Conceptual Interchange Study – US 54 at Missouri Route 5

Camdenton, Missouri CD0053

September 16, 2025

prepared for:
MoDOT Center District
Ryan Libbert, P.E.
Project Manager
Missouri Department of Transportation
1511 Missouri Boulevard
Jefferson City, MO 65109

prepared by:
Nirav Patel, P.E., PTOE
Shawn Leight, P.E., PTOE, PTP
CBB Transportation Engineers + Planners
12400 Olive Boulevard Suite 430
St. Louis, MO 63141

cbbtraffic.com

Table of Contents

Executive Summary	1
INTRODUCTION	5
Existing Conditions	
Study Area	5
Existing Roadway Conditions	6
Existing Traffic Volumes	13
Existing Travel Time Data	15
Existing Queue Observations	
November AM Peak Observations	
November PM Peak Observations	
Existing Safety Conditions	
Historical Crash Data – US 54 & MO 5	
Freeway Corridor – MO 5	
Freeway Ramps – MO 5 To/From US 54	
Arterial Corridor – US 54	
US 54 – Intersection Crashes	30
US 54 Segments Crashes	43
Safety Conditions Summary	46
Traffic Forecasts	47
US 54	47
MO 5	47
Forecasted No-Build Traffic Volumes	47
ALTERNATIVES DEVELOPMENT	52
The Boulevard Concept	52
Phase 1	54
Roadway Geometrics	54
Right-of-Way Impacts	56
Opinion of Cost	56
Phase 2	58
Roadway Geometrics	58
Right-of-Way Impacts	60
Opinion of Cost	60
Forecasted Build Traffic Volumes	62
Traffic Operations	67
Study Procedures	67
VISSIM Calibration/Validation	
Calibration Criteria	70
Calibration Process	70
Travel Time Comparison	
Traffic Flow Results	
Visual Inspection of the Model Operations	
Analysis Scenarios	
Network Performance Measures Comparison	
2024 No-Build Operations	
,	

Conceptual Interchange Study US 54 at Missouri Route 5 Camdenton, Missouri September 16, 2025 Page II of VIII

2024 Build Operations (Phase 1)	97
2030 No-Build Operations	
2030 Build Operations (Phase 1)	111
2050 No-Build Operations	
2050 Build (Phase 1) Operations	
2050 Build Operations (Phase 2)	
SAFETY ANALYSIS	142
Predictive Safety Analysis	142
No-Build Condition	
Build Condition	144
SLIMMARY OF FINDINGS	148

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page III of VIII

List of Figures

Figure 1: VISSIM Screenshot of US 54 and MO 5 Study Area	6
Figure 2: Intersection of US 54 and Cecil Street	8
Figure 3: Intersection of US 54 and Laker Pride Road/Jack Crowell Road	9
Figure 4: Intersection of US 54 and Northbound MO 5 Ramps	
Figure 5: Intersection of US 54 and Southbound MO 5 Ramps	10
Figure 6: Intersection of US 54 and Business Route 5	
Figure 7: Eastbound US 54 Approach Queue from Laker Pride Road reaching Northbound MO 5 Ra	
	15
Figure 8: Eastbound US 54 Approach Queue from Northbound MO 5 Ramps reaching Southbound N	MO 5
Ramps	
Figure 9: Eastbound US 54 Approach Queue at Business Route 5	16
Figure 10: Southbound Business Route 5 Approach Queue from US 54 reaching Court Circle NW	
Figure 11: Northbound Laker Pride Road Approach Queue from US 54 reaching Elm Tree Lane	17
Figure 12: Westbound US 54 Approach Queue from Laker Pride Road reaching Cecil Street	18
Figure 13: Westbound US 54 Approach Queue from Northbound MO 5 Ramps reaching Laker Pride I	Road
	19
Figure 14: Westbound US 54 Approach Queue at Business Route 5	19
Figure 15: Northbound Business Route 5 Approach Queue from US 54 reaching Camden Avenue	20
Figure 16: Northbound Laker Pride Road Approach Queue from US 54 reaching Elm Tree Lane	20
Figure 17: Aerial View of Study Area	21
Figure 18: US 54 & MO 5 Crash Data by Year (2019 - 2023)	
Figure 19: MO 5 Crash Data by Year & Severity (2019 - 2023)	23
Figure 20: Heat Map of Crashes along MO 5 in Study Area	
Figure 21: MO 5 Ramps Crash Data by Year & Severity (2019 - 2023)	26
Figure 22: US 54 Corridor Crash Data by Year & Severity (2019 - 2023)	27
Figure 23: US 54 Corridor Crash Data by Crash Type (2019 - 2023)	28
Figure 24: Heat Map of Crashes along US 54 in Study Area	30
Figure 25: US 54 Corridor – Crash Data by Intersection & Severity (2019 - 2023)	31
Figure 26: Historical and Projected US 54 Traffic Volumes (Between Cecil Street and Route V)	48
Figure 27: Historical and Projected MO 5 Traffic Volumes (Between US 54 and MO 7)	49
Figure 28: Eastbound US 54 approach queue at Laker Pride Road – 2024 No-Build November AM	73
Figure 29: Eastbound US 54 approach queue at northbound MO 5 $-$ 2024 No-Build November AM \dots	73
Figure 30: Northbound Laker Pride Road approach queue at US 54 – 2024 No-Build November AM	74
Figure 31: Westbound US 54 approach queue at Laker Pride Road – 2024 No-Build November PM	75
Figure 32: Westbound US 54 approach queue at northbound MO 5 $-$ 2024 No-Build November PM .	76
Figure 33: Northbound Laker Pride Road approach queue at US $54-2024$ No-Build November PM \dots	76
Figure 34: Westbound US 54 approach queue at Business Route 5 – 2024 No-Build November PM	77
Figure 35: Northbound Business Route 5 approach queue at US 54 – 2024 No-Build November PM	77
Figure 36: Network-Wide Performance Results – 2024 Scenarios (November AM Peak Hour)	81
Figure 37: Network-Wide Performance Results – 2024 Scenarios (November PM Peak Hour)	82
Figure 38: Network-Wide Performance Results – 2024 Scenarios (August PM Peak Hour)	83
Figure 39: Network-Wide Performance Results – 2030 Scenarios (November AM Peak Hour)	84
Figure 40: Network-Wide Performance Results – 2030 Scenarios (November PM Peak Hour)	85
Figure 41: Network-Wide Performance Results – 2030 Scenarios (August PM Peak Hour)	86

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page IV of VIII

Figure 42: Network-Wide Performance Results – 2050 Scenarios (November AM Peak Hour)	87
Figure 43: Network-Wide Performance Results – 2050 Scenarios (November PM Peak Hour)	88
Figure 44: Network-Wide Performance Results – 2050 Scenarios (August PM Peak Hour)	89
Figure 45: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 No-Build N	November
PM	92
Figure 46: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 No-Build A	August PM
Figure 47: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 Build	
November PM	
Figure 48: Maximum Westbound US 54 Approach Queue at Laker Pride Road $-$ 2024 Build	
August PM	
Figure 49: Maximum Eastbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build N	
AM	
Figure 50: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build N	
PM	
Figure 51: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build A	
Figure 52: Maximum Eastbound US 54 Approach Queue at Laker Pride Road – 2030 Build	107 (Dhaca 1)
November AM	-
Figure 53: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 Build	
November PM	
Figure 54: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 Build	
August PM	-
Figure 55: Maximum US 54 Approach Queues – 2050 No-Build November AM	
Figure 56: Maximum US 54 Approach Queues – 2050 No-Build November PM	
Figure 57: Maximum US 54 Approach Queues – 2050 No-Build August PM	
Figure 58: Maximum US 54 Approach Queues – 2050 Build (Phase 1) November PM	
Figure 59: Maximum US 54 Approach Queues – 2050 Build (Phase 1) August PM	
Figure 60: Maximum US 54 Approach Queues – 2050 Build (Phase 2) November AM	
Figure 61: Maximum US 54 Approach Queues – 2050 Build (Phase 2) November PM	
Figure 62: Maximum US 54 Approach Queues – 2050 Build (Phase 2) August PM	
Figure 63: ISATe and HSM Study Area – No-build Condition	
Figure 64: ISATe and HSM Study Area – Build Condition	144

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page V of VIII

List of Exhibits

Exhibit 1: Study Area Posted Speed Limits	12
Exhibit 2: 2024 No-Build Traffic Volumes	14
Exhibit 3: 2030 No-Build Traffic Volumes	50
Exhibit 4: 2050 No-Build Traffic Volumes	51
Exhibit 5: The Boulevard Concept – Phase 1	55
Exhibit 6: Right-of-Way Impacts for The Boulevard Concept – Phase 1	57
Exhibit 7: The Boulevard Concept – Phase 2	59
Exhibit 8: Right-of-Way Impacts for The Boulevard Concept – Phase 2	61
Exhibit 9: 2024 Build (Phase 1) Traffic Volumes	63
Exhibit 10: 2030 Build (Phase 1) Traffic Volumes	64
Exhibit 11: 2050 Build (Phase 1) Traffic Volumes	65
Exhibit 12: 2050 Build (Phase 2) Traffic Volumes	66

Conceptual Interchange Study US 54 at Missouri Route 5 Camdenton, Missouri September 16, 2025 Page VI of VIII

List of Tables

Table 1: Freeway Mainline MO 5 – Crash Data by Crash Type & Severity (2019 - 2023)	24
Table 2: MO 5 Ramps – Crash Data by Crash Type & Severity (2019 - 2023)	26
Table 3: Arterial Crashes – US 54 Crash Data by Crash Type & Severity (2019 - 2023)	29
Table 4: Intersection Crash Data – US 54 at Cecil Street (2019 - 2023)	32
Table 5: Intersection Crash Data – US 54 at MO 5 Southbound Ramps (2019 - 2023)	33
Table 6: Intersection Crash Data – US 54 at Business Route 5 (2019 - 2023)	34
Table 7: Intersection Crash Data – US 54 at MO 5 Northbound Ramps (2019 - 2023)	35
Table 8: Intersection Crash Data – US 54 at Jack Crowell /Laker Pride Road (2019 - 2023)	
Table 9: Intersection Crash Data – US 54 at Illinois Street/Osage Avenue (2019 - 2023)	37
Table 10: Intersection Crash Data – US 54 at Skid Row Boulevard (2019 - 2023)	37
Table 11: Intersection Crash Data – US 54 at Turner Parkway (2019 - 2023)	38
Table 12: Intersection Crash Data – US 54 at Third Street (2019 - 2023)	
Table 13: Intersection Crash Data – US 54 at Court Circle (2019 - 2023)	40
Table 14: Intersection Crash Data – US 54 at Grant Avenue (2019 - 2023)	
Table 15: Intersection Crash Data – US 54 at First Street/Second Street (2019 - 2023)	41
Table 16: Intersection Crash Data – US 54 at Camden Court (2019 - 2023)	42
Table 17: Intersection Crash Data – US 54 at Fourth Street (2019 - 2023)	42
Table 18: Intersection Crash Data – US 54 at Iowa Street (2019 - 2023)	43
Table 19: Segment Crash Data for Entire Roadway by Severity (2019 - 2023)	43
Table 20: Segment Crash Data by Roadway Segments & Severity (2019 - 2023)	44
Table 21: Level of Service Thresholds	68
Table 22: Freeway Level of Service Thresholds	
Table 23: MoDOT EPG Calibration Targets for Link Flows and GEH Statistics	70
Table 24: Field and 2024 No-Build VISSIM Travel Time Comparison	71
Table 25: Field and 2024 No-Build VISSIM Traffic Flow Comparison	
Table 26: Intersection Operating Conditions – 2024 No-Build (SYNCHRO)	94
Table 27: Intersection Operating Conditions – 2024 No-Build (VISSIM)	
Table 28: MO 5 Capacity Analysis – 2024 No-Build (VISSIM)	
Table 29: Intersection Operating Conditions – 2024 Build (Phase 1) (SYNCHRO)	
Table 30: Intersection Operating Conditions – 2024 Build (Phase 1) (VISSIM)	
Table 31: MO 5 Capacity Analysis – 2024 Build (Phase 1) (VISSIM)	
Table 32: Intersection Operating Conditions – 2030 No-Build (SYNCHRO)	
Table 33: Intersection Operating Conditions – 2030 No-Build (VISSIM)	109
Table 34: MO 5 Capacity Analysis – 2030 No-Build (VISSIM)	110
Table 35: Intersection Operating Conditions – 2030 Build (Phase 1) (SYNCHRO)	
Table 36: Intersection Operating Conditions – 2030 Build (Phase 1) (VISSIM)	
Table 37: MO 5 Capacity Analysis – 2030 Build (Phase 1) (VISSIM)	
Table 38: Intersection Operating Conditions – 2050 No-Build (SYNCHRO)	
Table 39: Intersection Operating Conditions – 2050 No-Build (VISSIM)	
Table 40: MO 5 Capacity Analysis – 2050 No-Build (VISSIM)	
Table 41: Intersection Operating Conditions – 2050 Build (Phase 1) (SYNCHRO 10)	
Table 42: Intersection Operating Conditions – 2050 Build (Phase 1) (VISSIM)	
Table 43: MO 5 Capacity Analysis – 2050 Build (Phase 1) (VISSIM)	
Table 44: Intersection Operating Conditions – 2050 Build (Phase 2) (SYNCHRO)	139

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page VII of VIII

Table 45: Intersection Operating Conditions – 2050 Build (Phase 2) (VISSIM)	140
Table 46: MO 5 Capacity Analysis – 2050 Build (Phase 2) (VISSIM)	141
Table 47: Safety Results – Change in Predicted Crashes in Overall Study Area Over 20-Yea	•
Table 48: Safety Results – Change in Predicted Crashes in Modified Study Area Over 2 HSM)	0-Years (ISATe 8

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page VIII of VIII

Appendices

Appendix A – Travel Time Data

Appendix B - Presentation from March 13, 2025, Meeting

Appendix C – Presentation from March 28, 2025, Meeting

Appendix D – Opinion of Cost for Phase 1

Appendix E – MoDOT Right-of-Way Cost Estimate

Appendix F – Opinion of Cost for Phase 2

Appendix G – Safety Analysis Printouts

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 1 of 152

EXECUTIVE SUMMARY

US Route 54 (US 54) is a key mobility corridor for regional and intercity traffic. Nationally, US 54 runs 1,200 miles from Griggsville, Illinois to El Paso, Texas. In Missouri, US 54 connects the Lake of the Ozarks to communities such as Louisiana (near the Champ Clark Mississippi River Bridge at the Illinois border), Bowling Green (at US 61), Mexico, Kingdom City (at I-70), Jefferson City (crossing the Senator Roy Blunt Missouri River Bridge and intersecting US 50 and US 63), and Nevada (at I-49 near the Kansas border). Within the study area, US 54 provides access to/from Missouri Route 5 (MO 5), recreational and entertainment opportunities associated with the Lake of the Ozarks, commercial and residential properties, and schools such as Camdenton High School, Oak Ridge Intermediate School, and Hawthorn Elementary School.

The US 54 corridor has been upgraded to an expressway through the Lake of the Ozarks area over the past 15 years, resulting in the removal of all the traffic signals between Kingdom City and Camdenton. As a result, the traffic signals at the intersections of US 54 with Laker Pride and Cecil Street are the only traffic signals remaining on US 54 between Kingdom City and MO 5. These intersections create capacity bottlenecks along this section of US 54, resulting in congestion and associated roadway crashes.

This study was undertaken to identify and examine alternatives to improve the short and long-term safety and traffic operations of the US 54/MO 5 interchange and of US 54 in Camdenton between the south end of the Lake of the Ozarks US 54 Expressway and the MO 5 interchange. As such, the study examined US 54 between Cecil Street and Business Route 5 as well as MO 5 between Business Route 5 and Missouri Route 7.

The study's preferred alternative is a "Boulevard" configuration, that:

- Widens US 54 to six (6) lanes between Cecil Street and the MO 5 interchange.
- Installs a raised center median in the widened section to control left turns.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a new traffic signal at a commercial driveway in the vicinity of Gerbes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Road traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

The Boulevard concept recognizes the commercial nature of his section of US 54 and provides an opportunity to extend Camdenton's US 54 urban character east of MO 5 to Cecil Street through elements such as lower speeds, signalized intersections, street lighting, and gateway signage. The posted speed limit for this section of US 54 under the Boulevard concept is recommended to be 35 miles per hour.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **2** of **152**

This project can be built in two phases. Phase 1 widens US 54 between the northbound MO 5 ramps and Laker Pride/Jack Crowell Road. Phase 2 relocates Laker Pride Road, installs the U-turn movements, and widens US 54 between Jack Crowell Road and Cecil Street.

Phase 1 includes:

- The construction of a third eastbound lane on US 54 from the northbound MO 5 ramps to Laker Pride Road where it terminates as a right-turn lane at Laker Pride Road.
- Building a third westbound lane on US 54 lane from the eastern approach to Laker Pride Road, terminating as a right-turn at the northbound MO 5 ramps.
- Installs a raised center median on US 54 between the northbound MO 5 ramps to Laker Pride Road/Jack Crowell Road.
- Restriction of all driveways on US 54 between MO 5 and Laker Pride/Jack Crowell Road to right-in right-out access.
 - Businesses on the north side of US 54 have left turn access to/from US 54 via existing connections to Jack Crowell Road.
 - Businesses on the south side of US 54 have left-turn access to/from US 54 via existing and new driveway connections to Laker Pride Road.

Based on property lines obtained from the Camden County GIS website, the construction of Phase 1 will require the acquisition of approximately 0.37 acres, impacting six parcels. The actual existing right-of-way needs will be more precisely determined in the design phase. The construction estimate (rounded) for Phase 1 is \$4,500,000.

Phase 2 extends the widening of US 54 to six lanes from Laker Pride/Jack Crowell Road to Cecil Street. Phase 2 also:

- Installs a raised center median in the widened section to control left turns. This results in the restriction of all driveways on US 54 between Jack Crowell Road and Cecil Street to right-in right-out access.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a
 new traffic signal at a commercial driveway in the vicinity of Gerbes. This intersection
 will include an eastbound US 54 right-turn lane and northbound dual left-turn lanes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Street traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **3** of **152**

Based on property lines obtained from the Camden County GIS website, the construction of Phase 2 will require the acquisition of approximately 3.33 acres, impacting twenty-four parcels. The actual existing right-of-way needs will be more precisely determined in the design phase. The construction estimate (rounded) for Phase 2 is \$11,000,000.

The study team conducted an analysis of historical crash data and predicted future safety performance. Crashes in the segments between the northbound MO 5 Ramps and Cecil Street are comprised of approximately 39% rear ends and approximately 28% left-turn related crashes. Should improvements be made to minimize or eliminate left-turns from driveways and to reduce congestion and queuing, then significant safety improvements could be expected along these segments, especially when considering the predominate types of crashes in the historical crash data.

The proposed improvements aim to reduce crashes related to left-turning vehicles and rear ends through access management practices. Implementing a median barrier on US 54 instead of a two-way left-turn lane eliminates left-turning conflict points at driveways. The additional lane on US 54 in both directions serves to separate turning vehicles from through traffic to improve traffic flow and reduce the potential for rear end collisions.

Based on the predictive safety analysis, the Phase 2 Build condition is predicted to have approximately 17.2% fewer crashes over the 20-year period when compared to the No-Build Condition within the area of improvement. Also, the US 54 segments between the signalized intersections of the northbound MO 5 ramps and Cecil Street is predicted to have approximately 57.3% reduction in crashes due to the proposed divided highway (median barrier) provided in the build scenario, which eliminates left-turn conflicts in the segments and provides a significant safety improvement.

The study team completed traffic modeling with the VISSIM traffic analysis software to determine capacity needs and estimate how much the proposed improvements would lower delay. The team modeled several scenario years, including 2024 (completion of base traffic counts), 2030 (estimated Phase 1 construction year), and 2050 (design year). For each of these years the study team evaluated AM and PM peak periods for November conditions (when school is in session) as well as the August PM peak period for summer traffic.

Traffic modeling shows that Phase 1 improvements will provide an acceptable level of service (LOS D or better) during the November AM and PM peak periods as well as August PM peak period until sometime around 2035. The Phase 1 improvements, by themselves, will reach their capacity sometime between 2035 and 2050 due to capacity constraints in the existing four-lane section between the Lake Pride/Jack Crowe Road and Cecil Street traffic signals. Phase 2 improvements provide adequate capacity for an acceptable level of service (LOS D or better) through 2050.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 4 of 152

In addition to intersection and freeway operations, VISSIM provides network-wide performance measures that measure the effectiveness of alternatives. VISSIM modeling shows the following network delay reductions for 2024 and 2030 build conditions from 2024 and 2030 no-build conditions, respectively.

Peak Periods	2024 Traffic Volumes	2030 Traffic Volumes
November AM Peak	39% delay reduction	54% delay reduction
November PM Peak	57% delay reduction	69% delay reduction
August PM Peak	66% delay reduction	64% delay reduction

These results show considerable improvement in the overall roadway network performance for Phase 1 for short-term growth.

VISSIM modeling shows the following network delay reductions for 2050 traffic volumes.

Peak Periods	Phase 1 with 2050 Traffic Volumes	Phase 2 with 2050 Traffic Volumes
November AM Peak	66% delay reduction	78% delay reduction
November PM Peak	38% delay reduction	70% delay reduction
August PM Peak	81% delay reduction	83% delay reduction

2050 modeling results show that both Phases 1 and 2 provide an improvement in all network-wide metrics. However, the VISSIM models also show that with Phase 1, by 2050 approximately 572 vehicles are unable to enter the road network during the November PM peak period. This "unmet demand" shows that there is not adequate capacity for all the vehicles seeking to travel on US 54 during that time, resulting in roadway congestion. The August PM peak period has an unmet demand of 1114 vehicles. The modeling data also shows that there is an additional travel delay reduction with Phase 2 improvements. The results of this analysis show that Phase 1 improvements will address existing congestion, but that Phase 2 construction will be needed to provide the capacity required for projected traffic growth.

The proposed improvements improve safety and traffic operations by providing needed capacity along US 54 between MO 5 and Cecil Street. These improvements can be constructed in 2 phases. Widening US 54 in this section and widening to 6 lanes recognizes the commercial nature of his section of US 54 and provides an opportunity to extend Camdenton's US 54 urban character east of MO 5 to Cecil Street through elements such as lower speeds, signalized intersections, street lighting, and gateway signage.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 5 of 152

INTRODUCTION

US Route 54 (US 54) is a key mobility corridor for regional and intercity traffic. Nationally, US 54 runs 1,200 miles from Griggsville, Illinois to El Paso, Texas. In Missouri, US 54 connects the Lake of the Ozarks to communities such as Louisiana (near the Champ Clark Mississippi River Bridge at the Illinois border), Bowling Green (at US 61), Mexico, Kingdom City (at I-70), Jefferson City (crossing the Senator Roy Blunt Missouri River Bridge and intersecting US 50 and US 63), and Nevada (at I-49 near the Kansas border). Within the study area, US 54 provides access to/from Missouri Route 5 (MO 5), recreational and entertainment opportunities associated with the Lake of the Ozarks, commercial and residential properties, and schools such as Camdenton High School, Oak Ridge Intermediate School, and Hawthorn Elementary School.

The US 54 corridor has been upgraded to an expressway through the Lake of the Ozarks area over the past 15 years, resulting in the removal of all the traffic signals between Kingdom City and Camdenton. As a result, the traffic signals at the intersections of US 54 with Laker Pride and Cecil Street are the only traffic signals remaining on US 54 between Kingdom City and MO 5. These intersections create capacity bottlenecks along this section of US 54, resulting in congestion and associated roadway crashes.

This study was undertaken to identify and examine alternatives to improve the short and long-term safety and traffic operations of the US 54/MO 5 interchange and of US 54 in Camdenton between the south end of the Lake of the Ozarks US 54 Expressway and the MO 5 interchange.

EXISTING CONDITIONS

Study Area

The study area encompasses US 54 between Cecil Street and Business Route 5, as well as the mainline of MO 5 between Business Route 5 and Missouri Route 7. **Figure 1** is a screenshot from the VISSIM model that shows the study area in yellow.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 6 of 152

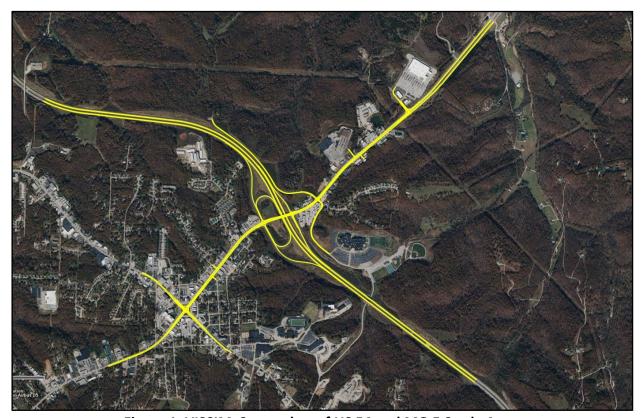


Figure 1: VISSIM Screenshot of US 54 and MO 5 Study Area

Existing Roadway Conditions

The following intersections and roadways are included in the study area:

- US 54 at Cecil Street;
- US 54 at Laker Pride Road/Jack Crowell Road;
- US 54 at Northbound and Southbound MO 5 Ramps;
- US 54 at Business Route 5; and
- Mainline MO 5 (between Business Route 5 and Missouri Route 7).

Missouri Route 5 (MO 5) is Missouri's longest state route and the only Missouri state route that crosses the entire state. MO 5 extends into Iowa north of Unionville ultimately terminating at I-35 on the south side of Des Moines. MO 5 also extends into Arkansas, ultimately terminating at I-30 in Little Rock. In Missouri, MO 5 intersects I-70 at Booneville and I-44 at Lebanon. MO 5 is a popular access route to Lake of the Ozarks from I-44. From 2007 to 2011 Improvements have been made to MO 5 between I-44 and Camdenton to a "Super 2" configuration and upgraded MO 5 to an Expressway on a new alignment through Camdenton. The Super 2 configuration includes three total lanes: one through lane in each direction with alternating passing lanes.

