	each particle in each size fraction into	•		
	(1) Flat and elongated OR (2)			
	ortional caliper device positioned at th			
	each particle in the caliper by setting	the larger opening to the particle		
length				
		te side of the caliper for thickness, if it		
	ough the smaller measure, the particle			
	gh the amount of F&E of each fraction	and record each to the nearest whole		
number	on the report			
Calcula	ations			
Percen	tage of flat and elongated particles cal	culated to nearest 1% for		
	n sieve size as required			

Examiner: _____Date: _____Date: ______Date: _____Date: ______Date: ______Date: ______Date: ______Date: ______Date: _____Date: _____Date: _____Date: ______Date: ______Date: ______Date: ______Date: _______Date: ______Date: _____Date: _____Date: _____Date: _____Date: ______Date: _____Date: _____Date: ______Date: _____Date: _____Date: _____Date: _____Date: ______Date: _____Date: ______Date: ______Date: ______Date: ______Date: ______Date: ______Date: _____Date: ______Date: ______Date: _____Date: ______Date: ________Date: _______Date: ______Date: ______Date: _______Date

AASHTO T 85: Specific Gravity and Absorption

Of

Coarse Aggregate

PROFICIENCY CHECKLIST

Revised on: 09/21/2021

Applicant: _____

Procedure Trial#	¢ 1	2
1. Sample obtained by ASHTO R90, and Reduced per AASHTO R76		
2. Screened on No. 4 sieve (4.75mm) or No. 8 (2.36mm) sieve		
3. Sample mass as follows: $\frac{1}{2}$ in. or less – 2 kg; $\frac{3}{4}$ in. – 3 kg; 1 in. – 4 kg;		
1 ½ in. – 5kg		
4. Washed to clean surfaces of particles		
5. Dried to constant mass at 230 \pm 9°F (110 \pm 5°C) and cooled to room		
temperature for 1 to 3 hours (for up to 1 1/2 in. nominal maximum size,		
longer for larger sizes) According to AASHTO T255.		
6. Covered with water for 15 to 19 hours		
7. Prepared bath, overflowed the water for level, and adjusted temperature to)	
$73.4 \pm 3^{\circ}F (23.0 \pm 1.7^{\circ}C)$		
8. Rolled in cloth to remove visible films of water		
9. Larger particles wiped individually		
10. Evaporation avoided		
11. Weigh the SSD sample and		
Record all masses determined to the nearest 1g or 0.1% of sample mass.		
12. Sample immediately placed in the wire basket		
13. Entrapped air removed before weighing by shaking the wire basket while		
immersed.		
14. Mass determined in water at 73.4 \pm 3°F (23.0 \pm 1.7°C)		
15. Dried to constant mass at 230 \pm 9°F (110 \pm 5°C) and cooled to room		
temperature for 1 to 3 hours [or until aggregate has cooled to comfortable		
handling temperature, approximately 122°F (50°C)		
16. Weigh the dry sample and record the mass		
17. Calculated the Bulk Specific Gravity and Absorption.		
Report:		
Specific Gravity for Asphalt (1002) to the nearest: 0.001		
Concrete (1005) and M80 to the nearest: 0.01		
And Absorption to the nearest: 0.1%		

PASS	PASS
PASS	PAS

FAIL FAIL

Examiner: _____Date: _____

AASHTO T 84: Specific Gravity for Fine Aggregate

PROFICIENCY CHECKLIST

(rev 12/16/2019)

Applicant: _____

. Trial #	1	2
Sample Preparation		
1. Obtain a representative sample. (AASHTO R90)		
2 Mix and Reduce. (AASHTO R76)		
3. Sieved over #4 sieve , keep minus 4 material (approximately 1,000 g)		
4. Dried to constant mass at 230 \pm 9°F (110 \pm 5°C)		
Note: Oven drying not necessary if naturally moist condition is desired		
Note: See Provisional Tests 1-4 for materials that do not readily slump found in appendix		
5. Sample is covered with water, allowed to stand 15-19 hours		
6. Pycnometer calibrated at 73.4 \pm 3°F record this weight to nearest 0.1g		
(This is " B " in the equation)		
7. After 15-19hrs, decant the excess water off the sample without loss of fines		
8. Calibrated pycnometer partially filled with water, set by the scale		
STEPS 9-15 is the CONE TEST		
9. Sample spread on a flat nonabsorbent surface		
10. Sample uniformly dried by a current of warm air		
11. Mold placed on flat nonabsorbent surface and filled to overflowing		
12 . Tamped 25 times with 5 mm drop, and allowed to fall freely		
13. Sample removed from around base and mold lifted vertically		
14. Sample should retain the shape of the cone on first trial.		
If slumps on the first trial, water added, sample covered and		
allowed to stand for 30minthen back to cone testing.		
15. Drying continued, and slump test repeated at frequent intervals until		
sample slumps slightly = SSD Condition		
16. Immediately weighed $500 \pm 10g$ of the SSD sample to the partially filled pycnometer.	T	
(Report the mass to nearest 0.01 this is " \mathbf{S} " in the equation)		
17. Pycnometer filled to 90% of total capacity and agitated to eliminate air bubbles.	1	
Note: Paper towel or isopropyl alcohol may be used to disperse foam on the water surface		
18. Pycnometer filled with water to the calibrated capacity line.		
19. When temperature of contents reach 73.4 \pm 3°F (23.0 \pm 1.7°C), towel dried the		
outside of the pycnometer and determined the total mass of the pycnometer,		
sample, and water to the nearest 0.1g (Report this as "C" in the equation)		
20. Sample removed from the pycnometer, placed in a pre-weighed pan and dried to		
constant mass at 230 \pm 9°F (110 \pm 5°C)		
21. Sample cooled in air at room temperature for 1.0 \pm 0.5 hr. and dry mass		
determined to the nearest 0.1g, this is "A" in the equation.		
22. Calculations completed as needed:		
Report:		
Specific Gravity for Asphalt (1002) to the nearest: 0.001		
Specific Gravity for Concrete (1005) and M6 to the nearest: 0.01		
And Absorptions Report to the nearest: 0.1%		
]

PASS PASS