Conceptual Interchange Study US 54 at Missouri Route 5 Camdenton, Missouri September 16, 2025 Page **7** of **152**

MO 5 is a major north-south corridor along the west side of the Lake of the Ozarks. Within the City of Camdenton, MO 5 is a free-flow north-south principal arterial expressway that provides access to/from Business Route 5, US 54, and MO 7 via interchanges. MO 5 provides two lanes in each direction, has acceleration and deceleration lanes at the interchanges, and has a posted speed limit of 65 miles per hour (mph). Note, Exhibit 1 shows the posted speed limits within the study area.

Within the study area, US Route 54 (US 54) provides five lanes (two lanes in each direction and a center two-way left-turn lane) between Cecil Street and Business Route 5. East of Cecil Street, US 54 has a posted speed limit of 55 miles per hour (mph). Between Cecil Street and the northbound MO 5 ramps, US 54 has a posted speed limit of 45 mph. Between the northbound MO 5 ramps and Business Route 5, US 54 has a posted speed limit of 40 mph. West of Business Route 5, US 54 has a posted speed limit of 30 mph. Just west of Business Route 5, US 54 transitions to provide three lanes (one lane in each direction and a center two-way left-turn lane). A project is in place to expand this section of US 54 to provide five-lanes (two lanes in each direction and a center two-way left-turn lane), and this project is anticipated to be completed in 2026^{1} .

Generally, a sidewalk is provided along US 54 between Cecil Street and Business Route 5. The sidewalk is located along the north side of the roadway between Cecil Street and Laker Pride Drive/Jack Crowell Road. The sidewalk is located along the south side of the roadway between Laker Pride Drive/Jack Crowell Road and Business Route 5.

Within the study area, US 54 intersects Cecil Street at a signalized intersection. The eastbound US 54 approach provides two left-turn lanes and two through lanes. The westbound US 54 approach provides two through lanes and a right-turn lane. The southbound Cecil Street approach provides two left-turn lanes and a right-turn lane. The intersection of US 54 and Cecil Street is shown in Figure 2. Cecil Street is a local roadway that mainly provides access to a Walmart Supercenter. Although not posted, the speed limit by City of Camdenton ordinance is 25 mph.

¹https://www.modot.org/projects/us-route-54-highway-widening-camdencounty#:~:text=These%20improvements%20are%20projected%20to,closures%2C%20and%20some%20narrowed %20lanes.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 8 of 152

Figure 2: Intersection of US 54 and Cecil Street

US 54 intersects **Laker Pride Road/Jack Crowell Road** at a signalized intersection. The eastbound US 54 approach provides one left-turn lane, one through lane, and one shared through/right-turn lane. The westbound US 54 approach provides one left-turn lane, one through lane, and one shared through/right-turn lane. The northbound Laker Pride Road and southbound Jack Crowell Road approaches provide one left-turn and one shared through/right-turn lane. The intersection of US 54 and Laker Pride Road/Jack Crowell Road is shown in **Figure 3**. Laker Pride Road is a local roadway that primarily provides access to Camdenton High School. Although not posted, the speed limit by City of Camdenton ordinance is 25 mph for Laker Pride Road. Jack Crowell Road is a local roadway that provides access to several commercial properties. Jack Crowell Road has a posted speed limit of 45 mph.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **9** of **152**

Figure 3: Intersection of US 54 and Laker Pride Road/Jack Crowell Road

The **northbound MO 5** access to/from US 54 is provided via a signalized intersection. The eastbound US 54 approach provides a left-turn lane and two through lanes. The westbound US 54 approach provides two through lanes and one right-turn lane. The northbound MO 5 approach provides one left-turn lane and two right-turn lanes. The intersection of northbound MO 5 and US 54 is shown in **Figure 4**.

The **southbound MO 5** access to/from US 54 is provided via an unsignalized intersection. The eastbound and westbound US 54 approaches provide two through lanes and one right-turn lane. The southbound MO 5 approaches provide one right-turn lane. The intersection of southbound MO 5 and US 54 is shown in **Figure 5**.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 10 of 152

Figure 4: Intersection of US 54 and Northbound MO 5 Ramps

Figure 5: Intersection of US 54 and Southbound MO 5 Ramps

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 11 of 152

US 54 intersects **Business Route 5** at a signalized intersection. The eastbound and westbound US 54 approaches provide one left-turn lane, one through lane, and one shared through/right-turn lane. The northbound Business Route 5 approach provides one left-turn lane, one through lane, and one shared through/right-turn lane. The southbound Business Route 5 approach provides two left-turn lanes, one through lane, and one right-turn lane. The intersection of US 54 and Business Route 5 is shown in **Figure 6**. Business Route 5 is a local roadway with a posted speed limit of 30 mph.

Figure 6: Intersection of US 54 and Business Route 5

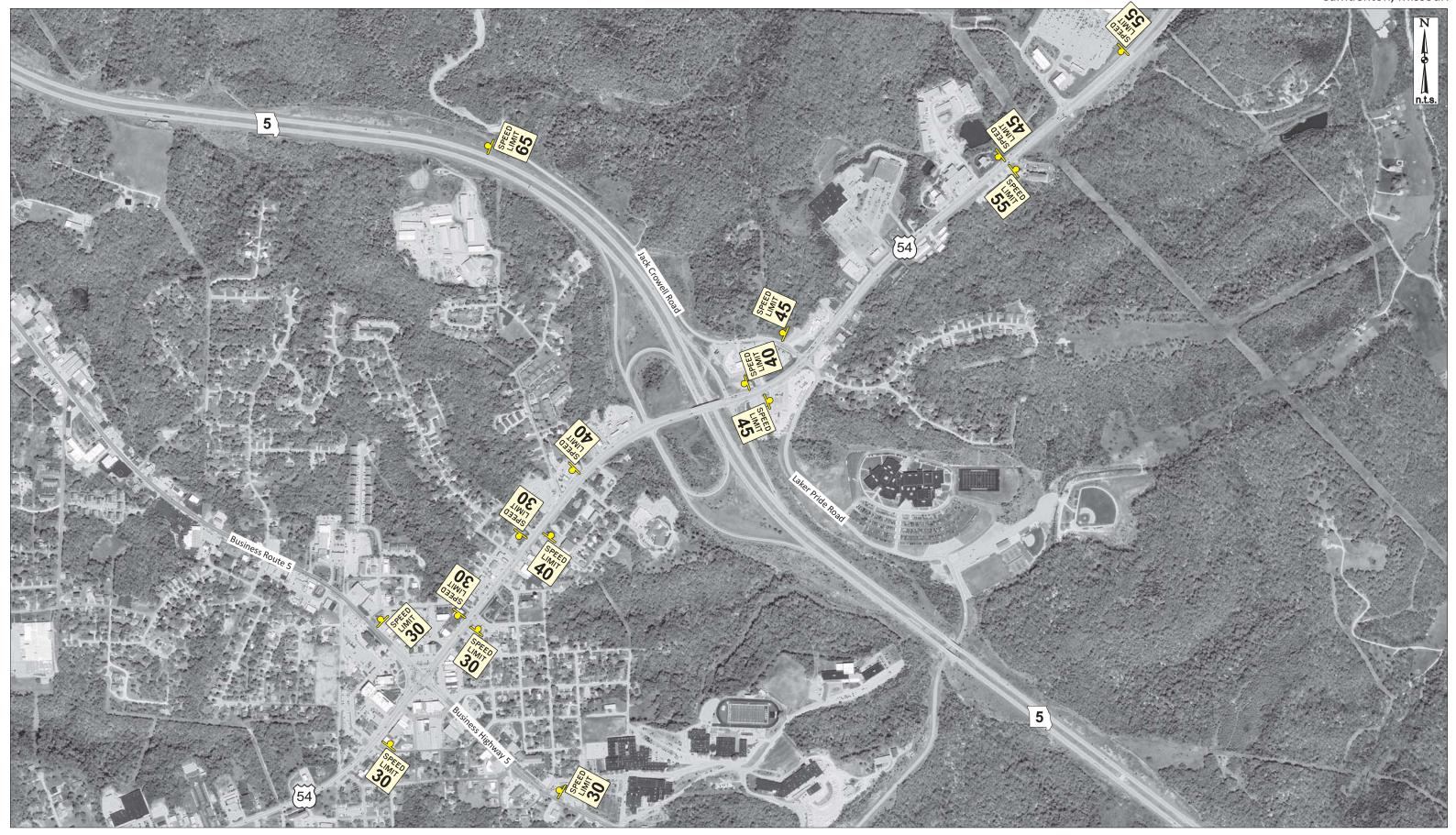


Exhibit 1: Existing Speed Limits and Sign Locations

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 13 of 152

Existing Traffic Volumes

Turning movement counts were collected by MoDOT on a typical weekday between 6:00 AM and 6:00 PM for a week at the following locations:

- US 54 at Cecil Street (August and November 2024);
- US 54 at Laker Pride Road/Jack Crowell Road (August and November 2024);
- US 54 at Northbound MO 5 Ramps (August and November 2024);
- US 54 at Southbound MO 5 Ramps (August and November 2024); and
- US 54 at Business Route 5 (August and November 2024).

Note, that CBB obtained hourly traffic counts for mainline MO 5 from MoDOT's DataZone: https://www.modot.org/modatazone/traffic.

The turning movement count data was collected both during summer peak tourist traffic to the Lake of the Ozarks (August 2024) and during a typical month with school in session (November 2024).

Based on the collected data, this study examined a November AM peak hour, a November PM peak hour, and an August PM peak hour. The November AM peak hour occurred between 7:15 and 8:15 AM, the November PM peak hour occurred between 3:15 and 4:15 PM, and the August PM peak hour occurred between 3:30 and 4:30 PM. Note that a review of the count data showed that the PM peak period traffic volumes are 15% to 19% higher during the Friday PM peak period than during the Monday – Thursday PM peak period. Thus, this study examined the higher Friday PM peak period as a worst-case scenario for both the November and August PM peak periods.

The 2024 No-Build traffic volumes are shown in **Exhibit 2**. During the November AM peak, there is a heavy flow of vehicles traveling eastbound on US 54. Moreover, there is a heavy flow of traffic from both directions of MO 5 to eastbound US 54. During both November and August PM peak hours, there is a heavy flow of vehicles traveling westbound on US 54. Furthermore, there is a heavy flow of traffic from westbound US 54 to both directions of MO 5.

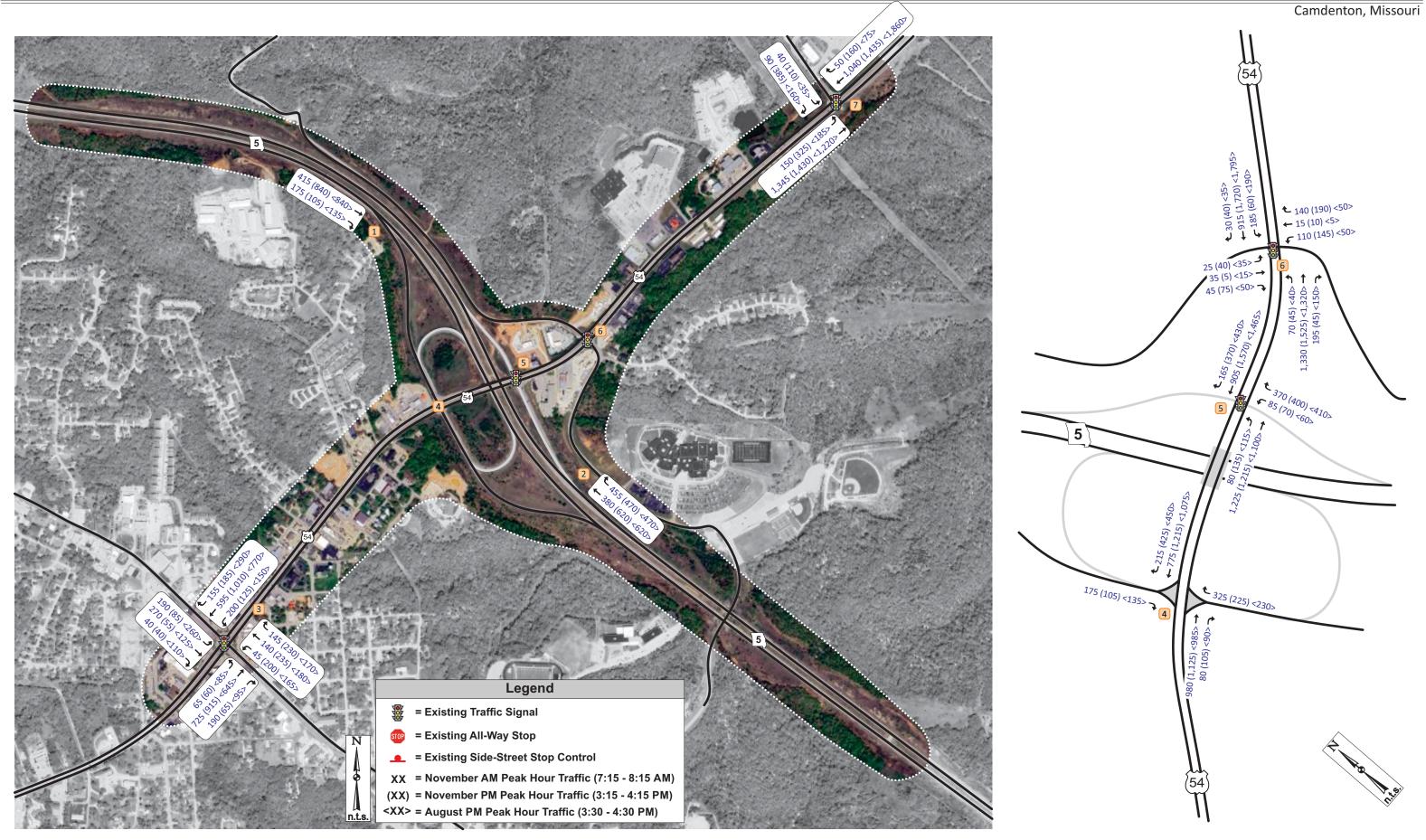


Exhibit 2: 2024 No-Build Traffic Volumes

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 15 of 152

Existing Travel Time Data

Travel time data was collected for eastbound and westbound US 54 between Cecil Street and Business Route 5. CBB collected field travel time data by driving the route during a field visit from October 14, 2024, to October 18, 2024. Using a GPS device connected to a computer, latitude, longitude, and speed data were collected every second of each trip along the routes. These data points were processed and summarized to produce a travel time summary for both routes. Summarized travel time data for the November AM and PM peak hours are included in **Appendix A**.

Existing Queue Observations

In addition to travel time data, CBB collected queue observations during the field visit from October 14, 2024, to October 18, 2024. Queue observations were collected during the November AM and PM peak hours at each study intersection.

November AM Peak Observations

During the November AM peak, there was a heavy flow of traffic on eastbound US 54. We observed lengthy eastbound US 54 approach queues at Laker Pride Road, northbound MO 5 ramps, and Business Route 5 intersections. **Figure 7** shows the eastbound US 54 approach queue at Laker Pride Road reaching the northbound MO 5 ramps intersection. **Figure 8** shows the eastbound US 54 approach queue at the northbound MO 5 ramps reaching the southbound MO 5 ramps intersection. **Figure 9** shows the eastbound US 54 approach queue at Business Route 5. We also observed the southbound Business Route 5 approach queue reaching the Court Circle NW intersection, as shown in **Figure 10** and the northbound Laker Pride Road approach queue reaching the Elm Tree Lane intersection, as shown in **Figure 11**.

Figure 7: Eastbound US 54 Approach Queue from Laker Pride Road reaching Northbound MO 5 Ramps

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 16 of 152

Figure 8: Eastbound US 54 Approach Queue from Northbound MO 5 Ramps reaching Southbound MO 5 Ramps

Figure 9: Eastbound US 54 Approach Queue at Business Route 5

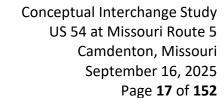


Figure 10: Southbound Business Route 5 Approach Queue from US 54 reaching Court Circle NW

Figure 11: Northbound Laker Pride Road Approach Queue from US 54 reaching Elm Tree Lane

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 18 of 152

November PM Peak Observations

During the November PM peak, there was a heavy flow of traffic on westbound US 54. We observed lengthy westbound US 54 approach queues at Laker Pride Road, northbound MO 5 ramps, and Business Route 5 intersections. **Figure 12** shows the westbound US 54 approach queue at Laker Pride Road reaching the Cecil Street intersection. **Figure 13** shows the westbound US 54 approach queue at the northbound MO 5 ramps reaching the Laker Pride Road intersection. **Figure 14** shows the westbound US 54 approach queue at Business Route 5. We also observed the northbound Business Route 5 approach queue reaching the Camden Avenue intersection, as shown in **Figure 15** and the northbound Laker Pride Road approach queue reached the Elm Tree Lane intersection, as shown in **Figure 16**.

Figure 12: Westbound US 54 Approach Queue from Laker Pride Road reaching Cecil Street

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 19 of 152

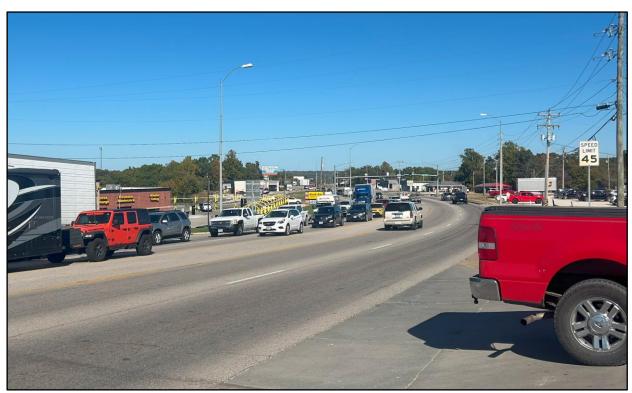


Figure 13: Westbound US 54 Approach Queue from Northbound MO 5 Ramps reaching Laker Pride Road

Figure 14: Westbound US 54 Approach Queue at Business Route 5

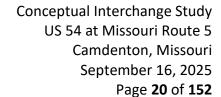


Figure 15: Northbound Business Route 5 Approach Queue from US 54 reaching Camden Avenue

Figure 16: Northbound Laker Pride Road Approach Queue from US 54 reaching Elm Tree Lane

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 21 of 152

Existing Safety Conditions

Historical Crash Data - US 54 & MO 5

The crash data for five years between the years 2019 and 2023 was gathered from MoDOT's Transportation Management System along MO 5 between the interchange that is approximately 2.5 miles north of US 54 and the interchange that is approximately 2.5 miles south of MO 5, as well as along US 54 between Cecil Street and Business Route 5 to determine any safety performance issues. A visual representation of the study area is depicted in **Figure 17**

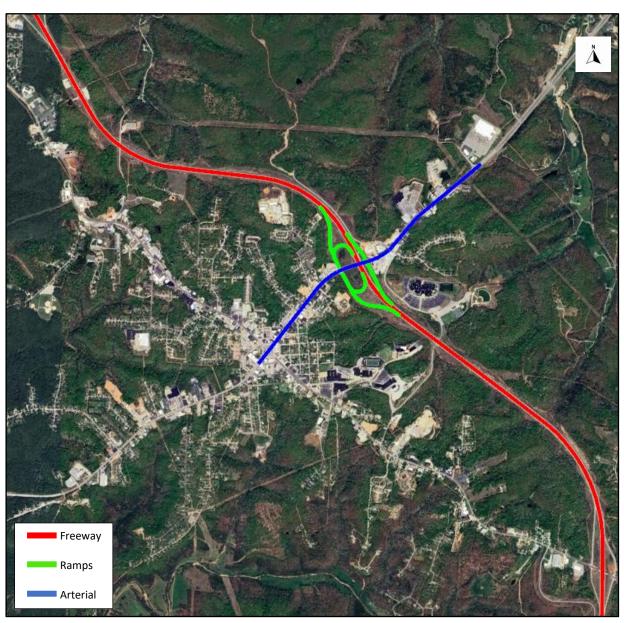


Figure 17: Aerial View of Study Area

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 22 of 152

During the 5-year period, 46 crashes were reported along the 5.12-mile segment of freeway (MO 5), 654 crashes were reported along US 54, and 8 crashes were reported on the MO 5 on or off ramps at US 54. **Figure 18** shows the total number of crashes by year for each study corridor, as well as all study areas combined as the total. As can be seen, the total number of crashes is consistent, except in 2020, when there was a noticeable reduction, likely due to the impacts of COVID-19 and associated stay-at-home orders.

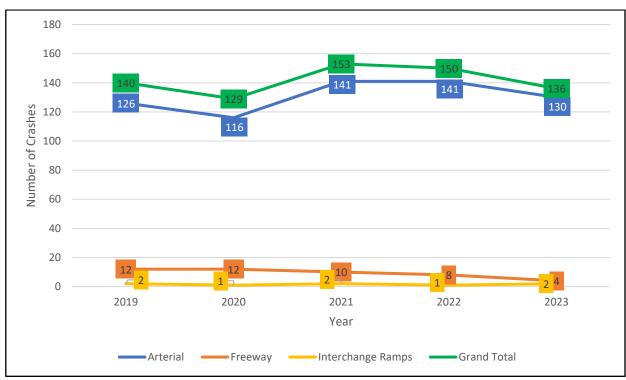


Figure 18: US 54 & MO 5 Crash Data by Year (2019 - 2023)

Information regarding location, time of day, weather conditions, lighting conditions, crash type, and severity was summarized to help determine probable contributing factors. With this data, crash patterns and problem areas were identified and summarized in the subsequent sections.

Freeway Corridor – MO 5

The crash data for the 5-year period between 2019 and 2023 has a total of 46 crashes reported along this 5.12-mile segment of MO 5 between the interchange that is approximately 2.5 miles north of US 54 and the interchange that is approximately 2.5 miles south of MO 5, which resulted in approximately 9.2 crashes per year, on average. Based on the crash data, the average crash rate along MO 5 is approximately 13 crashes per one Hundred Million Vehicle Miles of Travel (HMVMT).

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 23 of 152

Of the 46 crashes, 36 resulted in property damage only (78%), 8 minor injury crashes (18%), one serious crash (2%), and one fatal crash (2%). Crashes in 2022 and 2023 were lower than the five-year average (9.2), with 4 and 8 crashes, respectively. **Figure 19** shows the crashes each year and the severity level along MO 5 in the study area.

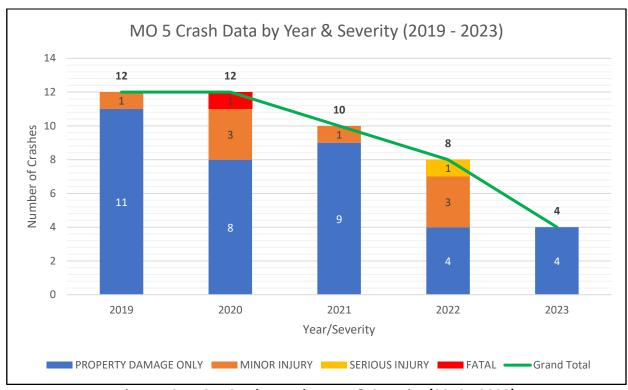


Figure 19: MO 5 Crash Data by Year & Severity (2019 - 2023)

The project area's first fatal crash (of 2) occurred in June 2020 along northbound MO 5, approximately a mile south of the interchange with US 54. The crash report states that a passenger vehicle hit the back of a pickup truck, causing the pickup truck to travel off the right side of the roadway, and the truck hit a rock bluff, which ejected the driver out of the vehicle. The pickup truck driver was pronounced dead at the scene. The passenger vehicle was found to be following too closely and exceeding the speed limit. The crash occurred in dry, clear, daylight conditions.

The project area's first serious injury crash (of 13) occurred in January 2022 along southbound MO 5 about one mile south of US 54. The crash report states that a sports utility vehicle was going too fast for conditions, causing the vehicle to slip on ice and travel to the right shoulder. The vehicle ramped down the ravine and came to rest at the bottom of the ravine upside down. Both the driver and the passenger were unable to give a response to what happened. The crash occurred under ice/frost, snow, and dark-unlighted conditions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **24** of **152**

Table 1 shows the crash types that occurred along MO 5 from 2019 to 2023. The most common type of crash was out-of-control crashes, occurring 16 times on MO 5. One of the 16 out-of-control crashes was a serious injury, five were minor injuries, and ten crashes were property damage only. Of the out-of-control crashes, 62% occurred in wet, iced, or snowy pavement conditions and 69% occurred in daylight.

The second most common type of crash was caused by deer, occurring 9 times on MO 5. It should be noted that 8 of the 9 deer crashes were property damage only, and 6 of the 9 crashes (67%) occurred in the southbound direction.

The third most common type of crash type on MO 5 is rear ends with 7 crashes, 71% occurred on dry pavement, 100% occurred in daylight. One rear end was fatal, while 6 were property damage only.

Table 1: Freeway Mainline MO 5 – Crash Data by Crash Type & Severity (2019 - 2023)

			,	pe ar coronity (= a	
Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
OUT OF CONTROL		1	5	10	16
DEER			1	8	9
REAR END	1			6	7
PASSING				4	4
OTHER				2	2
DEBRIS				2	2
CHANGING LANE			1		1
DOG				1	1
AVOIDING			1		1
SIDESWIPE				1	1
LEFT TURN				1	1
FARM ANIMAL				1	1
Total	1	1	8	36	46

Figure 20 is a map that indicates the location of the concentration of crashes along MO 5. The red color indicates a higher concentration of crashes at that location while the green color represents a lower concentration of crashes.

Linn Creek [54] V 5 5 [54] 0

Figure 20: Heat Map of Crashes along MO 5 in Study Area

<u>Freeway Ramps – MO 5 To/From US 54</u>

The crash data for the 5-year period between 2019 and 2023 reported a total of 8 crashes on the freeway ramps between MO 5 and US 54. Of the 8 crashes, 6 crashes resulted in property damage only (75%), one serious injury (12.5%), and one fatal crash (12.5%). The most common type of crash was out of control crashes (5 of 8). **Table 2** summarizes the crash data on the interchange ramps between MO 5 and US 54 from 2019 to 2023. **Figure 21** shows the crashes each year and the severity level on the interchange ramps between MO 5 and US 54.

Table 2: MO 5 Ramps – Crash Data by Crash Type & Severity (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
OUT OF CONTROL	1	1		3	5
REAR END				2	2
OTHER				1	1
Total	1	1		6	8

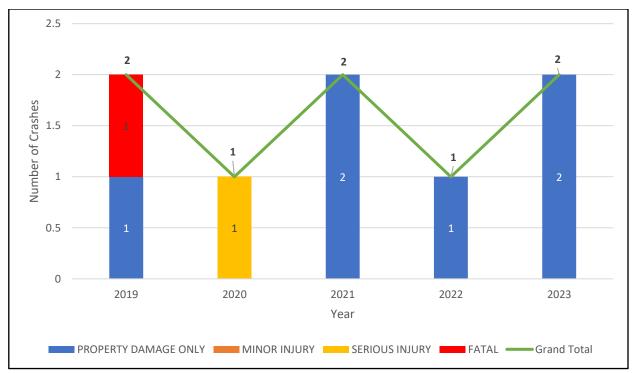


Figure 21: MO 5 Ramps Crash Data by Year & Severity (2019 - 2023)

The project's second fatal crash (of 2) occurred in August 2019 on the MO 5 southbound off-ramp, north of the interchange with US 54. The crash report states that a van ran off the right side of the ramp and traveled 320 feet down an embankment then struck a drainage ditch. The driver was found in the vehicle and pronounced dead. The vehicle was towed from the scene and the reason for this crash is unknown. The crash occurred in dry, cloudy, daylight conditions.

The project area's second serious injury crash (of 13) occurred in August 2020 along MO 5 southbound on-ramp, south of the interchange with US 54. The crash report states that a motorcyclist was driving too fast for the conditions and ran off the right side of the roadway, overturned, and struck the ground. The motorcyclist was transported to Lake Regional Hospital-Osage Beach by Mercy ambulance. The crash occurred under dry, clear, and dark-unlighted conditions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 27 of 152

Arterial Corridor – US 54

During the 5-year period between 2019 and 2023, 654 total crashes were reported on US 54 between Cecil Street and Business Route 5 (1.7 miles), which resulted in approximately 131 crashes per year, on average. Based on the 5 years of crash data, the average crash rate along US 54 between Cecil Street and Business Route 5 is approximately 940 crashes per one Hundred Million Vehicle Miles of Travel (HMVMT).

Of the 654 crashes, 543 crashes resulted in property damage only (83%), 100 minor injury crashes (15%), 11 serious injury crashes (2%), and zero fatal crashes. Crashes in 2019, 2020 and 2023 were lower than the 5-year average with 126, 116, and 130 crashes, respectively. **Figure 22** shows the severity trend along US 54 between Cecil Street and Business Route 5 over the past five years.

Figure 22: US 54 Corridor Crash Data by Year & Severity (2019 - 2023)

Figure 23 shows the crash types that occurred along US 54 between Cecil Street and Business Route 5 between from 2019 to 2023. As can be seen, the most common crash type was rear end, occurring 358 times (55%). Of the rear ends, 85% occurred on dry pavement and 93% occurred in daylight. The second most common type was left-turn right angle crashes, occurring 66 times (10%). Of the left-turn right angle crashes, 83% occurred on dry pavement and 89% occurred in daylight. The third most common type was passing related crashes, occurring 65 times (10%). Of the passing crashes, 86% occurred on dry pavement and 89% occurred in daylight.

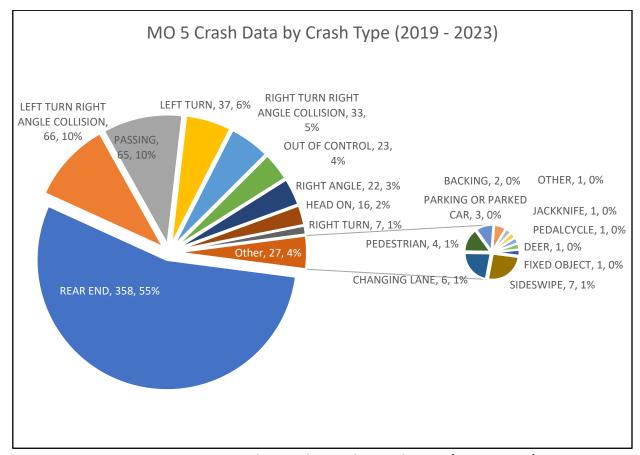


Figure 23: US 54 Corridor Crash Data by Crash Type (2019 - 2023)

Table 3 also shows the crash types along the US 54 corridor and subdivides the crashes into intersection crashes and segment crashes. Turning related crashes in the "segments" most frequently occurred at business driveways.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 29 of 152

Table 3: Arterial Crashes – US 54 Crash Data by Crash Type & Severity (2019 - 2023)

Table 5: Arterial Crashes – 05 54 Crash Data by Crash Type & Seventy (2019 - 2025)								
Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total			
Intersection Crashes								
REAR END			39	252	291			
PASSING			2	44	46			
LEFT TURN RIGHT ANGLE COLLISION			10	26	36			
LEFT TURN		1	2	25	28			
RIGHT TURN RIGHT ANGLE COLLISION		1	2	21	24			
OUT OF CONTROL		3	2	9	14			
RIGHT ANGLE			3	8	11			
HEAD ON			1	9	10			
RIGHT TURN				6	6			
PEDESTRIAN		1	3		4			
SIDESWIPE			1	2	3			
CHANGING LANE			1	2	3			
PARKING OR PARKED CAR				2	2			
BACKING				1	1			
FIXED OBJECT				1	1			
JACKKNIFE				1	1			
OTHER				1	1			
PEDALCYCLE		1			1			
Intersections Total	0	7	66	410	483			
Segment Crashes								
REAR END			12	55	67			
LEFT TURN RIGHT ANGLE COLLISION		2	8	20	30			
PASSING			1	18	19			
RIGHT ANGLE			4	7	11			
LEFT TURN			3	6	9			
OUT OF CONTROL			2	7	9			
RIGHT TURN RIGHT ANGLE COLLISION				9	9			
HEAD ON		2	2	2	6			
SIDESWIPE			2	2	4			
CHANGING LANE				3	3			
DEER				1	1			
RIGHT TURN				1	1			
PARKING OR PARKED CAR				1	1			
BACKING				1	1			
Segments Total		4	34	133	171			
Intersections and Segments Total	0	11	100	543	654			

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **30** of **152**

US 54 – Intersection Crashes

Based on the crash data, 483 crashes occurred at intersections along US 54 between Cecil Street and Business Route 5 from 2019 to 2023. **Figure 24** shows the location of the concentration of crashes along US 54 and **Figure 25** summarizes the location of the crashes along the US 54 corridor. As can be seen, there is a high number of crashes at the signalized intersections along US 54, specifically, 296 of the 483 intersection crashes (61%) occurred at signalized intersections. The intersection with the most crashes was the signalized intersection of US 54 and Cecil Street, which had 120 crashes over the five-year period. The intersection with the second most crashes is the unsignalized intersection of US 54 and MO 5 southbound ramps with 84 crashes. The intersection with the third most crashes is the signalized intersection of US 54 and Business MO 5 with 76 crashes. The intersection with the fourth most crashes is the signalized intersection of US 54 and MO 5 northbound ramps with 69 crashes.

Figure 24: Heat Map of Crashes along US 54 in Study Area



Figure 25: US 54 Corridor - Crash Data by Intersection & Severity (2019 - 2023)

Intersection of US 54 at Cecil Street (Signalized): The intersection of US 54 with Cecil Street had 120 of the 483 intersection crashes, or 25% of the intersection crashes in the US 54 study area. This intersection is a three-leg, signalized intersection that serves a commercial use (Wal-Mart). This intersection is the first signalized intersection after transitioning from a free flow divided highway. Dual eastbound left-turns and a separate westbound right-turn lane are provided along US 54. An offset westbound left-turn lane is currently striped, but there is no development on the south side of the intersection. Cecil Street provides dual southbound left-turns and a separate right-turn lane. Pedestrian accommodations are provided across the north leg.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **32** of **152**

Table 4 summarizes the crash data at the signalized intersection of US 54 and Cecil Street from 2019 to 2023. As can be seen, the most common type of crash was rear end crashes (95 of 120) or 79%, followed by 8% passing, 3% left-turn right angle, 3% head on, 1.5% right angle, and less than 1% each for changing lane, jackknife or right-turn right angle. Note, most of the rear end crashes are specifically at the southbound Cecil Street right-turn movement (55 of 95). A review of the crashes report indicates that the vehicles have difficulty performing the right-turn movement when there is a queue from the westbound US 54 approach at Laker Pride Road. During heavy congestion, some vehicles will attempt to make a right-turn but then stop before making the turn because there is not an acceptable gap in traffic. When the vehicle in front moves forward to make the right-turn the vehicle behind often also moves forward. Collisions commonly occur when the front vehicle stops, and the following vehicle fails to also stop, and rear ends the vehicle attempting to make the right-turn.

Although the crash frequency is somewhat high, the intersection of US 54 at Cecil Street had an injury rate of 12% (14 of 120) over the 5-year period. Approximately 87% of crashes occurred on a dry road surface, while 12% occurred on a wet surface and 1% on a snow-covered surface and 91% of the crashes occurred during daylight hours.

Table 4: Intersection Crash Data – US 54 at Cecil Street (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			10	85	95
PASSING			1	9	10
LEFT TURN RIGHT ANGLE COLLISION			2	2	4
OUT OF CONTROL		1		2	3
HEAD ON				3	3
RIGHT ANGLE				2	2
CHANGING LANE				1	1
JACKKNIFE				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
Total	0	1	13	106	120

The project area's third serious injury crash (of 13) occurred in October 2019 along eastbound US 54 at Cecil Street. The crash report states that a vehicle traveling eastbound on US 54 was turning left onto Cecil Street when the driver's hand slipped on the steering wheel causing the vehicle to strike the curb and traffic control light support pole at the northeast corner of the intersection. The passenger was taken to the hospital by ambulance due to not wearing a seatbelt and the vehicle was towed from the scene. The crash occurred under dry, clear, and daylight conditions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **33** of **152**

Intersection of US 54 at MO 5 Southbound Ramps (Unsignalized – Right-In Right-Out): The intersection of US 54 at MO 5 southbound ramps had 84 of the 483 intersection crashes, or 17% of the intersection crashes in the US 54 study area. The intersection is an unsignalized ramp terminal that is part of a partial cloverleaf interchange and limits the turning movements to right-in/right-out with channelized islands on the ramps and a raised center median along US 54. A short westbound right-turn lane is provided along US 54 while a tapered eastbound right-turn lane is provided along eastbound US 54.

Table 5 summarizes the crash data at the unsignalized intersection US 54 at MO 5 southbound ramps from 2019 to 2023. As can be seen, the most common type of crash was rear end crashes (57 of 84) or 68%, followed by 14% passing, 8% right-turn right angle, 4% left-turn right angle, 2% right-turn, and 1% each for left-turn, out-of-control and other. Most of the rear end crashes are specifically at the southbound MO 5 to eastbound US 54 right-turn movement (50 of 57). A review of the crashes report indicates that the vehicles have difficulty performing the right-turn movement when there is a queue from the eastbound US 54 approach at Northbound MO 5 ramps. The intersection of US 54 at MO 5 southbound ramps had an injury rate of 10% (8 of 84) over the 5-year period. Approximately 85% of crashes occurred on a dry road surface, while 14% occurred on a wet surface and 1% on an icy surface and 95% of the crashes occurred during daylight hours.

Table 5: Intersection Crash Data – US 54 at MO 5 Southbound Ramps (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total	
REAR END			6	51	57	
PASSING				12	12	
RIGHT TURN RIGHT ANGLE COLLISION				7	7	
LEFT TURN RIGHT ANGLE COLLISION			2	1	3	
RIGHT TURN				2	2	
LEFT TURN				1	1	
OUT OF CONTROL				1	1	
OTHER				1	1	
Total			8	76	84	

Intersection of US 54 at Business Route 5 (Signalized): The intersection of US 54 with Business Route 5 had 76 of the 483 intersection crashes, or 16% of the intersection crashes in the US 54 study area. This intersection is a four-leg, signalized intersection. The eastbound and westbound approaches of US 54 have separate left-turn lanes, while the southbound Business Route 5 approach has dual left-turn lanes and as well as a separate right-turn lane and northbound Business Route 5 has a separate northbound left-turn lane. All four quadrants of the intersection have diagonal parking areas that serve commercial uses and the courthouse.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **34** of **152**

Table 6 summarizes the crash data at the signalized intersection of US 54 and Business Route 5 from 2019 to 2023. As can be seen, the most common type of crash was rear end crashes (58 of 76) or 76%, followed by passing, left-turn, right angle at 4% each, follow out-of-control and head on at 2.6%, then changing lane, pedestrian, bicycle, left-turn right angle, and right-turn right angle at 1.3% each. The intersection of US 54 at Business Route 5 had an injury rate of 17% (13 of 76) over the 5-year period. Approximately 79% of crashes occurred on a dry road surface, while 20% occurred on a wet surface and 1% on a snow-covered surface and 91% of the crashes occurred during daylight hours.

Table 6: Intersection Crash Data – US 54 at Business Route 5 (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			8	50	58
PASSING				3	3
LEFT TURN				3	3
RIGHT ANGLE			2	1	3
OUT OF CONTROL			1	1	2
HEAD ON				2	2
CHANGING LANE				1	1
PEDESTRIAN			1		1
PEDALCYCLE		1			1
LEFT TURN RIGHT ANGLE COLLISION				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
Grand Total	0	1	12	63	76

The project area's fourth serious injury crash (of 13) occurred in September 2022 along northbound Business Route 5 at US 54. The crash report states that a vehicle turning right onto eastbound US 54 had a green light and hit a cyclist that was riding their bike across the crosswalk. The driver and the cyclist both did not see each other and thought it was clear for them to proceed. The cyclist was transported to the hospital by ambulance. The crash occurred under dry, clear, and daylight conditions.

Intersection of US 54 at MO 5 Northbound Ramps (Signalized): The intersection of US 54 with MO 5 northbound ramps had 69 of the 483 intersection crashes, or 14% of the intersection crashes in the US 54 study area. This intersection is a four-leg, signalized diamond terminal with the MO 5 northbound ramps. A separate eastbound left-turn and a very short westbound right-turn/taper lane are provided along US 54. One left-turn lane and dual northbound right-turn lanes are provided on the northbound off ramp of MO 5 at US 54.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **35** of **152**

Table 7 summarizes the crash data at the signalized intersection US 54 at MO 5 Northbound Ramps from 2019 to 2023. As can be seen, the most common type of crash was rear end crashes (33 of 69) or 48%, followed by 13% left-turn, 10% right-turn right angle, passing and left-turn right angle at 7% each, out of control and head on at 4% each, and changing lane, fixed object, right turn sideswipe at 1.4% each. The intersection of US 54 at MO 5 Northbound Ramps had an injury rate of 10% (7 of 69) over the 5-year period. Approximately 91% of crashes occurred on a dry road surface, while 7% occurred on a wet surface and 2% on a snow-covered surface and 85% of the crashes occurred during daylight hours.

Table 7: Intersection Crash Data – US 54 at MO 5 Northbound Ramps (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			3	30	33
LEFT TURN		1		8	9
RIGHT TURN RIGHT ANGLE COLLISION				7	7
PASSING				5	5
LEFT TURN RIGHT ANGLE COLLISION				5	5
OUT OF CONTROL			1	2	3
HEAD ON			1	2	3
CHANGING LANE			1		1
FIXED OBJECT				1	1
RIGHT TURN				1	1
SIDESWIPE				1	1
Total		1	6	62	69

The project area's fifth serious injury crash (of 13) occurred in August 2022 along westbound US 54 at the northbound MO 5 ramps. The crash report states that a vehicle pulling a camper was heading westbound with a green light when a motorcycle heading eastbound turned left in front of the vehicle. The vehicle was unable to stop in time and collided with the motorcycle that failed to yield. The driver of the motorcycle was unconscious upon arrival and the motorcycle was towed due to damage. The crash occurred under dry, clear, and daylight conditions.

Intersection of US 54 at Jack Crowell Road/Laker Pride Road (Signalized): The intersection of US 54 with Jack Crowell Road/Laker Pride Road had 31 of the 483 intersection crashes, or 6% of the intersection crashes in the US 54 study area. This intersection is a four-leg, signalized intersection with all approaches providing separate left-turn lanes. Pedestrian accommodations are provided across the north and east legs of the intersection.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **36** of **152**

Table 8 summarizes the crash data at the signalized intersection US 54 at Jack Crowell/Laker Pride Road from 2019 to 2023. As can be seen, the most common type of crash was rear end crashes (19 of 311) or 61%, followed by passing (13%), left-turn (10%), left-turn right angle (6%) and head on, right-turn right angle and sideswipe at 3% each. The intersection of US 54 at Jack Crowell /Laker Pride Road had an injury rate of 10% (3 of 31) over the 5-year period.

Approximately 71% of crashes occurred on a dry road surface, while 19% occurred on a wet surface, 7% on a snow-covered surface and 3% on unknown surface conditions and 94% of the crashes occurred during daylight hours.

Table 8: Intersection Crash Data – US 54 at Jack Crowell /Laker Pride Road (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			3	16	19
PASSING				4	4
LEFT TURN				3	3
LEFT TURN RIGHT ANGLE COLLISION				2	2
HEAD ON				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
SIDESWIPE				1	1
Total		-	3	28	31

Intersection of US 54 at Illinois Street/Osage Avenue (Unsignalized): The intersection of US 54 with Illinois Street/Osage Avenue had 20 of the 483 intersection crashes, or 4% of the intersection crashes in the US 54 study area. This intersection is a four-leg, unsignalized intersection with Illinois Street and Osage Avenue required to stop. The eastbound and westbound approaches of US 54 have separate left-turn lanes.

Table 9 summarizes the crash data at the unsignalized intersection US 54 at Illinois Street/Osage Avenue from 2019 to 2023. As can be seen, the most common type of crashes were rear end crashes (8 of 20) or 40%, followed by left-turn right angle (20%), left-turn (15%), and passing, right-turn right angle, right angle, pedestrian and head on at 4% each. The intersection of US 54 at Illinois Street/Osage Avenue had an injury rate of 35% (7 of 20) over the 5-year period. Approximately 85% of crashes occurred on a dry road surface, while 15% occurred on a wet surface and 80% of the crashes occurred during daylight hours.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **37** of **152**

Table 9: Intersection Crash Data – US 54 at Illinois Street/Osage Avenue (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			3	5	8
LEFT TURN RIGHT ANGLE COLLISION			1	3	4
LEFT TURN			2	1	3
PASSING				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
RIGHT ANGLE				1	1
PEDESTRIAN			1		1
HEAD ON				1	1
Total			7	13	20

Intersection of US 54 at Skid Row Boulevard (Unsignalized): The intersection of US 54 with Skid Row Boulevard had 14 of the 483 intersection crashes, or 3% of the intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Skid Row Boulevard required to stop. The eastbound approach of US 54 has a separate left-turn lane.

Table 10 summarizes the crash data at the unsignalized intersection of US 54 at Skid Row Boulevard from 2019 to 2023. The most common type of crash was left turn right angle crash (29%), followed by right angle (21%), passing and right-turn right angle at 14% each and out-of-control, left-turn and rear end at 7% each. The intersection of US 54 at Skid Row Boulevard had an injury rate of 7% (1 of 14) over the 5-year period. Approximately 93% of crashes occurred on a dry road surface, while 7% occurred on a wet surface and 100% of the crashes occurred during daylight hours.

Table 10: Intersection Crash Data – US 54 at Skid Row Boulevard (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
LEFT TURN RIGHT ANGLE COLLISION			1	3	4
RIGHT ANGLE				3	3
PASSING				2	2
RIGHT TURN RIGHT ANGLE COLLISION				2	2
OUT OF CONTROL				1	1
LEFT TURN				1	1
REAR END				1	1
Total			1	13	14

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 38 of 152

Intersection of US 54 at Turner Parkway (Unsignalized): The intersection of US 54 with Turner Parkway had 12 of the 483 intersection crashes, or 2.5% of the intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Turner Parkway required to stop. The eastbound approach of US 54 has a separate left-turn lane.

Table 11 summarizes the crash data at the unsignalized intersection of US 54 at Turner Parkway from 2019 to 2023. The most common type of crash was rear end crashes (5 of 12) with a small number of other crash types. The intersection of US 54 at Turner Parkway had an injury rate of 33% (4 of 12) over the 5-year period. Approximately 75% of crashes occurred on a dry road surface while 25% occurred on a wet surface and 83% of the crashes occurred during daylight hours.

Table 11: Intersection Crash Data – US 54 at Turner Parkway (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			1	4	5
PASSING			1	1	2
OUT OF CONTROL				2	2
LEFT TURN				1	1
PEDESTRIAN			1		1
SIDESWIPE			1		1
Total			4	8	12

Intersection of US 54 at Third Street (Unsignalized): The intersection of US 54 with Third Street had 11 of the 483 intersection crashes, or 2.5% of the intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Third Street required to stop. The eastbound approach of US 54 has a separate left-turn lane.

Table 12 summarizes the crash data at the unsignalized intersection US 54 at Third Street from 2019 to 2023. The most common type of crash was left turn right angle collision crashes (4 of 11) along with a small number of other crash types. The intersection of US 54 at Third Street had an injury rate of 36% (4 of 11) over the 5-year period. Approximately 91% of crashes occurred on a dry road surface, while 9% occurred on a wet surface and 91% of the crashes occurred during daylight hours.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **39** of **152**

Table 12: Intersection Crash Data – US 54 at Third Street (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
LEFT TURN RIGHT ANGLE COLLISION			1	3	4
REAR END			1	1	2
PASSING				1	1
RIGHT TURN RIGHT ANGLE COLLISION		1			1
RIGHT TURN				1	1
RIGHT ANGLE				1	1
PEDESTRIAN		1			1
Total		2	2	7	11

The project area's sixth serious injury crash (of 13) occurred in January 2020 along westbound US 54 at Third Street. The crash report states that a pedestrian in a wheelchair was trying to cross US 54 while there was oncoming traffic. The vehicle in the right lane saw the pedestrian crossing and slowed down while the vehicle in the left lane had their vision obstructed by the vehicle in the right lane so the vehicle was unable to slow down before they could see the pedestrian. The pedestrian was suspected of having serious injuries and was transported by Mercy Ambulance for medical treatment. The vehicle that hit the pedestrian was towed from the scene. The crash occurred under dry, clear, and daylight conditions.

The project area's seventh serious injury crash (of 13) occurred in July 2022 along westbound US 54 at Third Street. The crash report states that vehicle 1 was traveling southbound on Third street and either failed to stop at the stop sign or failed to yield to oncoming traffic on US 54 causing a collision with vehicle 2 traveling westbound on US 54. After the collision with vehicle 2, vehicle 1 also hit a utility pole nearby. Vehicle 2's driver was transported to the hospital by ambulance and both vehicles were towed due to damage. The crash occurred under dry, clear, and daylight conditions.

Intersection of US 54 at Court Circle (Unsignalized): The intersection of US 54 with Court Circle had 10 of the 483 intersection crashes, or 2% of the intersection crashes in the US 54 study area. This intersection is a four-leg, unsignalized intersection with Court Circle required to stop. The eastbound and westbound approaches of US 54 have separate left-turn lanes.

Table 13 summarizes the crash data at the unsignalized intersection US 54 at Court Circle from 2019 to 2023. The most common type of crash was rear end crashes (4 of 10). The most severe type of crash was out of control crashes with 1 serious injury. The intersection of US 54 at Court Circle had an injury rate of 20% (2 of 10) over the 5-year period. Approximately 80% of crashes occurred on a dry road surface, while 10% occurred on a wet surface and 10% on a snow-covered surface and 100% of the crashes occurred during daylight hours.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 40 of 152

Table 13: Intersection Crash Data – US 54 at Court Circle (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			1	3	4
PARKING OR PARKED CAR				2	2
OUT OF CONTROL		1			1
BACKING				1	1
LEFT TURN				1	1
PASSING				1	1
Total		1	1	8	10

The project area's eighth serious injury crash (of 13) occurred in September 2019 along westbound US 54 before Court Circle. The crash report states that a homemade vehicle with three wheels was traveling on westbound US 54 and turning right into the parking lot when the driver lost control causing the vehicle to strike the front of the building, ejecting the driver. The driver was transported to the hospital by ambulance and the vehicle was parked at the scene to be picked up later. The crash occurred under dry, clear, and daylight conditions.

Intersection of US 54 at Grant Avenue (Unsignalized): The intersection of US 54 with Grant Avenue had 10 of the 483 intersection crashes, or 2% of the intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Grant Avenue required to stop. The eastbound approach of US 54 has a separate left-turn lane.

Table 14 summarizes the crash data at the unsignalized intersection US 54 at Grant Avenue from 2019 to 2023. The most common type of crash was rear end crashes (3 of 10) and left turn right angle collision crashes (3 of 10). The intersection of US 54 at Grant Avenue had an injury rate of 30% (3 of 10) over the 5-year period. Approximately 90% of crashes occurred on a dry road surface, while 10% occurred on a wet surface and 90% of the crashes occurred during daylight hours.

Table 14: Intersection Crash Data – US 54 at Grant Avenue (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			1	2	3
LEFT TURN RIGHT ANGLE COLLISION			1	2	3
PASSING				2	2
LEFT TURN				1	1
RIGHT TURN RIGHT ANGLE COLLISION			1		1
Total			3	7	10

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **41** of **152**

Intersection of US 54 at First Street/Second Street (Unsignalized): The intersection of US 54 with First Street/Second Street Avenue had 9 of the 483 intersection crashes, or 1.8% of the intersection crashes in the US 54 study area. This intersection is a four-leg, unsignalized intersection with First Street/Second Street required to stop. The eastbound and westbound approaches of US 54 have separate left-turn lanes.

Table 15 summarizes the crash data at the unsignalized intersection US 54 at First Street/Second Street from 2019 to 2023. The most common type of crash was left turn right angle collision crashes (4 of 9). The most severe type of crash was out of control crashes with 1 serious injury. The intersection of US 54 at First Street/Second Street had an injury rate of 44% (4 of 9) over the 5-year period. Approximately 78% of crashes occurred on a dry road surface, while 22% occurred on a wet surface and 89% of the crashes occurred during daylight hours.

Table 15: Intersection Crash Data – US 54 at First Street/Second Street (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
LEFT TURN RIGHT ANGLE COLLISION			2	2	4
OUT OF CONTROL		1			1
REAR END			1		1
LEFT TURN				1	1
PASSING				1	1
RIGHT TURN				1	1
Total		1	3	5	9

The project area's ninth serious injury crash (of 13) occurred in October 2023 along eastbound US 54 after Second Street. The crash report states that a pickup truck was traveling eastbound US 54 when an unknown vehicle pulled out in front of the pickup truck causing the pickup truck to swerve and overcorrect. This caused the pickup truck to hit the curb on the side of the roadway and a retaining wall. The driver of the pickup truck was taken to the hospital by ambulance and the vehicle was towed due to damage. The crash occurred under wet, cloudy, and daylight conditions.

Intersection of MO 5 at Camden Court (Unsignalized): The intersection of MO5 with Camden Court had 8 of the 483 intersection crashes, or 1.6% of the intersection crashes in the US 54 study area. This intersection is very close to the US 54 and MO 5 intersection and is a four-leg, unsignalized intersection with Camden Court required to stop. MO 5 provides a two-way left-turn lane for left-turn vehicles.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 42 of 152

Table 16 summarizes the crash data at the unsignalized intersection MO 5 at Camden Court from 2019 to 2023. The most common type of crash was left turn crashes (3 of 8). The intersection of MO 5 at Camden Court had an injury rate of 25% (2 of 8) over the 5-year period. Approximately 75% of crashes occurred on a dry road surface, while 15% occurred on a wet surface and 100% of the crashes occurred during daylight hours.

Table 16: Intersection Crash Data – US 54 at Camden Court (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
LEFT TURN				3	3
REAR END			1	1	2
LEFT TURN RIGHT ANGLE COLLISION				1	1
PASSING				1	1
RIGHT ANGLE			1		1
Total			2	6	8

Intersection of US 54 at Fourth Street (Unsignalized): The intersection of US 54 with Fourth Street had 5 of the 483 intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Fourth Street required to stop. The westbound approach of US 54 has a separate left-turn lane.

Table 17 summarizes the crash data at the unsignalized intersection US 54 at Fourth Street from 2019 to 2023. The intersection of US 54 at Fourth Street had an injury rate of 0% (0 of 5) over the 5-year period. All types of crashes at this intersection were property damage only.

Table 17: Intersection Crash Data – US 54 at Fourth Street (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
RIGHT TURN				1	1
LEFT TURN RIGHT ANGLE COLLISION				1	1
PASSING				1	1
Total				5	5

Intersection of US 54 at Iowa Street (Unsignalized): The intersection of US 54 with Iowa Street had 4 of the 483 intersection crashes in the US 54 study area. This intersection is a three-leg, unsignalized intersection with Iowa Street required to stop. The westbound approach of US 54 has a separate left-turn lane.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 43 of 152

Table 18 summarizes the crash data at the unsignalized intersection US 54 at Iowa Street from 2019 to 2023. The most common type of crash was rear end crashes (2 of 4). The most severe type of crash was right turn right angle collision crashes with one minor injury. The intersection of US 54 at Iowa Street had an injury rate of 25% (1 of 4) over the 5-year period.

Table 18: Intersection Crash Data – US 54 at Iowa Street (2019 - 2023)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END				2	2
LEFT TURN				1	1
RIGHT TURN RIGHT ANGLE COLLISION			1		1
Total			1	3	4

US 54 Segments Crashes

Based on the crash data, 171 crashes occurred along segments on US 54 between Cecil Street and Business Route 5 from 2019 to 2023. 67 of the 171 segment crashes (39%) were rear end crashes related to congestion and traffic queues experienced along US 54. 30 of 171 segment crashes (18%) were left-turn right angle collision crashes which occurred at the various driveways along US 54. **Table 19** summarizes all the segment crashes on US 54 between Cecil Street and Business Route 5 from 2019 to 2023.

Table 19: Segment Crash Data for Entire Roadway by Severity (2019 - 2023)

Road Segment Along US 54	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
Entire Segment		4	34	133	171
Total	0	4	34	133	171

Table 20 shows the type of crashes in each segment between each signal along US 54 between Cecil Street and Business Route 5 from 2019 to 2023. As can be seen, rear ends and turn related crashes are the large majority of crashes in the segments. Specifically, rear end crashes are approximately 39% of the segment crashes and turn related crashes (left-turn, left-turn right angle and right angle) make up approximately 28% of the segment crashes between the northbound MO 5 Ramps and Cecil Street. Should improvements be made to minimize or eliminate left-turns and to reduce congestion, then significant safety improvements could be expected along these segments, especially when considering the types of crashes in the historical crash data. Implementing a median barrier on US 54 instead of a two-way left-turn lane eliminates left-turning conflict points at driveways. The addition lane on US 54 in both directions serves to separate turning vehicles from through traffic to improve traffic flow and reduce chances for rear end collisions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 44 of 152

Table 20: Segment Crash Data by Roadway Segments & Severity (2019 - 2023)

Crash Type	FATAL	SERIOUS	MINOR	PROPERTY DAMAGE ONLY	Total		
Between Cecil Street & Jack Crowell Rd/Laker Pride Rd							
REAR END			8	30	38		
LEFT TURN RIGHT ANGLE COLLISION		1	6	12	19		
PASSING				7	7		
RIGHT TURN RIGHT ANGLE COLLISION				6	6		
RIGHT ANGLE			2	3	5		
LEFT TURN			2	3	5		
HEAD ON		1	2	1	4		
OUT OF CONTROL			1	3	4		
CHANGING LANE				2	2		
OTHER TYPES OF CRASHES*				3	3		
Between Jack Crowell R	d/Laker I	Pride Rd & I	MO 5 North	bound Ramps			
REAR END			1	6	7		
PASSING				5	5		
LEFT TURN RIGHT ANGLE COLLISION			1	2	3		
OUT OF CONTROL				2	2		
OTHER TYPES OF CRASHES*			1	3	4		
Between MO 5 N	orthbou	nd Ramps &	& Business F	Route 5			
REAR END			3	19	22		
LEFT TURN RIGHT ANGLE COLLISION		1	1	6	8		
PASSING			1	6	7		
RIGHT ANGLE			2	3	5		
LEFT TURN			1	3	4		
SIDESWIPE			1	2	3		
OUT OF CONTROL			1	2	3		
HEAD ON		1		1	2		
RIGHT TURN RIGHT ANGLE COLLISION				2	2		
CHANGING LANE				1	1		
Total Segment Crashes	0	4	34	133	171		

^{*}Represents the sum of all other types of crashes with only 1 reported crash

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **45** of **152**

The project area's tenth serious injury crash (of 13) occurred in July 2021 along westbound US 54 after MO 5 (between MO 5 northbound ramps and Business Route 5). The crash report states that a sport utility vehicle was heading westbound on US 54 when a passenger vehicle turning left onto eastbound US 54 failed to yield causing a collision. The sport utility vehicle came to rest facing southbound in the center turn lane while the passenger vehicle came to rest about 40 feet south of the roadway. Both occupants of the passenger vehicle were transported to the hospital by ambulance and both vehicles were towed due to damage. The crash occurred under dry, clear, and daylight conditions. Both occupants of the passenger vehicle were transported to the hospital by ambulance and both vehicles were towed due to damage. The crash occurred under dry, clear, and daylight conditions.

The project area's eleventh serious injury crash (of 13) occurred in May 2022 along eastbound US 54 after Laker Pride Road (Between Cecil Street and Jack Crowell Rd/Laker Pride Rd). The crash report states that a sport utility vehicle heading eastbound and a pickup truck heading westbound both merged into the shared turn lane at the same time causing a head on collision. After the collision, the sports utility vehicle ran off the eastbound side of the road while the pickup truck ran into a pole in the US Bank parking lot. Both vehicles had to be towed and both drivers as well as a passenger were transported to the hospital by ambulance. The crash occurred in dry, cloudy, and daylight conditions.

The project area's twelfth serious injury crash (of 13) occurred in August 2022 along westbound US 54 after Turner Parkway (Between Cecil Street and Jack Crowell Rd/Laker Pride Rd). The crash report states that a pickup truck was pulling out of the parking lot to turn left onto eastbound US 54 when a passenger vehicle in the left lane of westbound US 54 hit the turning pickup truck. The passenger vehicle was exceeding the speed limit and was unable to slow down in time to avoid the collision. The pickup truck driver claimed they did not see any oncoming traffic. Both vehicles had to be towed, and both drivers were transported to the hospital by ambulance. The crash occurred under dry, clear, and daylight conditions.

The project area's final serious injury crash (of 13) occurred in September 2023 along westbound US 54 before 5th Street (Between MO 5 northbound ramps and Business Route 5). The crash report states that a passenger vehicle was traveling westbound on US 54 when a sport utility vehicle was turning left out of the Sonic to travel eastbound on US 54. The passenger vehicle was unable to stop before the collision with the sport utility vehicle that failed to yield. The passenger vehicle ran off the roadway and ran into some trees. Both vehicles were towed due to damage and both drivers were transported by ambulance to the hospital. The crash occurred under dry, clear, and daylight conditions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 46 of 152

Safety Conditions Summary

Overall, the historical crash analysis showed that a significant portion of the crashes within the study are on US 54 (92%), while the second most is on MO 5 (7%), and the third most is on the MO 5 on/off ramps (1%). The primary crash type along US 54 is rear end crashes (55%), which are typical in areas with congestion. Additionally, the predominant type of serious injury crashes (5 out of 11) on US 54 relates to turning at intersections or business driveways.

The primary crash type on mainline MO 5 and the MO 5 on/off ramps is out of control crashes, which are typical for higher speed roadways. Additionally, most of the severe (fatal and serious injury) crashes were out of control crashes. One fatal out of control crash occurred on the southbound MO 5 to westbound US 54 off-ramp, one serious injury out of control crash occurred on southbound MO 5 (one mile south of the interchange), and one serious injury out of control crash occurred on the eastbound US 54 to southbound MO 5 on-ramp.

Crashes in the segments between the northbound MO 5 Ramps and Cecil Street are comprised of approximately 39% rear ends and approximately 28% left-turn related crashes (left-turn, left-turn right angle and right angle). Should improvements be made to minimize or eliminate left-turns and to reduce congestion, then significant safety improvements could be expected along these segments.

The proposed improvements aim to reduce crashes related to turning vehicles and rear ends through access management practices. Implementing a median barrier on US 54 instead of a two-way left-turn lane eliminates left-turning conflict points at driveways. The additional lane on US 54 in both directions serves to separate turning vehicles from through traffic to improve traffic flow and reduce chances for rear end collisions.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 47 of 152

Traffic Forecasts

Traffic volumes were forecasted for the 2030 construction year (near-term) and 2050 design year (long-term). These forecasted volumes were then used to perform capacity analysis under future conditions. The near-term and long-term traffic growth forecasts were developed for each component of the study area, considering the specific characteristics of the US 54 and MO 5 corridors. The primary consideration used in forecasting was a historical traffic volume trend analysis.

US 54

Figure 26 illustrates the historical counts on US 54 between Cecil Street and Route V. As can be seen, the US 54 corridor has experienced steady annual traffic growth since the 1970s.

MO 5

Figure 27 illustrates the historical counts on MO 5 between US 54 and MO 7. As can be seen, the MO 5 corridor has experienced steady annual traffic growth since the 1970s.

To be consistent with the steady growth on US 54 and MO 5, we assumed a 1.75% annual projected growth rate for both US 54 and MO 5 (10.5% between 2024 and 2030 and 45.5% between 2024 and 2050).

Forecasted No-Build Traffic Volumes

The near-term (2030) and long-term (2050) traffic volumes forecasts were developed under the existing roadway geometrics (no-build conditions) for the US 54 study area based on the assumption described above. **Exhibit 3** summarizes the forecasted 2030 No-Build traffic volumes and **Exhibit 4** summarizes the forecasted 2050 No-Build traffic volumes.

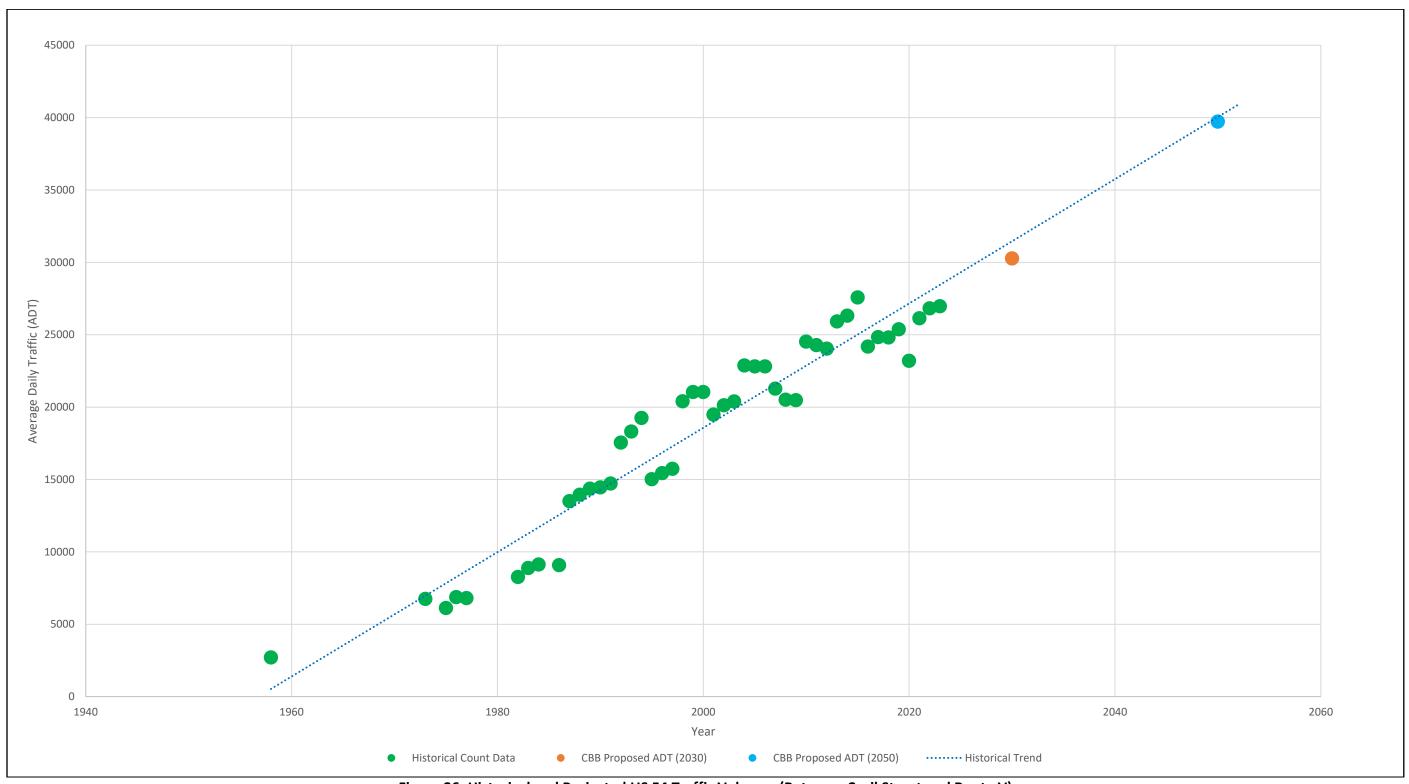


Figure 26: Historical and Projected US 54 Traffic Volumes (Between Cecil Street and Route V)

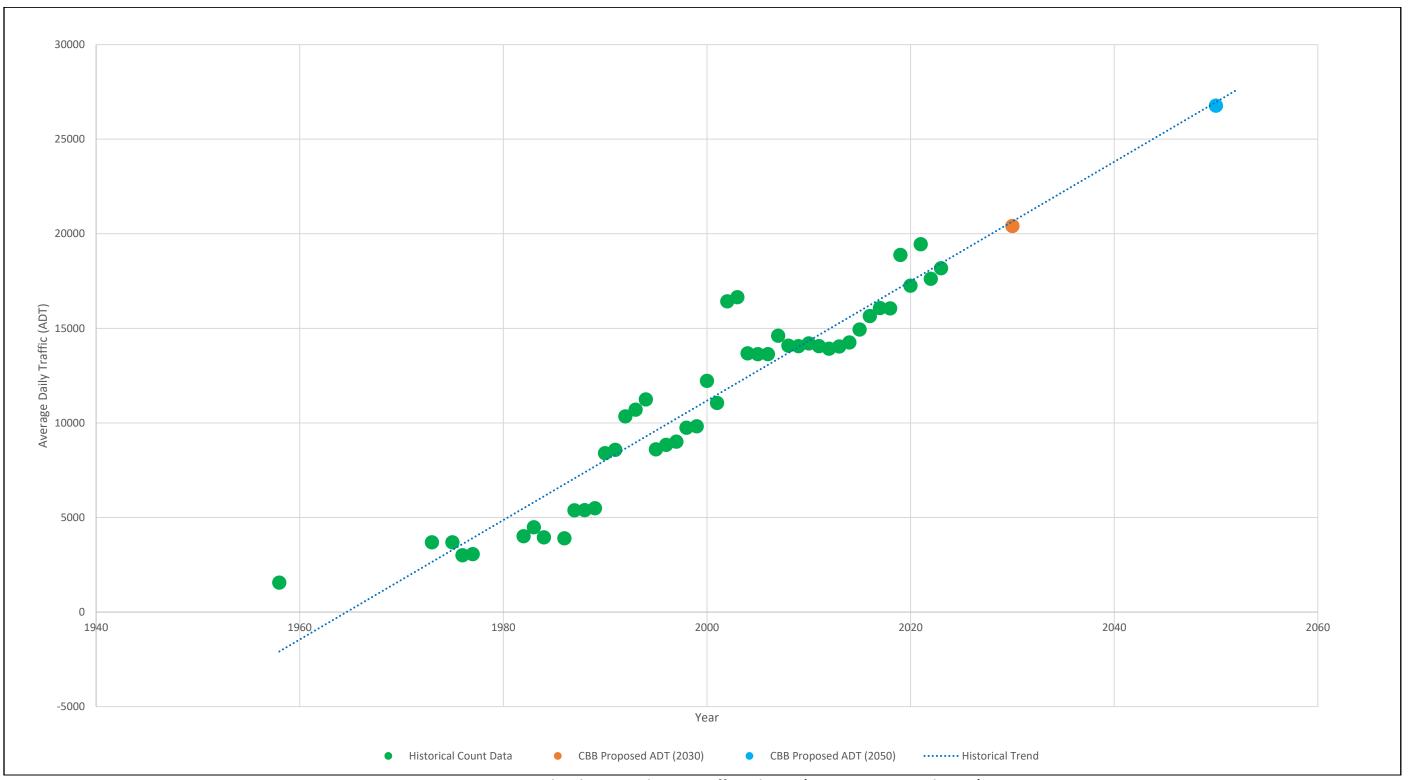


Figure 27: Historical and Projected MO 5 Traffic Volumes (Between US 54 and MO 7)

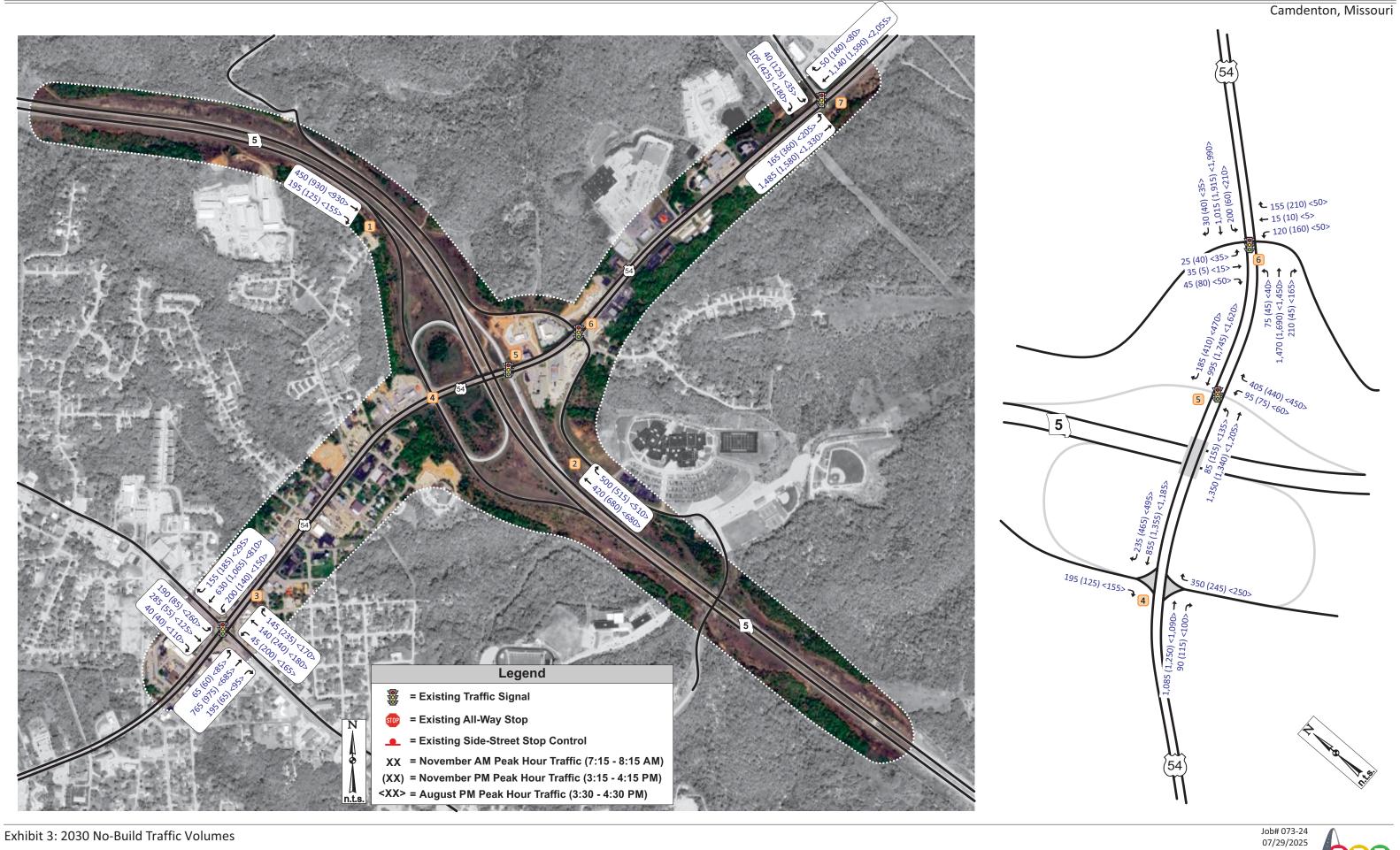


Exhibit 3: 2030 No-Build Traffic Volumes

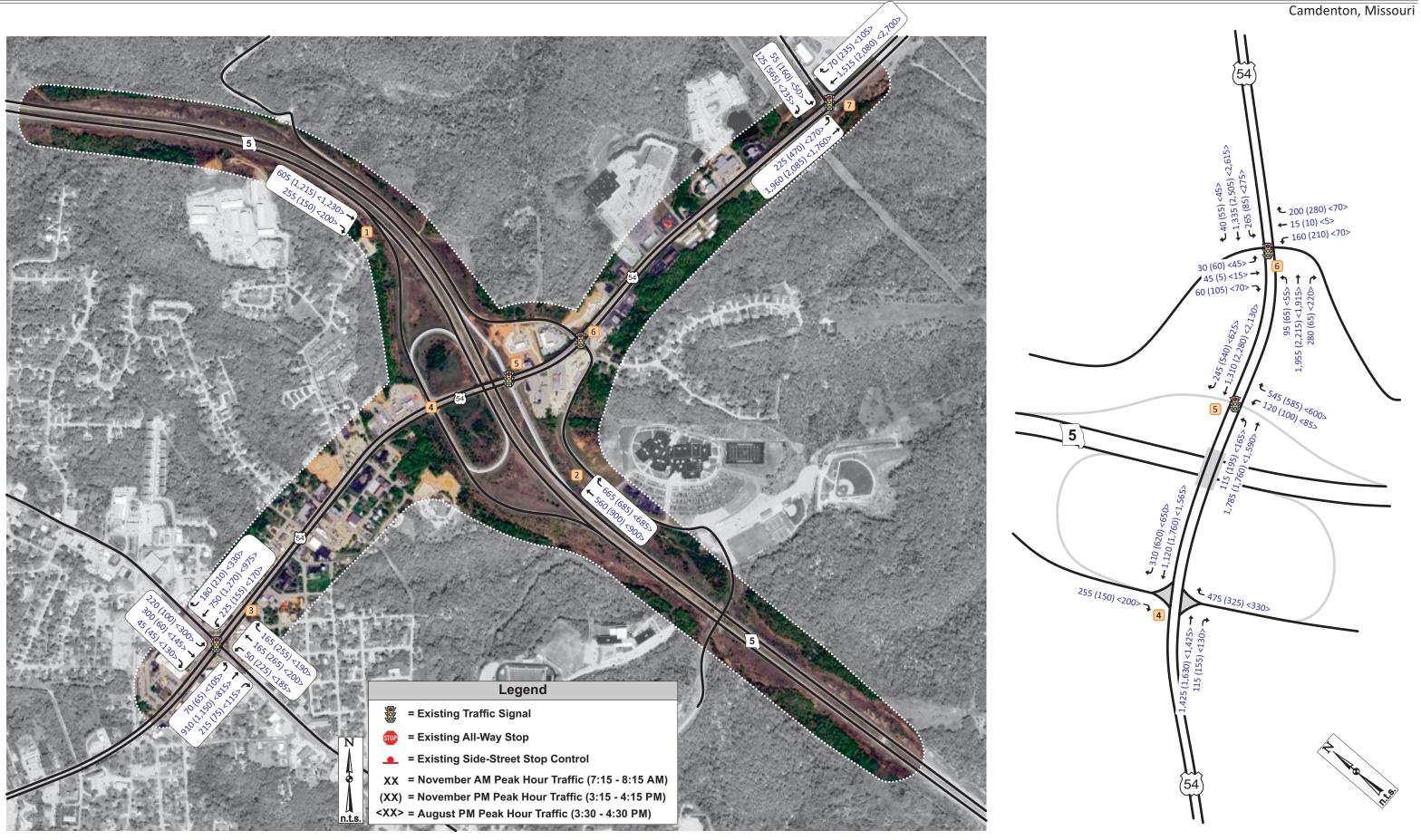


Exhibit 4: 2050 No-Build Traffic Volumes

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **52** of **152**

ALTERNATIVES DEVELOPMENT

CBB developed and tested several preliminary concepts and discussed this analysis with MoDOT staff at an in-person meeting on March 13, 2025. MoDOT staff provided feedback for each concept based on their knowledge of the corridor. Several of the preliminary concepts were removed and/or modified at this meeting. Two reasonable and feasible concepts were identified to move forward for a more in-depth analysis. These two options included

- 1) an "Expressway" concept that would extend the free-flow expressway to the west across MO 5 through jughandle movements. This concept would remove all traffic signals east of Business Route 5. This concept would have maintained US 54 with two lanes in each direction between Cecil Street and MO 5.
- 2) a "Boulevard" concept, that would widen US 54 to 6-lanes between Cecil Street and MO 5. This concept would retain traffic signals between Cecil Street and the MO 5 interchange.

The in-depth analysis was completed on two concepts and the results were presented to MoDOT staff at a meeting held in person on March 28, 2025. At this meeting, the Boulevard concept was shown to address the project's safety and operational needs.

THE BOULEVARD CONCEPT

- Widens US 54 to six (6) lanes between Cecil Street and the MO 5 interchange.
- Installs a raised center median in the widened section to control left turns.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a new traffic signal at a commercial driveway in the vicinity of Gerbes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Road traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

The Boulevard concept recognizes the commercial nature of his section of US 54 and provides an opportunity to extend Camdenton's US 54 urban character east of MO 5 to Cecil Street through elements such as lower speeds, signalized intersections, street lighting, and gateway signage. The posted speed limit for this section of US 54 under the Boulevard concept is recommended to be 35 miles per hour.

This project can be built in two phases. Phase 1 widens US 54 between the northbound MO 5 ramps and Laker Pride/Jack Crowell Road. Phase 2 relocates Laker Pride Road, installs the U-turn movements, and widens US 54 between Jack Crowell Road and Cecil Street.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **53** of **152**

Phase 1 includes:

- The construction of a third eastbound lane on US 54 from the northbound MO 5 ramps to Laker Pride Road where it terminates as a right-turn lane at Laker Pride Road.
- Building a third westbound lane on US 54 lane from the eastern approach to Laker Pride Road, terminating as a right-turn at the northbound MO 5 ramps.
- Installs a raised center median on US 54 between the northbound MO 5 ramps to Laker Pride Road/Jack Crowell Road.
- Restriction of all driveways on US 54 between MO 5 and Laker Pride/Jack Crowell Road to right-in right-out access.
 - Businesses on the north side of US 54 have left turn access to/from US 54 via existing connections to Jack Crowell Road.
 - Businesses on the south side of US 54 have left-turn access to/from US 54 via existing and new driveway connections to Laker Pride Road.

Phase 2 extends the widening of US 54 to six lanes from Laker Pride/Jack Crowell Road to Cecil Street. Phase 2 also:

- Installs a raised center median in the widened section to control left turns. The results in the restriction of all driveways on US 54 between Jack Crowell Road and Cecil Street to right-in right-out access.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a
 new traffic signal at a commercial driveway in the vicinity of Gerbes. This intersection
 will include an eastbound US 54 right-turn lane and northbound dual left-turn lanes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Street traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

Detailed descriptions of both phases are provided in the sections below. The presentations from the March 13, 2025 and March 28, 2025 meetings are provided in **Appendices B** and **C**, respectively.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **54** of **152**

Phase 1

Roadway Geometrics

Exhibit 5 illustrates a conceptual planning level drawing of the proposed Boulevard concept under Phase 1. As can be seen, the proposed roadway improvements provided a third eastbound US 54 lane from northbound MO 5 ramps to Laker Pride Road, and it terminates as a right-turn lane at Laker Pride Road. Furthermore, a third westbound US 54 lane is provided at the westbound US 54 approach at Laker Pride Road, which continues to the west and terminates as a right-turn at northbound MO 5 ramps. Note, the three through lanes at the westbound US 54 approach at Laker Pride Road will require the eastbound US 54 left-turn lane to operate under protected phasing to be compliant with the MoDOT *Engineering Policy Guide (EPG)*.²

Furthermore, a raised median is also proposed along US 54 between northbound MO 5 ramps and Laker Pride Road to restrict left-turn movements from crossing the proposed three through lanes along both directions of US 54. An existing driveway connection to Jack Crowell Road provides left-turn access for the properties on the north side of US 54 via the traffic signal at US 54 and Jack Crowell Road/Laker Pride Road. A proposed driveway connection to Laker Pride Road provides left-turn access for the properties on the south side of US 54 via the traffic signal at US 54 and Jack Crowell Road/Laker Pride Road.

² https://epg.modot.org/index.php/Main Page

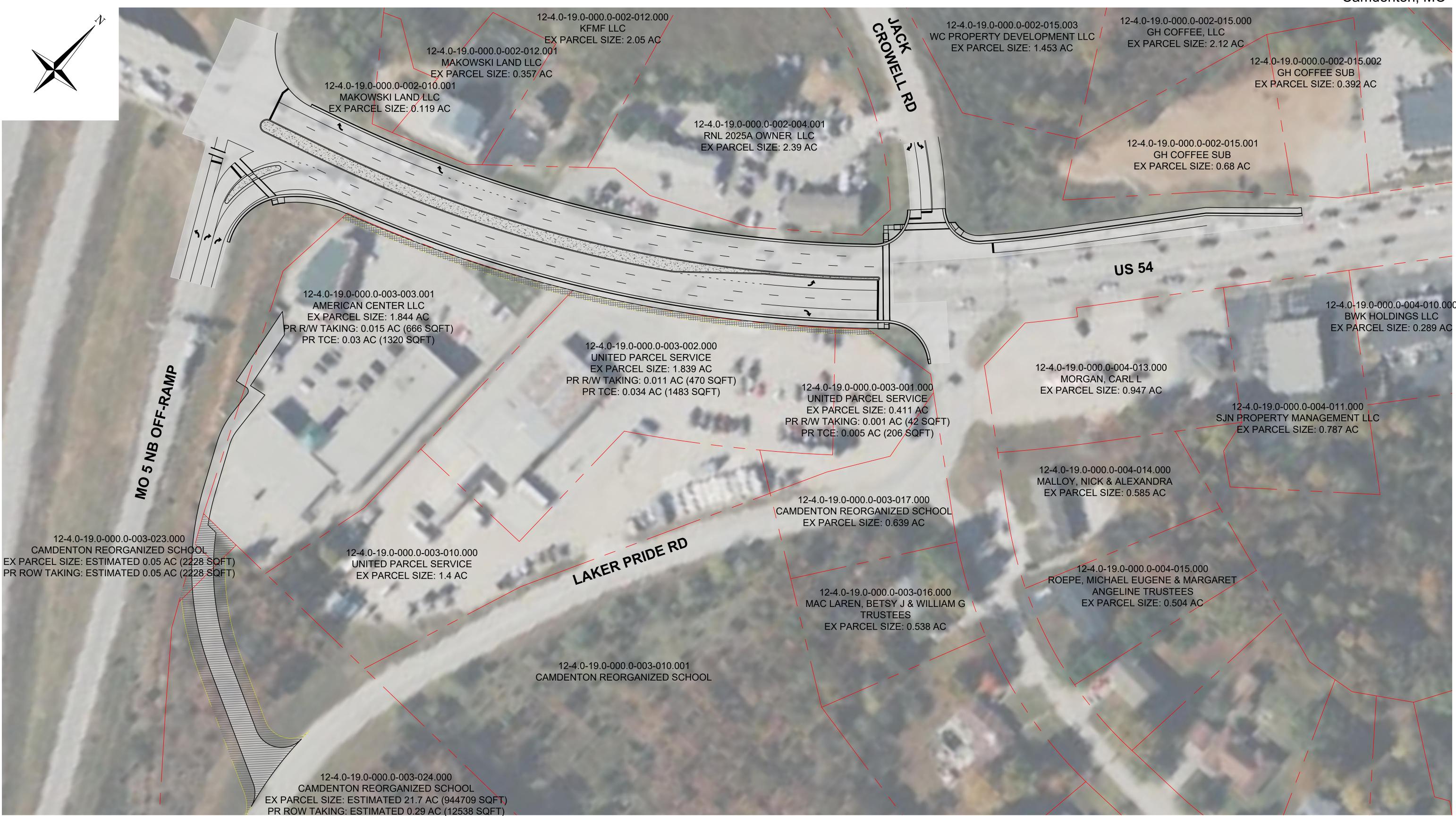
Camdenton, MO

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **56** of **152**

Right-of-Way Impacts

Exhibit 6 illustrates the right-of-way impact of the Phase 1 improvements. As can be seen, the configuration would impact six parcels. Right-of-way would need to be acquired for about 0.37 acres. The property lines are for reference only and were approximated from the Camden County GIS website³ to estimate right-of-way needs. The actual existing right-of-way needs will be more precisely determined in the design phase.

Opinion of Cost


The cost estimate of the proposed Phase 1 improvements includes:

- Roadway \$1,358,450;
- Marking & Signing \$27,716;
- Signal & Lighting \$550,000;
- Utility Relocation \$290,500;
- Survey Cost \$96,900;
- Contingency \$387,300;
- Engineering \$290,500;
- Traffic Control \$193,700;
- Inflation (3% per year for 2 years) \$118,400
- ROW and Easements \$1,179,690
- Total Construction Estimate (Rounded) \$4,500,000;

A full breakdown of the opinion of cost is provided in **Appendix D**. Note that the estimated right-of-way cost was provided by MoDOT. A full breakdown of the right-of-way estimate can be found in **Appendix E**.

³ https://camdengis.integritygis.com/H5/Index.html?viewer=camden

Camdenton, MO

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **58** of **152**

Phase 2

Roadway Geometrics

Exhibit 7 illustrates a conceptual planning level drawing of the proposed Boulevard concept under Phase 2. As can be seen, all the roadway improvements proposed in Phase 1 would be kept in place. Phase 2 would extend the additional third eastbound and westbound US 54 lane from Laker Pride Road to Cecil Street. Note, as will be discussed in the traffic operations section, the additional lane capacity is needed to provide acceptable operations under forecasted design-year conditions. Furthermore, a raised median is proposed along US 54 between Laker Pride Road and Cecil Street to restrict left-turn movements from crossing the proposed three lane through lanes along both directions of US 54.

U-turn movements at Cecil Street and Jack Crowell Road proposed to provide left-turn access for the properties along both sides of US 54 between Jack Crowell Road and Cecil Street. The eastbound US 54 to westbound US 54 U-Turn is proposed at the Cecil Street intersection through a jug-handle intersection. The jug-handle would be located opposite the Cecil Street approach. Also, to maintain the existing number of signal phases at the Cecil Street intersection, the existing eastbound US 54 left-turn movement to Cecil Street is proposed to be shifted to the jug-handle approach.

The westbound US 54 to eastbound US 54 U-Turn is proposed at the westbound US 54 approach at Jack Crowell Road. To provide this U-Turn at Jack Crowell Road, the northbound Laker Pride Road approach is proposed to be relocated approximately 1,200 feet to the east, opposite a commercial driveway. The relocated Laker Pride Road intersection would be signalized as well as an eastbound US 54 right-turn lane and northbound Laker Pride Road dual left-turn lanes would be provided for the heavy school traffic during the AM and PM peaks.

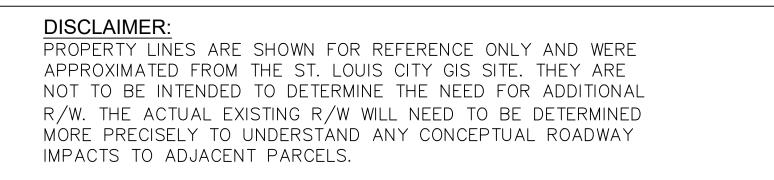
Similar to Phase 1, the three through lanes at the eastbound US 54 approach at Jack Crowell Road will require the westbound US 54 U-Turn movement to operate under protected phasing. Furthermore, the three through lanes at the eastbound and westbound US 54 approaches at Laker Pride Road/commercial driveway will require the westbound and eastbound US 54 left-turn lanes to operate under protected phasing.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **60** of **152**

Right-of-Way Impacts

Exhibit 8 illustrates the right-of-way impact of the Phase 2 improvements. As can be seen, the configuration would impact twenty-four parcels. Right-of-way would need to be acquired for about 3.33 acres. Similar to the Phase 1 right-of-way impacts, the property lines are for reference only and were approximated from the Camden County GIS website to estimate right-of-way needs. The actual existing right-of-way needs will be more precisely determined in the design phase.

Opinion of Cost


The opinion of cost estimate of the proposed Phase 2 improvements include:

- Roadway \$5,894,225;
- Marking & Signing \$44,781;
- Signal & Lighting \$1,070,000;
- Utility Relocation \$55,740;
- Survey Cost \$350,500;
- Contingency \$1,401,900;
- Engineering \$1,051,400;
- Traffic Control \$701,000;
- Inflation (3% per year for 2 years) \$430,000
- ROW and Easements TBD
- Total Construction Estimate (Rounded) \$11,000,000;

A full breakdown of the opinion of cost estimate is provided in **Appendix F**.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **62** of **152**

Forecasted Build Traffic Volumes

The 2024 Build traffic volumes were adjusted to determine the traffic volume forecast under the Boulevard Phase 1 concept (Build conditions). **Exhibit 9** summarizes the anticipated 2024 Build traffic volumes during November AM, November PM, and August PM peak hours.

The 2030 Build traffic volumes were adjusted to determine the traffic volume forecast under the Boulevard Phase 1 concept. **Exhibit 10** summarizes the forecasted 2030 Build traffic volumes during November AM, November PM, and August PM peak hours.

The 2050 Build traffic volumes were adjusted to determine the traffic volume forecast under the Boulevard Phase 1 concept. **Exhibit 11** summarizes the forecasted 2050 Build traffic volumes during November AM, November PM, and August PM peak hours.

The 2050 Build traffic volumes were adjusted to determine the traffic volume forecast under the Boulevard Phase 2 concept. **Exhibit 12** summarizes the forecasted 2050 Build traffic volumes during November AM, November PM, and August PM peak hours.

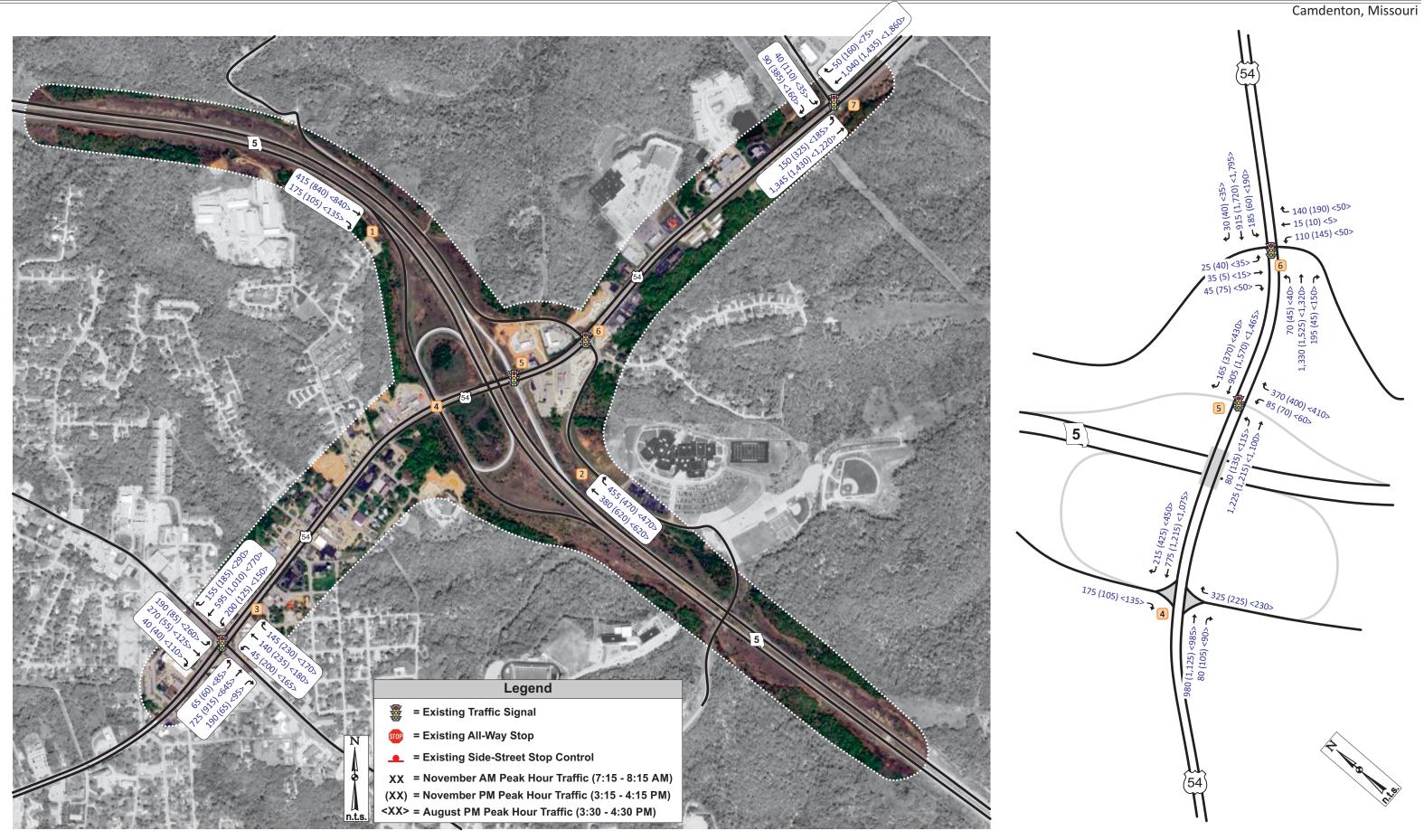
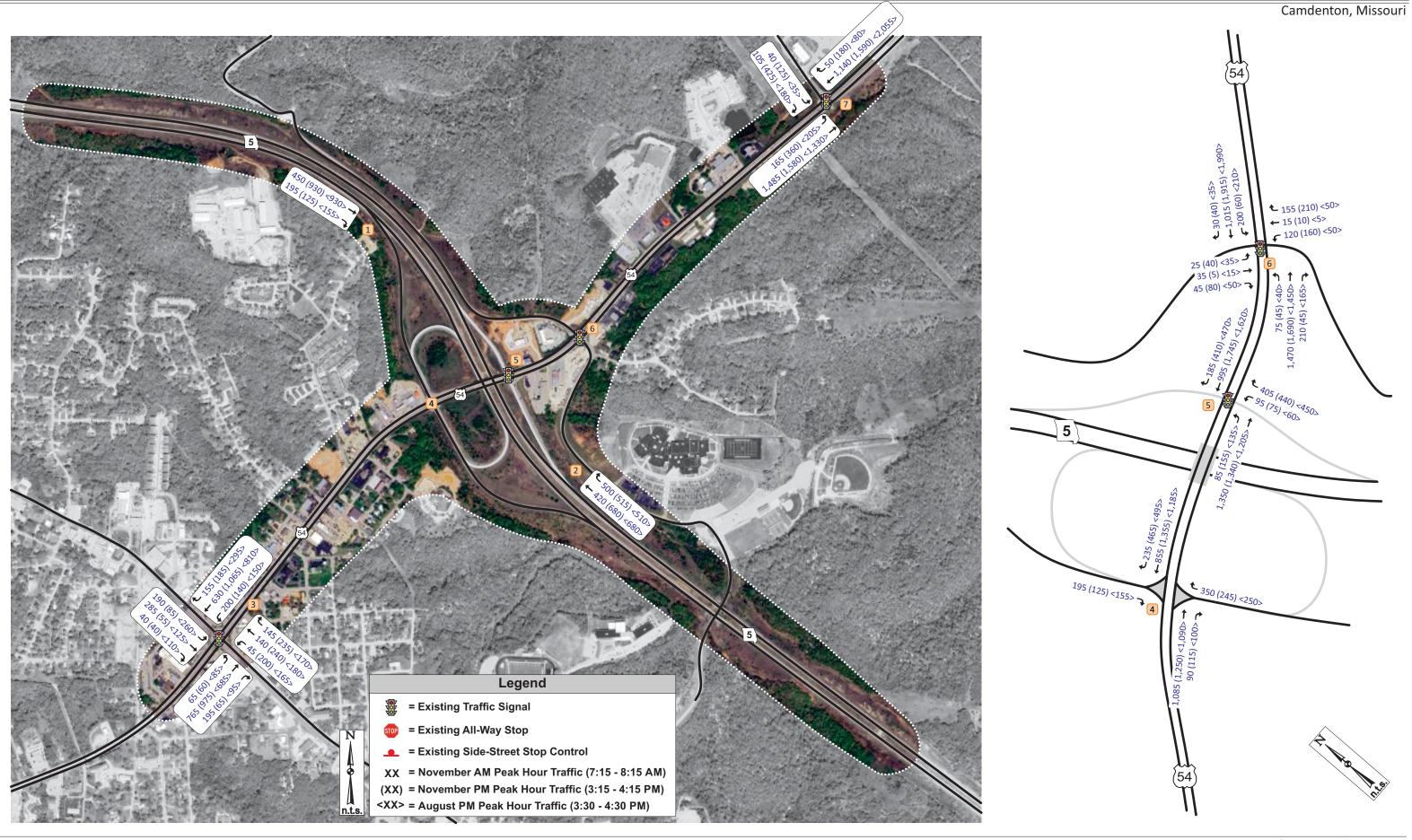



Exhibit 9: 2024 Build (Phase 1) Traffic Volumes

Job# 073-24 07/29/2025

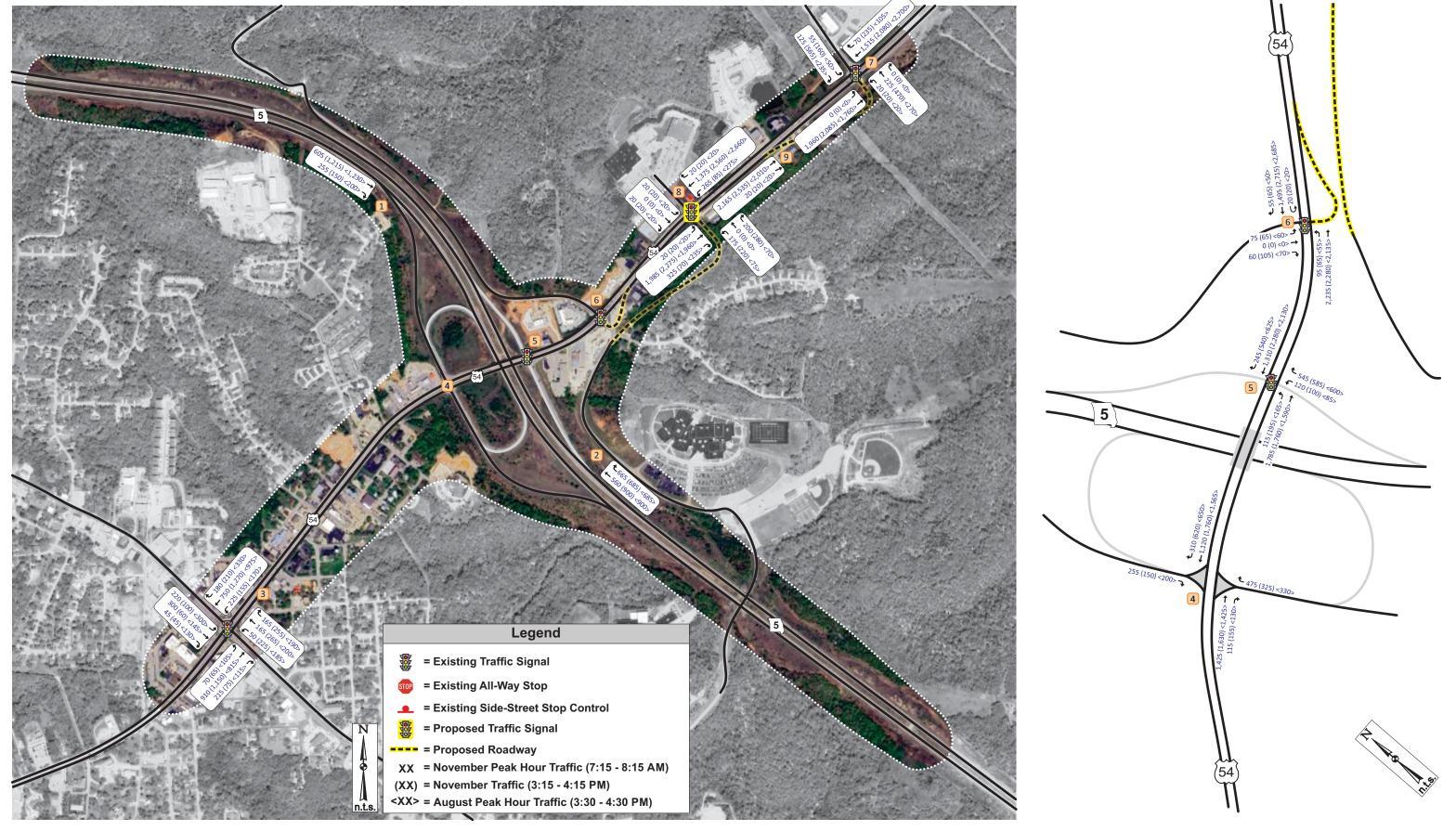


Exhibit 11: 2050 Build (Phase 1) Traffic Volumes

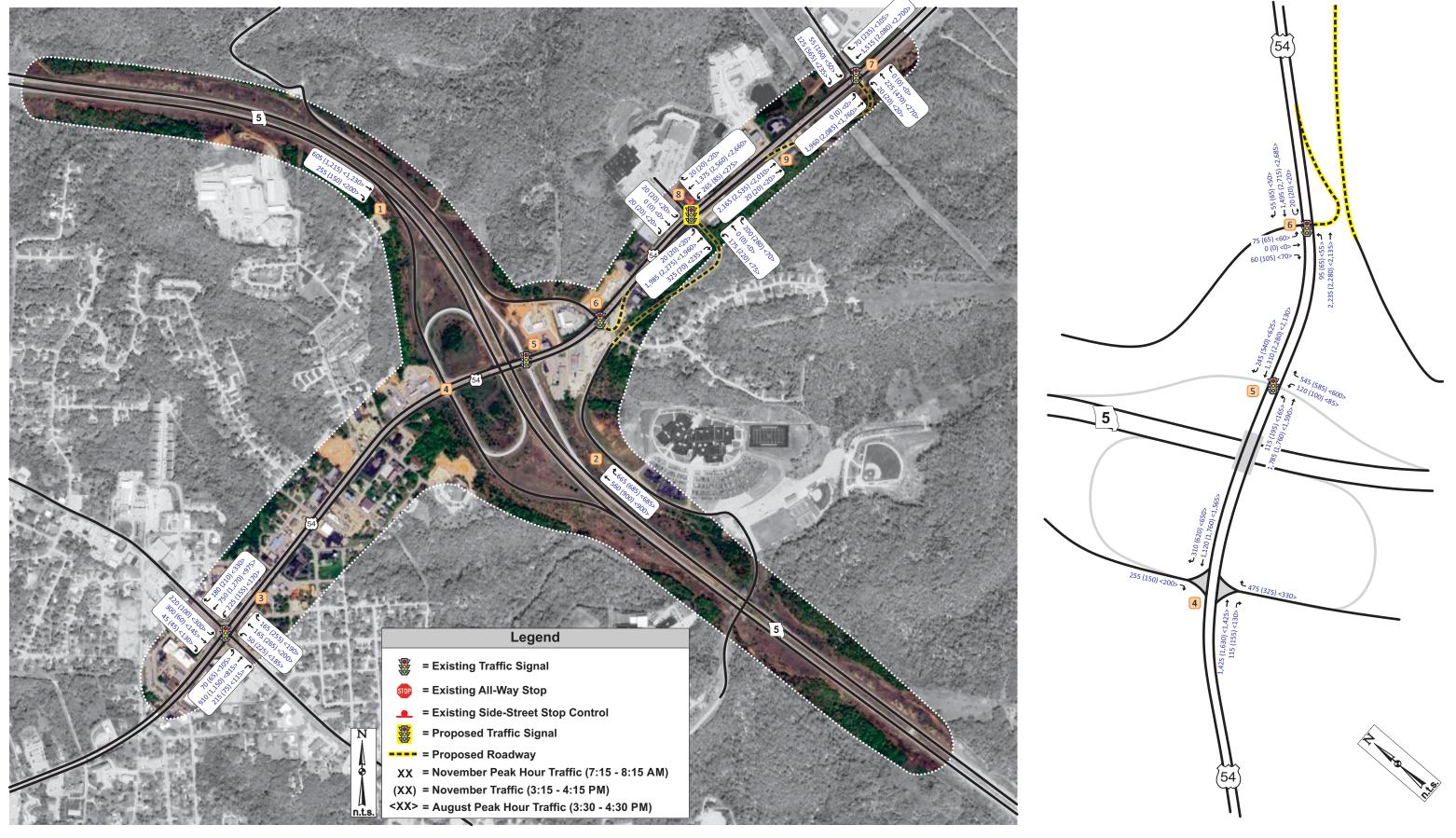


Exhibit 12: 2050 Build (Phase 2) Traffic Volumes

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 67 of 152

TRAFFIC OPERATIONS

Study Procedures

No-build and build traffic operations were evaluated by conducting capacity analysis of the roadways and intersections in the study area. These analyses are based on many characteristics, including no-build and build traffic volumes, peaking characteristics, roadway and intersection geometry, and traffic control/traffic signal patterns. The SYNCHRO and VISSIM software packages were utilized in the analysis, capitalizing on the strengths of each software tool and generating results for comparison and verification between the different tools.

SYNCHRO is a macro-level analytical traffic flow model. SYNCHRO is based on study procedures outlined in the Highway Capacity Manual, published by the Transportation Research Board. We used SYNCHRO version 11 for this study. SYNCHRO is recognized as the most widely used tool in the traffic engineering field for analyzing and optimizing traffic flows at signalized intersections. Thus, we used SYNCHRO to evaluate intersection operations.

VISSIM is a micro-simulation traffic flow model that specializes in the analysis of complex transportation systems and was used to evaluate all aspects of the study area, including freeways, ramps, and intersections. We used VISSIM version 22 for this study. It is especially useful for analyzing freeways due to its sophisticated driver behavior algorithms that accurately reflect lane changing and car-following maneuvers. A benefit of VISSIM is that it accounts for system effects; how various elements in the roadway network impact and influence each other.

Several Measures of Effectiveness (MOE) were used in this evaluation including level of service (LOS), volume to capacity ratio (v/c), intersection capacity utilization (ICU), vehicular delay, travel time, and queue length.

LOS are measures of traffic operations which consider speed, delay, traffic interruptions, safety, driver comfort, and convenience. LOS conditions were graded in accordance with six levels of traffic service (Level A "Free Flow" to Level F "Fully Saturated") established by the Highway Capacity Manual. LOS C, which is normally used for design, represents a roadway with volumes ranging from 70% to 80% of its capacity. LOS D is generally considered acceptable for peak hours in urban areas.

For intersections, the LOS is directly related to vehicular delay. At signalized intersections, the LOS criteria differ from that at unsignalized intersections primarily because different transportation facilities create different driver expectations. The expectation is that a signalized intersection is designed to carry higher traffic volumes and, consequently, may experience greater delay than an unsignalized intersection. **Table 21** summarizes the LOS thresholds used in the analysis for intersections.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 68 of 152

Table 21: Level of Service Thresholds

Lovel of Somice (LOS)	Control Delay per Vehicle (sec/veh)									
Level of Service (LOS)	Signalized Intersections	Unsignalized Intersections								
Α	<u><</u> 10	0-10								
В	> 10-20	> 10-15								
С	> 20-35	> 15-25								
D	> 35-55	> 25-35								
E	> 55-80	> 35-50								
F	> 80	> 50								

Cells highlighted in yellow in the intersection MOE tables indicate LOS E while cells highlighted in red indicate LOS F.

In addition to the LOS and vehicular delay, the average and maximum queue length data were collected at each intersection approach. A queue is the distance vehicles are stacked from the intersection approach. The queue length at an intersection approach impacts vehicular delay because the longer the queue is the higher the longer distance a vehicle needs to travel to reach the intersection approach which increases the vehicular delay which in turn impacts LOS. The average and maximum queue length are collected because the average queue length represents the 50th percentile or middle distance the queue will be during the peak hour, and the maximum queue length represents the furthers distance a queue will reach during the peak hour.

Furthermore, v/c and ICU ratios provide important measures of intersection operations. Intersection movements can operate an acceptable LOS (D or better) yet still have unacceptably high v/c ratios. In general, a v/c or ICU ratio of approximately 0.9 corresponds to occasional queuing and cycle failure, and a v/c or ICU ratio between 0.9 and 1.0 corresponds to frequent queuing and cycle failure. A v/c or ICU ratio greater than 1.0 results in general failure of the movement or intersection, respectively. Therefore, v/c and ICU ratios were considered in addition to LOS and queue length when evaluating an intersection's operations. Cells highlighted in yellow indicate v/c and ICU ratios between 0.9 and 1.0 and cells highlighted in red indicate v/c and ICU ratios over 1.0.

For freeway segments, LOS is based on density. Although speed is a major indicator of service quality to drivers, freedom to maneuver within the traffic stream and proximity to other vehicles, as measured by the density of the traffic stream, are equally noticeable concerns. Density increases as flow increases up to capacity, resulting in an MOE that is sensitive to a broad range of flows. For these reasons, density is the parameter used to define LOS for freeway and ramp sections, as described in **Table 22**.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 69 of 152

Table 22: Freeway Level of Service Thresholds

Level of Service (LOS)	Merging and Diverging Segment Density (pc/mi/ln)*	Basic Freeway Segment Density (pc/mi/ln)*
Α	0 – 10	0 – 11
В	> 10 – 20	> 11 – 18
С	> 20 – 28	> 18 – 26
D	> 28 – 35	> 26 – 35
E	> 35	> 35
F	Demand Exceeds Capacity	> 45

^{*}pc/mi/ln = passenger cars per mile per lane

Cells highlighted in yellow in the freeway MOE tables indicate LOS E and cells highlighted in red indicate LOS F.

Results will not be identical between VISSIM and the SYNCHRO models due to differences in software methodologies. SYNCHRO are macroscopic models that analyze roadway geometry in isolation and VVISSIM is a stochastic microscopic model that analyzes the transportation system in its entirety. VISSIM results are impacted by effects such as platooning caused by nearby signals or upstream traffic flow restrictions, and SYNCHRO analyzes how the roadway geometry operates under general conditions not considering the effects of the surrounding roadway system. All the software packages provide different information that is useful in understanding how the concepts will work in the field. The combination of both analysis methods provides information to see how the entire system works together (VISSIM) but also how each individual element works independently (SYNCHRO).

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 70 of 152

VISSIM Calibration/Validation

Calibration of a VISSIM model ensures that all measurable parameters generated by the traffic model are in alignment with actual traffic conditions observed during a typical day. Calibrated VISSIM models can accurately determine the impacts of potential roadway changes.

Calibration Criteria

To ensure satisfactory calibration of the model, standards were used to establish targets regarding traffic flows and travel times. The target for the traffic flow calibration effort was set at the values included in MoDOT's Engineering Policy Guide (EPG), section 905.3.5.3.2.3.4 Calibration Targets/Model Validation, shown below in **Table 23**. In addition, the target for travel times calibration effort was set to be within 15% (or 1 minute maximum, if higher) of real-world travel time runs for greater than 85% of cases.

Table 23: MoDOT EPG Calibration Targets for Link Flows and GEH Statistics

Criteria and Measures	Calibration Acceptance Targets
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	> 85% of cases
Within 100 veh/h, for Flow < 700 veh/h	> 85% of cases
Within 400 veh/h, for Flow > 2700 veh/h	> 85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic <5 for Individual Link Flows	> 85% of cases
GEH Statistic for Sum of All Link Flows	GEH < 4 for sum of all link counts
Source: FHWA Traffic Analysis Toolbox, Volume III, Se	ection 5.6 (Table 4)

Calibration Process

As previously mentioned, turning movement count data was collected at the study intersections between 6:00 AM and 6:00 PM. From this data source, specific vehicle input flow rates were developed for the pre-peak, peak, and post-peak hours for the November AM, November PM, and August PM models. Initial runs of the model did not yield calibration results within the target ranges as well as visual validation. Based on additional field observations, it was determined that the signal timing at the intersections of US 54 at Laker Pride Road and northbound MO 5 ramps needed to be adjusted to pre-timed mode in all scenarios to replicate similar green times for eastbound and westbound US 54 during the peak hours.

Furthermore, the extensive queueing present on westbound US 54 indicates that the collected count data represents the capacity of the corridor, but not the demand. The vehicle input at westbound US 54 was adjusted during the pre-peak to include the vehicles present in the queue to fully represent the demand during the November and August PM peak hours.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **71** of **152**

The models were run again with the pre-timed signal timing and increased vehicle input, but the models still did not yield calibration results within the target ranges as well as visual validation. The westbound US 54 queue would be generated during the pre-peak but would dissipate during the peak. To sustain the westbound US 54 queue during the peak hour, the driver behaviors for westbound US 54 were adjusted within MoDOT's EPG recommended ranges. The adjustment of signal timing, vehicle input flow rates, and driver behaviors yielded calibrated results and visual validation.

Travel Time Comparison

A model is reasonably calibrated when the modeled travel times are within 15% of the average field collected travel time. **Table 24** shows the November AM and PM peak hour travel time calibration results. As shown, in both the November AM and PM models, the travel time results are within the target range. Note that due to the timing of this study, August PM travel time data was not collected.

Table 24: Field and 2024 No-Build VISSIM Travel Time Comparison

			-										
November AM													
Direction	Field Average (s)	VISSIM Average (s)	Percent Difference										
Eastbound US 54	205	217	+5.8%										
Westbound US 54	194	190	-1.7%										
November PM													
Direction	Field Average (s)	VISSIM Average (s)	Percent Difference										
Eastbound US 54	181	192	+5.8%										
Westbound US 54	319	319	0.0%										

Traffic Flow Results

A model is reasonably calibrated when the sum of the modeled traffic flows is within 5% of the field collected turning movement counts and the GEH statistic is lower than 4. **Table 25**Table 25 shows the November AM, November PM, and August PM peak hour traffic calibration results. As shown, in all peak hours, the traffic flows are within the target range.

Table 25: Field and 2024 No-Build VISSIM Traffic Flow Comparison

Peak Hour	Total Tr	affic Flow	GEH	Percent
Peak Hour	Field (veh)	VISSIM (veh)	GER	Difference
November AM	13950	13741	2.04	-1.7%
November PM	17910	18085	0.96	0.7%
August PM	16860	16824	0.62	-0.5%

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 72 of 152

<u>Visual Inspection of the Model Operations</u>

Visual validation of the models is an imperative step in the development and calibration of the model. It is essential for the modeler to perform thorough visual validation to eliminate any coding errors and achieve logical results. After coding is completed, the models were run and visually inspected multiple times. Any coding errors were then addressed to achieve realistic vehicle movements.

Figure 28 – Figure 30 show several queues from the study area during the 2024 No-Build November AM conditions.

- Figure 28 shows the eastbound US 54 approach queue at Laker Pride Road, reaching northbound MO 5 ramps.
- Figure 29 shows the eastbound US 54 approach queue at northbound MO 5, reaching southbound MO 5 ramps.
- Figure 30 shows the northbound Laker Pride Road approach queue at US 54, reaching Elm Tree Lane.

Figure 31 – Figure 35 show several queues from the study area during the 2024 No-Build November PM conditions.

- Figure 31 shows the westbound US 54 approach queue at Laker Pride Road, reaching Cecile Street.
- Figure 32 shows the westbound US 54 approach queue at northbound MO 5, reaching Laker Pride Road.
- Figure 33 shows the northbound Laker Pride Road approach queue at US 54, reaching Elm Tree Lane.
- Figure 34 shows the westbound US 54 approach queue at Business Route 5, reaching Osage Avenue.
- Figure 35 shows the northbound Business Route 5 approach queue at US 54, reaching Camden Avenue.

Generally, these queue lengths agree with field observations during the November AM and PM peak periods.

Figure 28: Eastbound US 54 approach queue at Laker Pride Road – 2024 No-Build November AM

Figure 29: Eastbound US 54 approach queue at northbound MO 5 – 2024 No-Build November AM

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 74 of 152

Figure 30: Northbound Laker Pride Road approach queue at US 54 – 2024 No-Build November AM

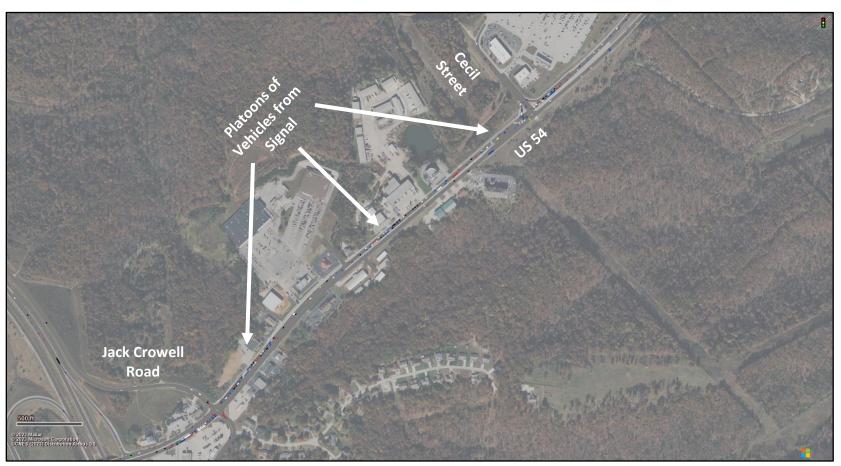


Figure 31: Westbound US 54 approach queue at Laker Pride Road – 2024 No-Build November PM

Figure 32: Westbound US 54 approach queue at northbound MO 5 – 2024 No-Build November PM

Figure 33: Northbound Laker Pride Road approach queue at US 54 – 2024 No-Build November PM

Figure 34: Westbound US 54 approach queue at Business Route 5 – 2024 No-Build November PM

Figure 35: Northbound Business Route 5 approach queue at US 54 – 2024 No-Build November PM.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 78 of 152

Analysis Scenarios

The following scenarios were evaluated for the US 54 study area:

- 2024 No-Build;
- 2024 Build (Phase 1);
- 2030 No-Build;
- 2030 Build (Phase 1);
- 2050 No-Build;
- 2050 Build (Phase 1); and
- 2050 Build (Phase 2).

As previously mentioned, a project is in place to expand US 54 (just west of Business Route 5) from a three-lane section (one lane in each direction and a center two-way left-turn lane) to a five-lane section (two lanes in each direction and a center two-way left-turn lane) and is anticipated to be completed in 2026. As such, the future five-lane section was incorporated in the 2030 and 2050 scenarios.

Network Performance Measures Comparison

In addition to intersection and freeway operations, the VISSIM models provide network-wide performance measures that can be used to see the overall differences between the No-Build and Build scenarios. The following performance measures were compared:

- Average Delay Per Vehicle (seconds);
- Average Speed Per Vehicle (miles per hour);
- Total Delay (Hours); and
- Latent Demand (Vehicles).

Figure 36, **Figure** 37, and **Figure** 38 summarize the network performance measures for the 2024 scenarios during the November AM, November PM, August PM peak hours, respectively.

During the November AM peak, Phase 1 would provide a decrease of 38% and 39% in average delay per vehicle and total delay, respectively, from no-build conditions. During the November PM peak, Phase 1 would provide a decrease of 56% and 57% in average delay per vehicle and total delay, respectively, from no-build conditions. During the August PM peak, Phase 1 would provide a decrease of 65% and 66% in average delay per vehicle and total delay, respectively, from no-build conditions. The decrease in average delay per vehicle and total delay means vehicles are traveling faster through the network which results in an increase in the average speed per vehicle in the network. Phase 1 would provide an increase in average speed per vehicle of 13%, 27%, and 38%, during the November AM and PM and August PM peak hours, respectively, from no-build conditions. Overall, the 2024 results show that Phase 1 would provide a considerable improvement in the overall roadway network performance.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **79** of **152**

Figure 39, **Figure** 40, and **Figure** 41 summarize the network performance measures for the 2030 scenarios during the November AM, November PM, August PM peak hours, respectively.

During the November AM peak, Phase 1 would provide a decrease of 54% in average delay per vehicle and total delay from no-build conditions. During the November PM peak, Phase 1 would provide a decrease of 69% in average delay per vehicle and total delay from no-build conditions. During the August PM peak, Phase 1 would provide a decrease of 65% and 64% in average delay per vehicle and total delay, respectively, from no-build conditions. Phase 1 would provide an increase in average speed per vehicle of 27%, 54%, and 43%, during the November AM, November PM, and August PM peak hours, respectively, from no-build conditions. Moreover, the increase in vehicle speed and the decrease in delay within the network allows additional vehicles to enter the model which results in a decrease in latent demand. Phase 1 would provide a 99% decrease in the latent demand during the November PM and August PM peak hours from no-build conditions. Overall, the 2030 results show that Phase 1 would provide a substantial improvement in the overall roadway network performance.

Figure 42, **Figure** 43, and **Figure** 44 summarize the network performance measures for the 2050 scenarios during the November AM, November PM, August PM peak hours, respectively.

During the November AM peak, Phase 1 would provide a decrease of 66% in average delay per vehicle and total delay from no-build conditions. During the November PM peak, Phase 1 would provide a decrease of 41% and 38% in average delay per vehicle and total delay, respectively, from no-build conditions. During the August PM peak, Phase 1 would provide a decrease of 84% and 81% in average delay per vehicle and total delay, respectively, from no-build conditions. Phase 1 would provide an increase in average speed per vehicle of 94%, 39%, and 191%, during the November AM, November PM, and August PM peak hours, respectively, from no-build conditions. Phase 1 would provide a decrease of the latent demand by 93%, 68%, and 68% during November AM, November PM, and August PM peak hours, respectively, from no-build conditions.

Overall, Phase 1 provides an improvement in all network-wide metrics, but approximately 572 and 1114 vehicles during the November and August PM peak hours, respectively, are unable to enter the model due to capacity constraints on US 54 between Laker Pride Road/Jack Crowell Road and Cecil Street. Phase 2 alleviates the congestion seen during the November and August PM peak hours by providing additional lane capacity along US 54.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **80** of **152**

During the November AM peak, Phase 2 would provide a decrease of 78% in average delay per vehicle and total delay from no-build conditions. During the November PM peak, Phase 2 would provide a decrease of 72% and 70% in average delay per vehicle and total delay, respectively, from no-build conditions. During the August PM peak, Phase 2 would provide a decrease of 86% and 83% in average delay per vehicle and total delay, respectively, from no-build conditions. Phase 2 would provide an increase in average speed per vehicle of 123%, 87%, and 206%, during the November AM, November PM, and August PM peak hours, respectively, from no-build conditions. Phase 2 would provide a decrease of the latent demand by 99% during all peak hours from no-build conditions. Overall, the 2050 results show that Phase 2 would provide a significant improvement in the overall roadway network performance.

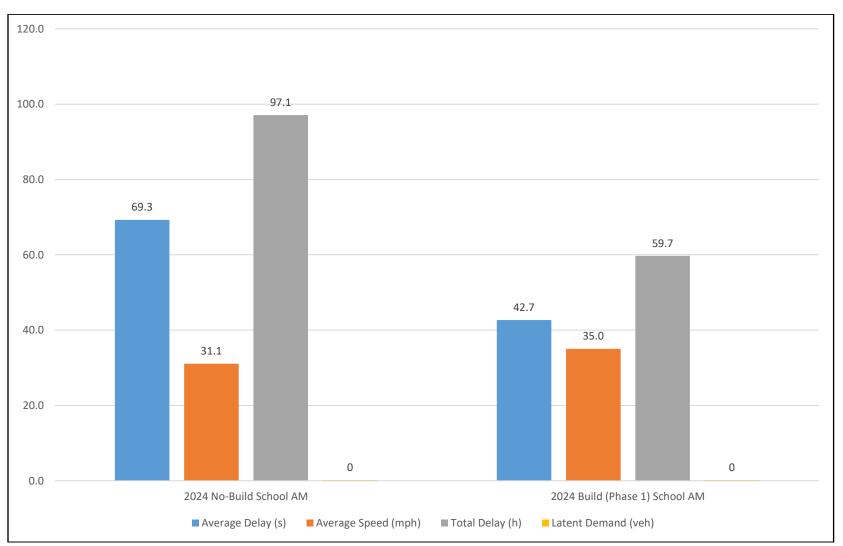


Figure 36: Network-Wide Performance Results – 2024 Scenarios (November AM Peak Hour)

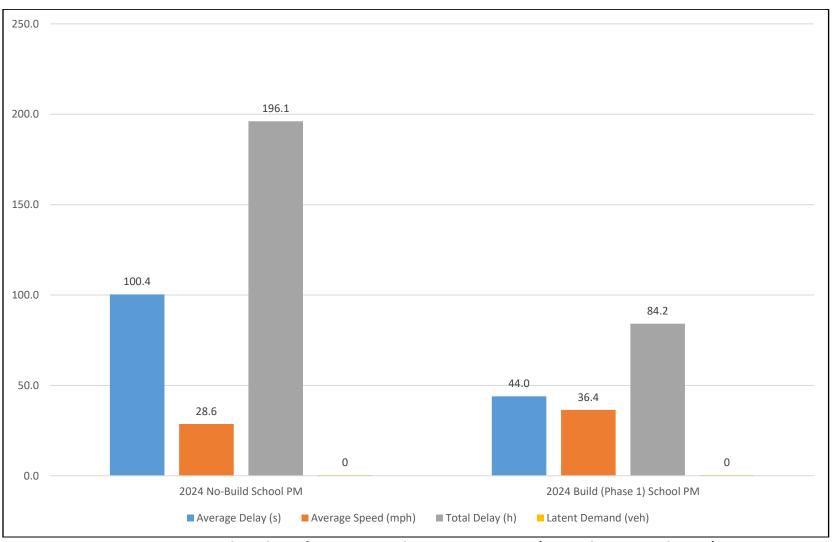


Figure 37: Network-Wide Performance Results – 2024 Scenarios (November PM Peak Hour)

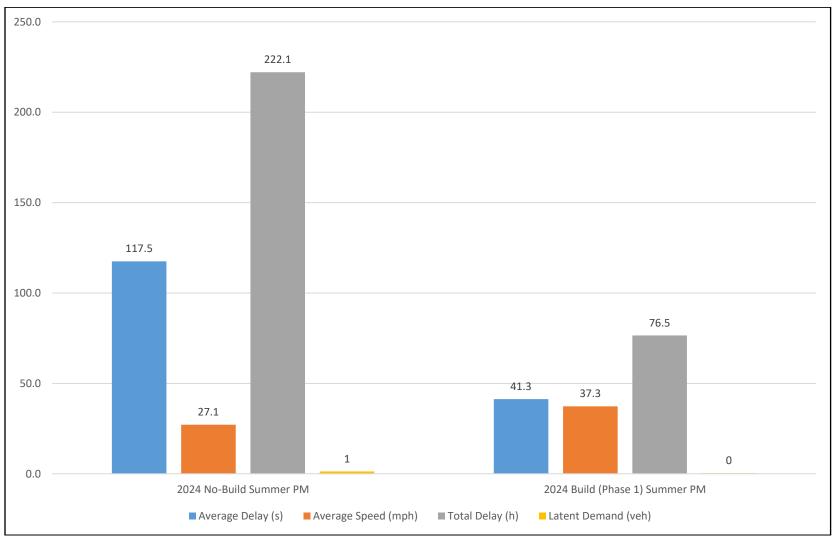


Figure 38: Network-Wide Performance Results – 2024 Scenarios (August PM Peak Hour)

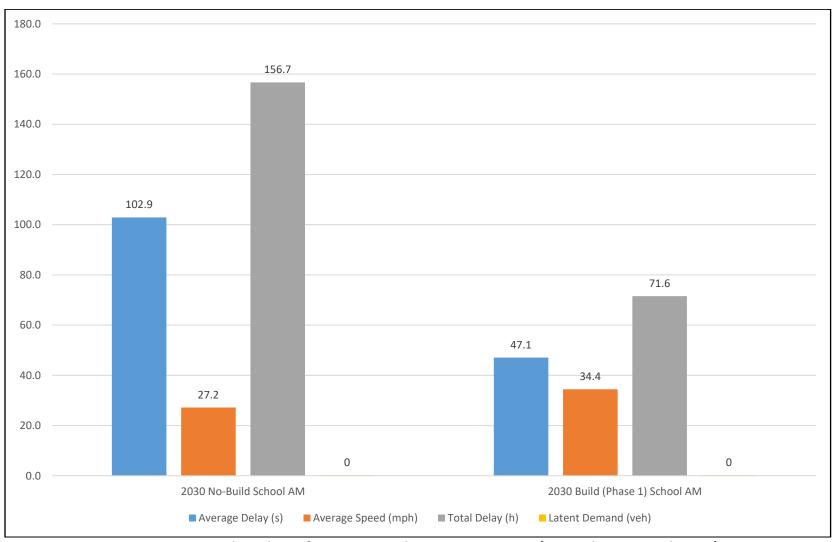


Figure 39: Network-Wide Performance Results – 2030 Scenarios (November AM Peak Hour)

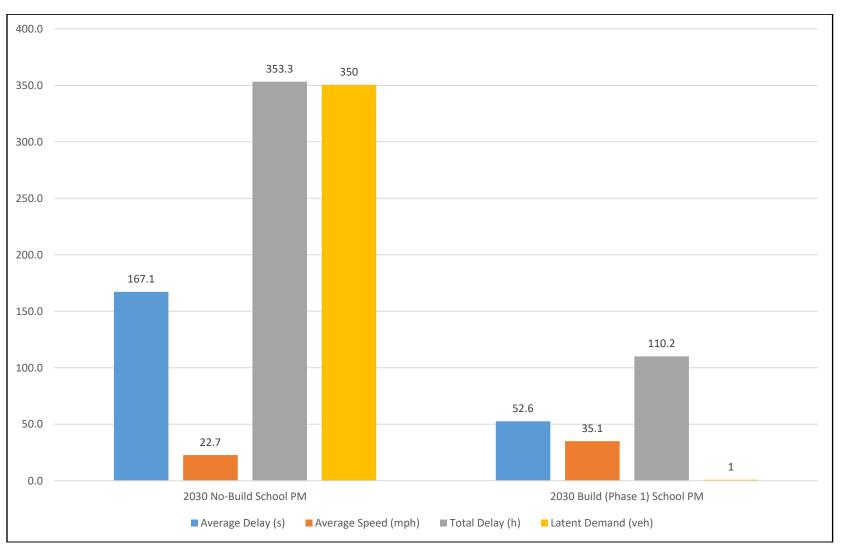


Figure 40: Network-Wide Performance Results – 2030 Scenarios (November PM Peak Hour)

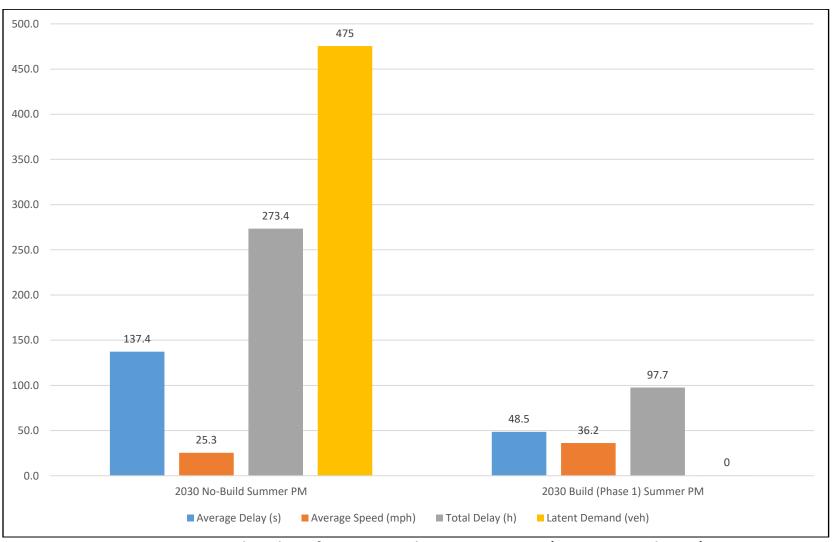


Figure 41: Network-Wide Performance Results – 2030 Scenarios (August PM Peak Hour)

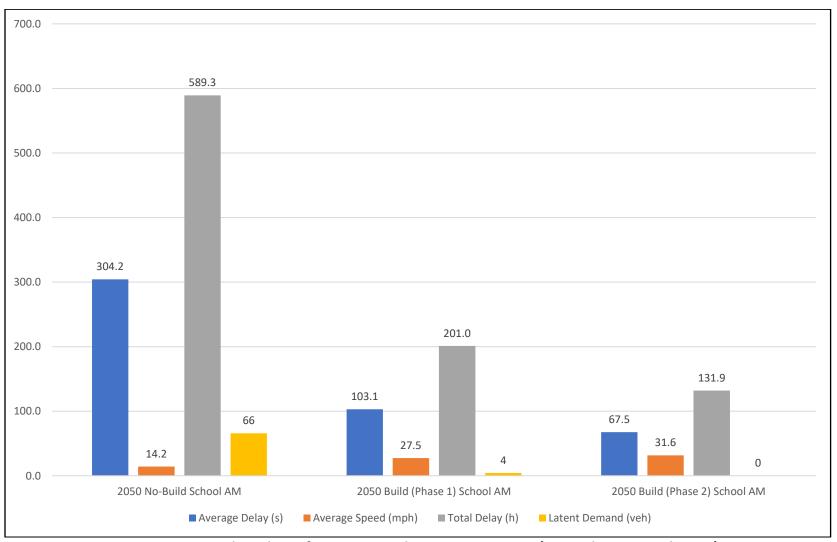


Figure 42: Network-Wide Performance Results – 2050 Scenarios (November AM Peak Hour)

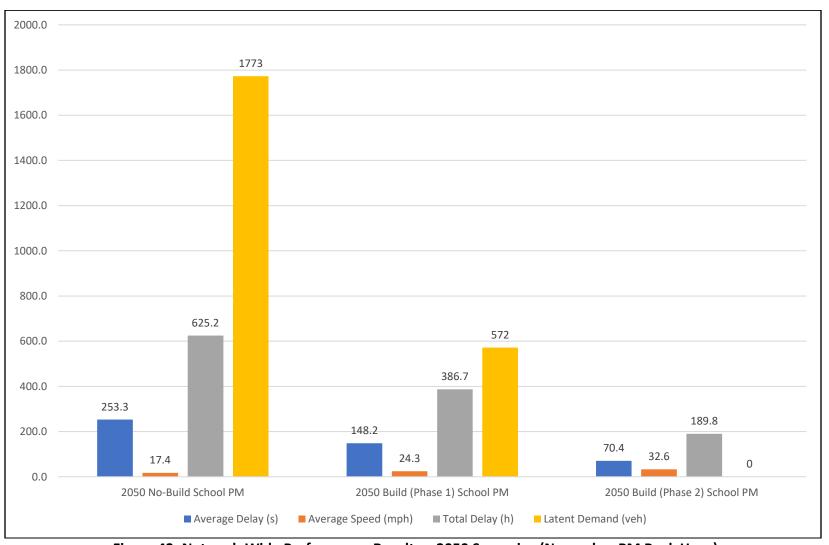


Figure 43: Network-Wide Performance Results – 2050 Scenarios (November PM Peak Hour)

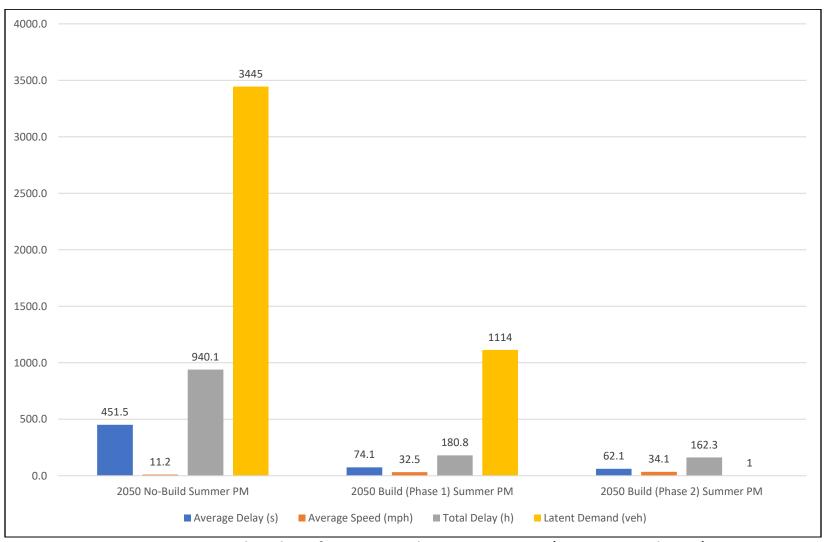


Figure 44: Network-Wide Performance Results – 2050 Scenarios (August PM Peak Hour)

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **90** of **152**

2024 No-Build Operations

The 2024 No-Build traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 26** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 27** and **Table 28** for the November AM, November PM, and August PM peak hours.

The SYNCHRO results show that the overall operating conditions of all study intersections currently operate at an acceptable level of service (LOS D or better) during all peak hours except for the US 54 and Business Route 5 intersection which currently operates at LOS E during the November PM peak hour. Furthermore, all individual intersection approaches currently operate at acceptable LOS during all peak hours, except for the following approaches:

- Southbound Business Route 5 at US 54 during the November AM peak hour (LOS E);
- Westbound US 54 at Business Route 5 during the November PM peak hour (LOS E); and
- Eastbound US 54 at Business Route 5 during the November PM peak hour (LOS E).

The VISSIM results show that all sections of MO 5 currently operate at an acceptable LOS during all peak hours. Also, the VISSIM results show that the overall operating conditions of all study intersections currently operate at an acceptable level of service during all peak hours except for the US 54 and Laker Pride Road/Jack Crowell Road intersection which currently operates at LOS E during the November PM and August PM peak hours. Furthermore, all individual intersection approaches currently operate at acceptable LOS during all peak hours, except for the following approaches:

- Westbound US 54 at Cecil Street during the November PM peak hour (LOS E);
- Southbound Cecil Street at US 54 during the November and August PM peak hours (LOS E);
- Westbound US 54 at Laker Pride Road/Jack Crowell Road during the November and August PM peak hours (LOS F); and
- Northbound Business Route 5 at US 54 during the November PM peak hour (LOS E).

The undesirable operations shown above are primarily due to the capacity constraint at the westbound US 54 approach at Laker Pride Road/Jack Crowell Road. The existing two through lanes at the approach do not provide sufficient capacity during the November PM and August PM peak hours, which results in the maximum approach queues reaching Cecil Street, as shown in **Figure 45** and **Figure 46**, respectively. Note that the undesirable operation at the northbound Business Route 5 at US 54 during the November PM peak hour is caused by the influx of vehicles from the nearby school dismissals.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **91** of **152**

Also, the SYNCHRO models are not showing the capacity constraint at the westbound US 54 approach at Laker Pride Road/Jack Crowell Road during the PM peak hours as compared to the VISSIM models. This difference was investigated further via a review of the model signal timing as well as the collection of additional count data and field observations. The review found that the signal timing in the SYNCHRO and VISSIM models matched the field signal timing, and the additional count data and field observations matched previously collected count data and field observations. The difference in results could be because SYNCHRO is unable to accurately represent driver behaviors seen in the field at the intersection of US 54 and Laker Pride Road/Jack Crowell Road. As previously mentioned, the results from SYNCHRO and VISSIM will not be identical due to differences in software methodologies. However, based on extensive field observations and the collected travel time data, CBB is confident that the VISSIM models represent the existing traffic operations at the study intersections.

Overall, the results show that the existing two through lanes at the westbound US 54 approach at Laker Pride Road/Jack Crowell Road result in a bottleneck during the November and August PM peak hours. Additional capacity is needed at this approach to relieve bottlenecks during the November and August PM peak hours.

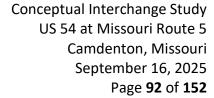


Figure 45: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 No-Build November PM

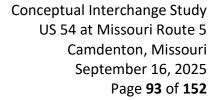


Figure 46: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 No-Build August PM

Table 26: Intersection Operating Conditions – 2024 No-Build (SYNCHRO)

		Nov	ember AM Pe		поп орегас	8		nber PM Peal			August PM Peak Hour					
Intersection/Approach	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	
	US 54 & Cecil Street (Signalized)															
Eastbound US 54	Α	8.5	0.54	140'	210'	В	17.0	0.70	260'	340'	В	10.5	0.54	115'	185'	
Westbound US 54	В	14.9	0.63	190'	290'	С	26.7	0.85	500'	670'	С	27.9	0.93	545'	890'	
Southbound Cecil Street	В	19.9	0.38	<25	45'	D	40.1	0.90	95'	270'	С	21.6	0.60	<25	65'	
Overall Intersection	В	11.6	0.58			С	24.0	0.76			С	20.6	0.81			
	US 54 & Laker Pride Road/Jack Crowell Road (Signalized)															
Eastbound US 54	В	15.9	0.90	180'	235'	В	19.8	0.83	285'	405'	В	17.1	0.79	255'	340'	
Westbound US 54	В	17.8	0.75	195'	245'	С	21.5	0.83	535'	650'	С	25.2	0.87	595'	720'	
Northbound Laker Pride Road	D	35.9	0.73	75'	165'	D	45.9	0.80	115'	225'	С	32.3	0.27	35'	75'	
Southbound Jack Crowell Road	С	28.0	0.33	<25	70'	С	28.2	0.36	30'	65'	С	29.4	0.24	25'	60'	
Overall Intersection	В	18.7	0.91			С	23.2	0.86			С	22.3	0.82			
		-	•	U	S 54 & Northb	ound MO 5 F	Ramps (Signal	lized)	-			•		-		
Eastbound US 54	С	22.6	0.77	355'	445'	С	27.3	0.75	410'	495'	С	23.7	0.65	330'	405'	
Westbound US 54	Α	4.7	0.46	55'	65'	А	3.1	0.68	65'	85'	Α	1.4	0.61	25'	30'	
Northbound MO 5 Off-Ramp	С	24.7	0.54	75'	120'	С	29.2	0.51	110'	155'	С	25.6	0.42	95'	140'	
Overall Intersection	В	16.2	0.58			В	15.1	0.69			В	12.2	0.65			
				US	54 & Southbo	und MO 5 Ra	mps (Unsign	alized)								
Eastbound US 54	Α	<1.0	0.30		<25'	Α	<1.0	0.35		<25'	Α	<1.0	0.30		<25'	
Westbound US 54	Α	<1.0	0.30		<25'	А	<1.0	0.38		<25'	Α	<1.0	0.33		<25'	
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	25.1	0.67		125'	С	21.6	0.53		75'	С	18.7	0.48		65'	
Southbound MO 5 to Westbound US 54 Off-Ramp	В	10.4	0.22		<25'	В	10.1	0.14	1	<25'	Α	9.9	0.16		<25'	
Overall Intersection	Α	3.9	0.54			Α	1.9	0.52			Α	1.9	0.48			
US 54 & Business Route 5 (Signalized)																
Eastbound US 54	D	51.9	0.89	480'	590'	Е	64.9	1.00	550'	640'	D	37.0	0.59	225'	385'	
Westbound US 54	D	38.6	0.80	305'	385'	Е	64.0	1.02	745'	770'	D	38.6	0.77	340'	555'	
Northbound Business Route 5	D	36.1	0.53	75'	120'	D	52.5	0.80	200'	280'	D	44.2	0.68	115'	220'	
Southbound Business Route 5	Е	60.3	0.80	270'	370'	D	49.7	0.44	55'	95'	D	48.3	0.64	95'	175'	
Overall Intersection	D	47.0	0.81			E	61.1	0.83			D	40.7	0.78			

Table 27: Intersection Operating Conditions – 2024 No-Build (VISSIM)

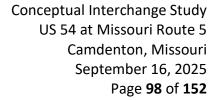
		Nover	nber AM Peak Ho	our		November P	M Peak Hour		August PM Peak Hour				
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	
				l	JS 54 & Cecil Stre	et (Signalized)							
Eastbound US 54	Α	5.8	25'	435'	В	13.4	65'	600'	А	9.2	40'	410'	
Westbound US 54	В	11.4	30'	340'	D	37.4	285'	1535'	E	79.6	1530'	2720'	
Southbound Cecil Street	В	14.7	<25'	80'	E	66.9	260'	830'	E	70.9	80'	390'	
Overall Intersection	Α	8.5			С	30.3			D	51.0			
US 54 & Laker Pride Road/Jack Crowell Road (Signalized)													
Eastbound US 54	С	29.2	335'	860'	С	23.8	170'	785'	С	24.8	150'	745'	
Westbound US 54	D	37.8	180'	600'	F	101.6	2135'	3355'	F	98.6	2785'	3375'	
Northbound Laker Pride Road	С	23.7	<25'	210'	С	34.3	50'	330'	С	24.8	<25'	100'	
Southbound Jack Crowell Road	С	23.5	<25'	70'	С	30.8	<25'	85'	С	32.0	<25'	105'	
Overall Intersection	С	31.7			Е	61.5			Е	64.5			
	-			US 54 &	Northbound MO	5 Ramps (Signaliz	ed)			•			
Eastbound US 54	D	43.4	205'	840'	С	27.6	105'	580'	С	27.7	95'	585'	
Westbound US 54	В	13.6	60'	620'	В	13.7	190'	865'	В	13.5	170'	855'	
Northbound MO 5 Off-Ramp	D	45.8	60'	365'	D	37.8	50'	250'	D	35.9	50'	230'	
Overall Intersection	С	32.7			С	21.6			С	21.3			
	-			US 54 & 9	outhbound MO 5	Ramps (Unsignal	ized)			•			
Eastbound US 54	Α	4.9	<25'	155'	Α	0.5	<25'	<25'	Α	0.4	<25'	<25'	
Westbound US 54	Α	1.1	<25'	<25'	Α	1.3	<25'	<25'	Α	1.4	<25'	<25'	
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	25.0	65'	535'	Α	6.4	<25'	170'	А	5.2	<25'	145'	
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	2.5	<25'	85'	Α	2.3	<25'	50'	Α	2.0	<25'	70'	
Overall Intersection	Α	5.9			Α	1.4			Α	1.4			
	US 54 & Business Route 5 (Signalized)												
Eastbound US 54	С	33.8	150'	540'	С	29.3	130'	535'	С	32.7	120'	415'	
Westbound US 54	С	29.9	110'	490'	D	41.4	215'	865'	С	32.7	135'	530'	
Northbound Business Route 5	С	27.3	<25'	120'	Е	55.4	140'	1080'	С	33.8	30'	225'	
Southbound Business Route 5	D	45.8	90'	500'	D	41.2	25'	110'	D	38.6	60'	215'	
Overall Intersection	С	33.9			D	40.4			С	33.9			

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **96** of **152**

Table 28: MO 5 Capacity Analysis – 2024 No-Build (VISSIM)

Traffic						Nov	ovember AM Peak hour			November PM Peak Hour				August PM Peak Hour			
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	
	Southbound MO 5																
2024	Before US 54 Interchange	SB	Basic	2	Α	5.0	61.0	587	Α	8.1	60.0	944	Α	8.3	60.0	974	
2024	US 54 Off-Ramp	SB	Diverge	3	Α	3.1	64.0	583	Α	4.9	64.0	944	Α	5.1	64.0	974	
2024	Between US 54 Ramps	SB	Basic	2	Α	3.3	64.0	418	Α	6.6	64.0	838	Α	6.5	64.0	835	
2024	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	Α	4.2	50.0	620	Α	8.0	53.0	1275	Α	8.1	53.0	1283	
2024	Between US 54 Ramps	SB	Basic	2	Α	2.3	62.0	289	Α	8.3	63.0	1048	Α	8.3	63.0	1048	
2024	US 54 On-Ramp	SB	Merge	3	Α	1.9	64.0	356	Α	6.0	63.0	1147	Α	5.9	64.0	1135	
2024	After US 54 Interchange	SB	Basic	2	Α	2.7	65.0	354	Α	9.0	64.0	1148	Α	8.9	64.0	1134	
							Northbo	ound MO 5									
2024	Before US 54 Interchange	NB	Basic	2	Α	7.2	60.0	835	Α	9.4	60.0	1090	Α	9.4	60.0	1090	
2024	US 54 Off-Ramp	NB	Diverge	3	Α	4.4	63.0	835	Α	5.8	63.0	1089	Α	5.8	63.0	1089	
2024	Between US 54 Ramps	NB	Basic	2	Α	3.0	65.0	390	Α	4.8	64.0	616	Α	4.8	64.0	622	
2024	US 54 On-Ramp	NB	Merge	3	Α	3.3	63.0	616	Α	6.2	62.0	1150	Α	6.3	62.0	1171	
2024	After US 54 Interchange	NB	Basic	2	Α	4.8	64.0	613	Α	9.0	64.0	1153	Α	9.2	64.0	1171	

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **97** of **152**


2024 Build Operations (Phase 1)

The 2024 Build (Phase 1) traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 29** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 30** and **Table 31** for the November AM, November PM, and August PM peak hours.

As can be seen in the SYNCHRO and VISSIM results, the overall operating conditions of all study area intersections and individual intersection approaches are expected to operate at acceptable level of service (LOS D or better) during all peak hours. Furthermore, the VISSIM results show that all sections of MO 5 are expected to operate at an acceptable LOS during all peak hours. Note that the operational improvements at the US 54 and Business Route 5 intersections can be attributed to signal timing adjustments.

Furthermore, **Figure 47** and **Figure** 48 show that the maximum queues for the westbound US 54 approach at Laker Pride Road/Jack Crowell Road during the November and August PM peak hours, respectively, are expected to decrease significantly from 2024 No-Build conditions and are not expected to impact adjacent signalized intersections.

Overall, the proposed Boulevard (Phase 1) concept improvements are expected to address mobility concerns along US 54 by providing additional lane capacity on westbound US 54, which is expected to relieve the existing westbound US 54 bottleneck at Laker Pride Road/Jack Crowell Road.

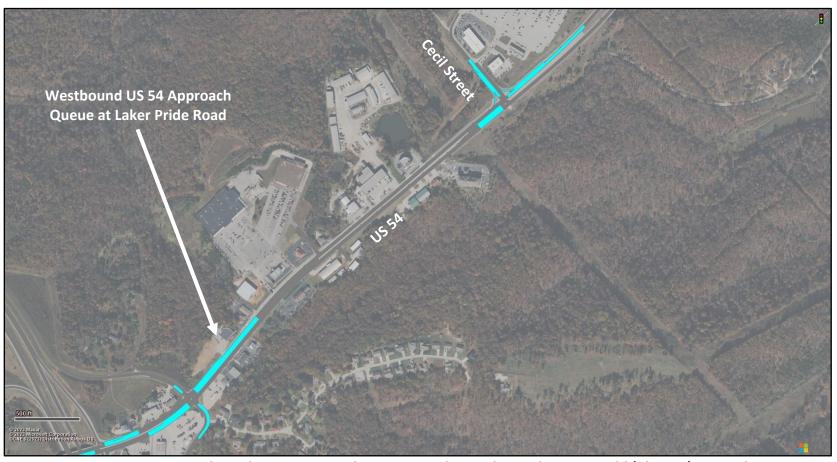
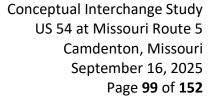



Figure 47: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 Build (Phase 1) November PM

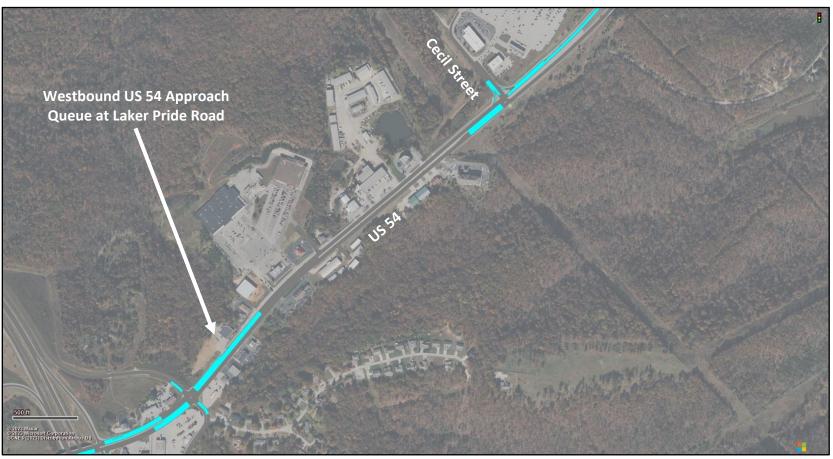


Figure 48: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2024 Build (Phase 1) August PM

Table 29: Intersection Operating Conditions – 2024 Build (Phase 1) (SYNCHRO)

		New			P			nhar DNA Daal	•	,		A	ust DNA Dools I		
		NOV	ember AM Pe	T			Nover	nber PM Peal	r	_		Augi	ust PM Peak I		
Intersection/Approach	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
					US 54 &	Cecil Street ((Signalized)								
Eastbound US 54	Α	9.0	0.54	55'	75'	С	22.6	0.95	150'	240'	В	12.5	0.62	230'	235'
Westbound US 54	В	10.6	0.48	200'	295'	С	25.2	0.81	520'	630'	С	20.7	0.85	565'	815'
Southbound Cecil Street	С	30.5	0.51	<25	55'	D	51.4	0.93	170'	350'	С	24.9	0.63	<25	65'
Overall Intersection	В	10.7	0.58			С	27.4	0.76			В	17.7	0.81		
				US 54	& Laker Pride	Road/Jack Cr	owell Road (Signalized)							
Eastbound US 54	В	12.6	0.72	285'	325'	Α	9.9	0.69	305'	355'	В	12.3	0.58	245'	420'
Westbound US 54	В	13.9	0.68	90'	175'	Α	7.4	0.55	250'	330'	Α	6.0	0.56	80'	145'
Northbound Laker Pride Road	D	40.2	0.75	95'	155'	D	42.7	0.78	110'	180'	D	41.8	0.47	40'	80'
Southbound Jack Crowell Road	С	33.0	0.35	30'	75'	С	26.1	0.35	30'	65'	D	36.4	0.37	25'	60'
Overall Intersection	В	16.2	0.85			В	12.1	0.86			В	10.4	0.74		
	=	-		U	S 54 & Northb	ound MO 5 F	Ramps (Signa	lized)	•			-		•	
Eastbound US 54	Α	7.6	0.60	100'	160'	Α	9.4	0.60	140'	165'	В	11.0	0.47	180'	225'
Westbound US 54	Α	6.4	0.44	160'	195'	Α	6.4	0.68	145'	150'	Α	3.0	0.60	105'	185'
Northbound MO 5 Off-Ramp	D	36.9	0.55	120'	170'	D	41.1	0.60	135'	185'	D	36.7	0.59	120'	165'
Overall Intersection	В	11.9	0.58			В	11.8	0.69			В	10.1	0.65		
			•	US	54 & Southbo	und MO 5 Ra	amps (Unsign	alized)				•			
Eastbound US 54	Α	<1.0	0.30		<25'	Α	<1.0	0.35		<25'	Α	<1.0	0.30		<25'
Westbound US 54	Α	<1.0	0.24		<25'	Α	<1.0	0.38		<25'	Α	<1.0	0.33		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	25.1	0.67		125'	С	21.6	0.53		75'	С	18.7	0.48		65'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	10.4	0.21		<25'	В	10.1	0.14		<25'	В	10.1	0.17		<25'
Overall Intersection	Α	3.9	0.54			Α	1.9	0.52			Α	1.9	0.48		
					US 54 & Bu	siness Route	5 (Signalized)							
Eastbound US 54	D	49.0	0.89	435'	565'	D	53.3	0.95	505'	595'	С	34.8	0.68	220'	340'
Westbound US 54	С	33.6	0.79	180'	245'	D	49.6	0.96	655'	660'	С	26.9	0.66	190'	395'
Northbound Business Route 5	D	40.9	0.75	65'	105'	D	47.9	0.84	195'	225'	D	44.9	0.73	125'	190'
Southbound Business Route 5	D	53.6	0.83	235'	335'	D	50.8	0.60	55'	90'	D	54.8	0.83	100'	175'
Overall Intersection	D	43.6	0.81			D	50.5	0.83			D	36.6	0.78		

Table 30: Intersection Operating Conditions – 2024 Build (Phase 1) (VISSIM)

		Nover	nber AM Peak H	our		November P	M Peak Hour			August PN	1 Peak Hour	
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
				l	JS 54 & Cecil Stre	et (Signalized)						
Eastbound US 54	Α	7.1	30'	240'	В	14.4	75'	230'	В	11.4	45'	330'
Westbound US 54	В	10.3	30'	395'	В	16.8	95'	805'	В	18.0	160'	1250'
Southbound Cecil Street	С	20.1	<25'	85'	С	27.3	50'	415'	С	26.5	<25'	185'
Overall Intersection	Α	9.0			В	17.1			В	15.8		
				US 54 & Lake	r Pride Road/Jack	Crowell Road (Sig	gnalized)					
Eastbound US 54	Α	8.0	30'	335'	Α	6.7	25'	380'	А	8.0	30'	325'
Westbound US 54	Α	9.9	35'	260'	В	10.3	50'	740'	А	8.0	40'	780'
Northbound Laker Pride Road	D	46.6	50'	305'	D	35.7	50'	315'	С	31.3	<25'	120'
Southbound Jack Crowell Road	D	38.2	<25'	95'	С	24.7	<25'	85'	С	32.9	<25'	115'
Overall Intersection	В	13.0			В	11.5			Α	9.3		
				US 54 &	Northbound MO	5 Ramps (Signaliz	ed)					
Eastbound US 54	Α	6.8	25'	290'	Α	8.0	30'	270'	В	10.3	35'	270'
Westbound US 54	Α	3.4	<25'	180'	Α	3.5	<25'	280'	А	4.4	<25'	480'
Northbound MO 5 Off-Ramp	D	44.8	70'	290'	D	46.2	75'	270'	D	46.3	75'	280'
Overall Intersection	В	11.6			В	10.5			В	11.9		
	•			US 54 & S	outhbound MO 5	Ramps (Unsignal	ized)	-			-	•
Eastbound US 54	Α	0.3	<25'	<25'	Α	0.3	<25'	<25'	А	0.3	<25'	<25'
Westbound US 54	Α	0.8	<25'	<25'	Α	1.5	<25'	60'	А	1.9	<25'	<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	Α	5.6	<25'	190'	Α	4.6	<25'	150'	А	4.1	<25'	125'
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	2.4	<25'	75'	Α	3.3	<25'	75'	Α	2.5	<25'	65'
Overall Intersection	Α	1.3			Α	1.3			Α	1.5		
	-			US !	54 & Business Ro	ute 5 (Signalized)						
Eastbound US 54	С	33.2	150'	565'	С	28.2	125'	550'	С	32.4	120'	420'
Westbound US 54	С	28.4	115'	455'	С	24.3	100'	615'	С	23.6	105'	580'
Northbound Business Route 5	С	33.6	<25'	130'	D	48.9	130'	1205'	D	36.4	35'	225'
Southbound Business Route 5	D	44.7	90'	455'	D	45.2	25'	125'	D	44.5	70'	220'
Overall Intersection	С	33.8			С	31.9			С	31.6		

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **102** of **152**

Table 31: MO 5 Capacity Analysis – 2024 Build (Phase 1) (VISSIM)

Traffic						Nov	ember AM Peak ho	ur		Nov	ember PM Peak Ho	ur		Αι	ıgust PM Peak Hour	
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume
							Southbo	ound MO 5								
2024	Before US 54 Interchange	SB	Basic	2	Α	5.0	61.0	587	Α	8.1	60.0	944	Α	8.3	60.0	974
2024	US 54 Off-Ramp	SB	Diverge	3	Α	3.1	64.0	583	Α	4.9	64.0	944	Α	5.1	64.0	974
2024	Between US 54 Ramps	SB	Basic	2	Α	3.3	64.0	418	Α	6.6	64.0	838	Α	6.5	64.0	835
2024	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	Α	4.2	50.0	622	Α	7.9	53.0	1255	Α	8.2	53.0	1288
2024	Between US 54 Ramps	SB	Basic	2	Α	2.3	62.0	292	Α	8.2	63.0	1029	Α	8.4	63.0	1052
2024	US 54 On-Ramp	SB	Merge	3	Α	1.9	64.0	360	Α	5.9	63.0	1128	Α	6.0	64.0	1138
2024	After US 54 Interchange	SB	Basic	2	Α	2.8	65.0	357	Α	8.8	64.0	1127	Α	8.9	64.0	1137
							Northbo	ound MO 5								
2024	Before US 54 Interchange	NB	Basic	2	Α	7.2	60.0	835	Α	9.4	60.0	1090	Α	9.4	60.0	1090
2024	US 54 Off-Ramp	NB	Diverge	3	Α	4.4	63.0	835	Α	5.8	63.0	1089	Α	5.8	63.0	1089
2024	Between US 54 Ramps	NB	Basic	2	Α	3.0	65.0	390	Α	4.8	64.0	616	Α	4.8	64.0	622
2024	US 54 On-Ramp	NB	Merge	3	Α	3.3	63.0	617	Α	6.0	62.0	1129	Α	6.3	62.0	1169
2024	After US 54 Interchange	NB	Basic	2	Α	4.8	64.0	615	Α	8.9	64.0	1134	Α	9.2	64.0	1171

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **103** of **152**

2030 No-Build Operations

The 2030 No-Build traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 32** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 33** and **Table 34** for the November AM, November PM, and August PM peak hours.

The SYNCHRO results show that the overall operating conditions of all study intersections are expected to operate at an acceptable level of service (LOS D or better) during all peak hours except for the US 54 and Business Route 5 intersection which is expected to operate at LOS E during the November PM peak hour. Furthermore, all individual intersection approaches are expected to operate at an acceptable LOS during all peak hours, except for the following approaches:

- Southbound Business Route 5 at US 54 during the November AM peak hour (LOS E);
- Westbound US 54 at Business Route 5 during the November PM peak hour (LOS E); and
- Eastbound US 54 at Business Route 5 during the November AM and PM peak hours (LOS E).

The VISSIM results show that all sections of MO 5 are expected to operate at an acceptable LOS during all peak hours. Also, the VISSIM results show that the overall operating conditions of all study intersections are expected to operate at an acceptable level of service during all peak hours except for US 54 at Laker Pride Road/Jack Crowell Road and Cecil Street intersections which are expected to operate at LOS E or worse during the November and August PM peak hours. Furthermore, all individual intersection approaches are expected to operate at an acceptable LOS during all peak hours, except for the following approaches:

- Westbound US 54 at Cecil Street during the November and August PM peak hours (LOS F);
- Southbound Cecil Street at US 54 during the November and August PM peak hours (LOS F and LOS E);
- Westbound US 54 at Laker Pride Road/Jack Crowell Road during the November AM, November PM, and August PM peak hours (LOS E, LOS F, and LOS F);
- Eastbound US 54 at Northbound MO 5 Ramps during the November AM peak hour (LOS E);
- Northbound MO 5 Off-Ramp at US 54 during the November AM peak hour (LOS E);
- Southbound MO 5 Off-Ramp at US 54 during the November AM peak hour (LOS F); and
- Northbound Business Route 5 at US 54 during the November PM peak hour (LOS E).

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **104** of **152**

The undesirable operations shown above are largely due to the capacity constraint at the intersection of US 54 and Laker Pride Road/Jack Crowell Road. During the November AM peak, the existing shared through/right-turn at the eastbound US 54 approach does not provide adequate capacity for the heavy inbound November traffic, resulting in a maximum approach queue that reaches the northbound and southbound MO 5 ramps intersections, as shown in **Figure 49**. Furthermore, the existing two through lanes at the westbound US 54 approach still do not provide sufficient capacity during the November and August PM peak hours, which results in maximum approach queues that reach past the Cecil Street, as shown in **Figure 50** and **Figure 51**, respectively.

Overall, the results show that intersection operations are expected to degrade under 2030 No-Build conditions from 2024 No-Build conditions due to the increase in traffic volumes. The results show that the westbound US 54 bottleneck is expected to worsen during the November and August PM peak hours, as well as an eastbound US 54 bottleneck is expected to develop during the November AM peak hour.

Figure 49: Maximum Eastbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build November AM

Figure 50: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build November PM

Figure 51: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 No-Build August PM

Table 32: Intersection Operating Conditions – 2030 No-Build (SYNCHRO)

		Nov	ember AM Pe		tion Operat	U		mber PM Peal				Aug	ust PM Peak I	lour	
Intersection/Approach	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
					US 54 &	Cecil Street ((Signalized)								
Eastbound US 54	В	10.0	0.64	165'	250'	В	19.6	0.77	340'	405'	В	11.0	0.57	135'	220'
Westbound US 54	В	16.8	0.70	225'	340'	D	35.8	0.94	650'	860'	D	50.9	1.04	785'	1065'
Southbound Cecil Street	С	21.0	0.45	<25	50'	D	48.5	0.95	145'	355'	С	21.2	0.63	<25	65'
Overall Intersection	В	13.2	0.61			С	30.0	0.82			С	33.5	0.86		
				US 54	& Laker Pride	Road/Jack Cr	owell Road (Signalized)							
Eastbound US 54	С	27.8	0.99	200'	760'	С	26.1	0.92	370'	485'	С	21.0	0.87	305'	415'
Westbound US 54	В	19.5	0.81	225'	280'	С	27.8	0.92	675'	820'	D	35.4	0.96	755'	995'
Northbound Laker Pride Road	D	38.7	0.79	85'	185'	D	54.8	0.88	125'	255'	С	32.3	0.27	35'	75'
Southbound Jack Crowell Road	С	28.3	0.33	<25	70'	С	28.9	0.42	30'	70'	С	29.4	0.24	25'	60'
Overall Intersection	С	25.7	0.96			С	29.5	0.92			С	29.3	0.88		
		-	•	U	S 54 & Northb	ound MO 5 F	Ramps (Signa	lized)							
Eastbound US 54	С	25.9	0.84	415'	520'	С	33.6	0.82	480'	580'	С	26.0	0.71	380'	460'
Westbound US 54	Α	4.8	0.50	65'	75'	Α	3.3	0.76	75'	90'	Α	1.4	0.67	25'	30'
Northbound MO 5 Off-Ramp	С	26.4	0.61	85'	135'	С	30.9	0.54	130'	180'	С	27.4	0.42	120'	165'
Overall Intersection	В	18.0	0.63			В	17.6	0.76			В	13.1	0.70		
		-	•	US	54 & Southbo	und MO 5 Ra	amps (Unsign	alized)							
Eastbound US 54	Α	<1.0	0.33		<25'	Α	<1.0	0.39		<25'	Α	<1.0	0.34	-	<25'
Westbound US 54	Α	<1.0	0.26		<25'	Α	<1.0	0.42		<25'	Α	<1.0	0.37		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	34.9	0.78		175'	D	28.0	0.63		105'	С	22.6	0.57		90'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	10.5	0.24		25'	В	10.9	0.18		<25'	В	10.4	0.20		<25'
Overall Intersection	Α	5.1	0.58			Α	2.3	0.56			Α	2.2	0.52		
					US 54 & Bu	siness Route	5 (Signalized)							
Eastbound US 54	Е	57.0	0.93	520'	640'	Е	69.7	1.02	600'	715'	D	37.7	0.62	245'	410'
Westbound US 54	D	39.2	0.80	325'	405'	Е	60.6	1.01	745'	830'	D	39.8	0.80	365'	590'
Northbound Business Route 5	D	35.9	0.52	75'	120'	D	53.0	0.81	190'	280'	D	44.1	0.68	115'	220'
Southbound Business Route 5	Е	61.9	0.83	285'	415'	D	50.0	0.44	55'	95'	D	48.3	0.64	95'	175'
Overall Intersection	D	49.3	0.83			E	61.5	0.85			D	41.3	0.80		

Table 33: Intersection Operating Conditions – 2030 No-Build (VISSIM)

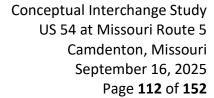
		Noven	nber AM Peak H	our	I		M Peak Hour	,		August PN	Л Peak Hour	
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
				l	US 54 & Cecil Stre	et (Signalized)						
Eastbound US 54	Α	6.3	30'	520'	В	14.3	80'	385'	Α	9.4	45'	475'
Westbound US 54	В	12.3	40'	435'	F	143.9	2975'	3285'	F	101.5	2895'	3280'
Southbound Cecil Street	В	15.6	<25'	100'	F	137.2	700'	870'	Е	69.4	85'	385'
Overall Intersection	Α	9.2			F	81.6			E	60.8		
				US 54 & Lake	r Pride Road/Jack	Crowell Road (Si	gnalized)					
Eastbound US 54	С	31.6	460'	870'	С	23.7	230'	840'	С	24.9	185'	805'
Westbound US 54	E	56.1	345'	835'	F	113.4	2835'	3380'	F	100.1	2785'	3370'
Northbound Laker Pride Road	С	24.6	25'	275'	D	40.3	65'	400'	С	25.9	<25'	90'
Southbound Jack Crowell Road	С	23.7	<25'	70'	С	31.3	<25'	95'	С	34.4	<25'	95'
Overall Intersection	D	39.9			E	65.5			E	63.9		
	-	•		US 54 &	Northbound MO	5 Ramps (Signaliz	ed)					
Eastbound US 54	Е	59.7	400'	890'	С	33.2	155'	705'	С	29.7	110'	565'
Westbound US 54	В	14.3	70'	650'	В	14.1	195'	865'	В	13.7	170'	860'
Northbound MO 5 Off-Ramp	E	60.9	85'	505'	D	44.8	60'	310'	D	38.1	55'	250'
Overall Intersection	D	42.8			С	25.2			С	22.7		
	-			US 54 & 9	Southbound MO 5	Ramps (Unsignal	ized)					
Eastbound US 54	С	18.6	35'	590'	А	1.3	<25'	55'	А	0.4	<25'	<25'
Westbound US 54	А	1.2	<25'	<25'	А	1.2	<25'	<25'	Α	1.4	<25'	<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	F	115.9	775'	1885'	Α	9.5	<25'	205'	Α	5.8	<25'	155'
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	2.9	<25'	120'	Α	2.4	<25'	70'	Α	2.2	<25'	75'
Overall Intersection	С	22.5			Α	1.9			Α	1.4		
	-	-		US	54 & Business Ro	ute 5 (Signalized)						
Eastbound US 54	D	36.4	170'	705'	С	30.7	145'	660'	С	32.4	120'	450'
Westbound US 54	С	31.4	120'	565'	С	33.2	145'	650'	С	30.0	120'	490'
Northbound Business Route 5	С	27.8	<25'	130'	Е	56.5	205'	1490'	С	34.9	35'	235'
Southbound Business Route 5	D	46.3	95'	485'	D	41.2	25'	115'	D	38.8	60'	205'
Overall Intersection	D	35.5			D	37.6			С	32.9		

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **110** of **152**

Table 34: MO 5 Capacity Analysis – 2030 No-Build (VISSIM)

Traffic						Nov	ember AM Peak ho	ur		Nov	ember PM Peak Ho	ur		Αι	ıgust PM Peak Hour	-
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume
		-		-			Southbo	ound MO 5		-						
2030	Before US 54 Interchange	SB	Basic	2	Α	5.4	60.0	642	Α	9.0	60.0	1054	Α	9.3	60.0	1083
2030	US 54 Off-Ramp	SB	Diverge	3	Α	3.3	64.0	638	Α	5.5	64.0	1052	Α	5.7	64.0	1081
2030	Between US 54 Ramps	SB	Basic	2	Α	3.6	63.0	454	Α	7.2	64.0	923	Α	7.2	64.0	916
2030	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	В	19.6	27.0	672	Α	8.5	53.0	1348	Α	8.6	53.0	1362
2030	Between US 54 Ramps	SB	Basic	2	Α	2.6	62.0	319	Α	8.8	63.0	1103	Α	8.9	63.0	1115
2030	US 54 On-Ramp	SB	Merge	3	Α	2.1	63.0	402	Α	6.4	63.0	1216	Α	6.4	63.0	1214
2030	After US 54 Interchange	SB	Basic	2	Α	3.1	64.0	400	Α	9.6	64.0	1217	Α	9.5	64.0	1214
							Northbo	ound MO 5								
2030	Before US 54 Interchange	NB	Basic	2	Α	7.9	60.0	920	Α	10.3	60.0	1196	Α	10.2	60.0	1189
2030	US 54 Off-Ramp	NB	Diverge	3	Α	4.9	62.0	920	Α	6.3	63.0	1193	Α	6.3	63.0	1187
2030	Between US 54 Ramps	NB	Basic	2	Α	3.3	65.0	427	Α	5.2	64.0	674	Α	5.2	64.0	670
2030	US 54 On-Ramp	NB	Merge	3	Α	3.6	63.0	675	Α	6.6	62.0	1235	Α	6.6	62.0	1238
2030	After US 54 Interchange	NB	Basic	2	Α	5.2	64.0	675	Α	9.7	64.0	1236	Α	9.7	64.0	1241

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **111** of **152**


2030 Build Operations (Phase 1)

The 2030 Build (Phase 1) traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 35** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 36** and **Table 37** for the November AM, November PM, and August PM peak hours.

As can be seen in the SYNCHRO 10 and VISSIM results, the overall operating conditions of all study area intersections and individual intersection approaches are expected to operate at acceptable level of service (LOS D or better) during all peak hours. Furthermore, the VISSIM results show that all sections of MO 5 are expected to operate at acceptable LOS during all peak hours. Note that the operational improvements at the US 54 and Business Route 5 intersections can be attributed to signal timing adjustments.

Furthermore, **Figure 52**, **Figure 53**, and **Figure 54** show that the maximum queues for the eastbound and westbound approaches at Laker Pride Road/Jack Crowell Road are expected to decrease considerably during the November AM, November PM, and August PM peak hours, respectively, from 2030 No-Build conditions and are not expected to impact adjacent signalized intersections.

Overall, the proposed Boulevard (Phase 1) concept improvements are expected to address mobility concerns along US 54 by providing additional lane capacity at US 54 and Laker Pride Road/Jack Crowell Road, which is expected to relieve the eastbound and westbound US 54 bottlenecks.

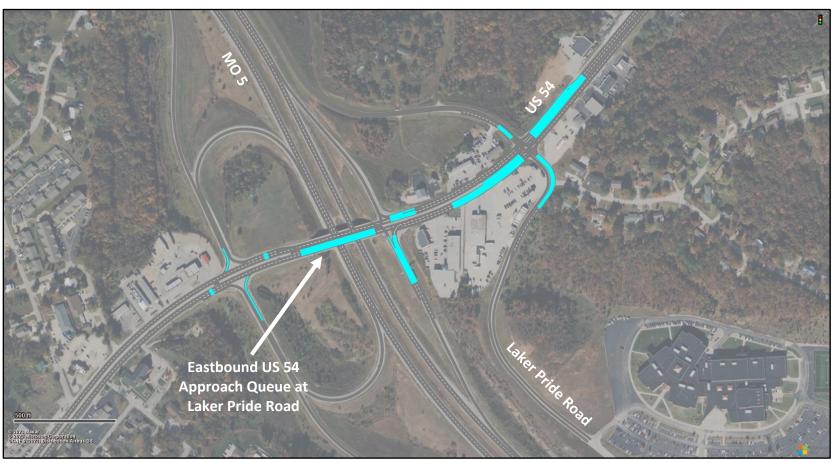


Figure 52: Maximum Eastbound US 54 Approach Queue at Laker Pride Road – 2030 Build (Phase 1) November AM

Figure 53: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 Build (Phase 1) November PM

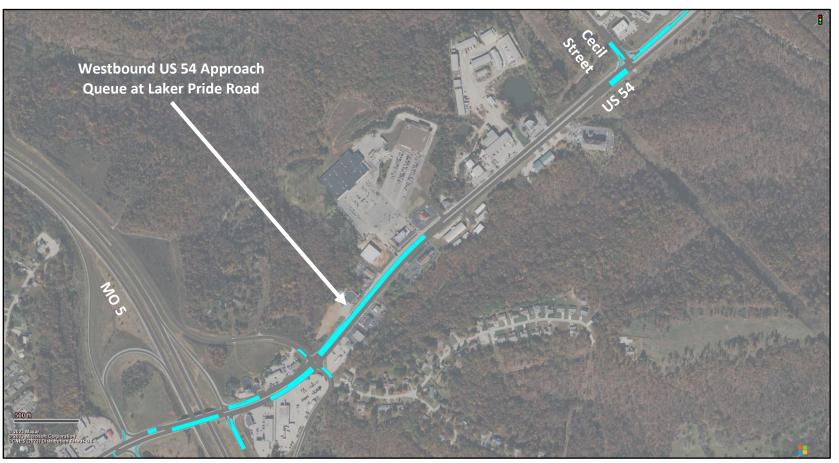


Figure 54: Maximum Westbound US 54 Approach Queue at Laker Pride Road – 2030 Build (Phase 1) August PM

Table 35: Intersection Operating Conditions – 2030 Build (Phase 1) (SYNCHRO)

		Nav			Operating			•	•	,		A	est DNA Deale I	1	
		Nov	ember AM Pe	T			Nover	mber PM Peal	r	T		Augi	ıst PM Peak I		T
Intersection/Approach	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
					US 54 &	Cecil Street (Signalized)								
Eastbound US 54	Α	8.4	0.56	75'	85'	В	19.1	0.91	145'	205'	В	10.4	0.66	80'	115'
Westbound US 54	В	11.6	0.53	235'	345'	D	38.1	0.95	685'	865'	С	28.9	0.95	735'	1085'
Southbound Cecil Street	С	29.1	0.54	<25	55'	D	49.6	0.94	185'	375'	С	24.2	0.66	<25	70'
Overall Intersection	В	10.7	0.61			С	30.9	0.82			С	21.3	0.86		
				US 54	& Laker Pride	Road/Jack Cr	owell Road (S	Signalized)							
Eastbound US 54	В	14.0	0.82	280'	320'	С	23.6	0.86	410'	450'	В	12.3	0.71	215'	360'
Westbound US 54	В	18.9	0.91	120'	280'	Α	5.7	0.64	85'	95'	Α	7.1	0.78	90'	110'
Northbound Laker Pride Road	D	35.5	0.69	100'	185'	D	53.5	0.79	125'	240'	С	34.3	0.31	35'	80'
Southbound Jack Crowell Road	С	32.3	0.30	30'	80'	С	26.0	0.34	30'	65'	С	31.1	0.27	25'	60'
Overall Intersection	В	18.2	0.90			В	17.9	0.88			В	10.5	0.79		
		-		U	S 54 & Northb	ound MO 5 F	Ramps (Signal	lized)							
Eastbound US 54	В	14.1	0.74	210'	245'	В	18.1	0.79	215'	250'	В	19.7	0.65	235'	280'
Westbound US 54	Α	4.1	0.49	80'	95'	Α	4.0	0.76	75'	90'	Α	3.2	0.67	55'	80'
Northbound MO 5 Off-Ramp	С	33.2	0.48	125'	180'	С	33.3	0.54	135'	190'	С	29.0	0.43	120'	170'
Overall Intersection	В	13.4	0.63			В	12.7	0.76			В	12.2	0.70		
		•		US	54 & Southbo	und MO 5 Ra	mps (Unsign	alized)							
Eastbound US 54	Α	<1.0	0.33		<25'	Α	<1.0	0.39		<25'	Α	<1.0	0.34		<25'
Westbound US 54	Α	<1.0	0.26		<25'	Α	<1.0	0.42		<25'	Α	<1.0	0.37		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	34.9	0.78		175'	D	28.0	0.63		105'	С	22.6	0.57		90'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	10.5	0.24		25'	В	10.9	0.18		<25'	В	10.4	0.20		<25'
Overall Intersection	Α	5.1	0.58			Α	2.3	0.56			Α	2.2	0.52		
					US 54 & Bu	siness Route	5 (Signalized)							
Eastbound US 54	D	50.8	0.91	495'	570'	D	48.2	0.92	520'	535'	D	35.1	0.68	235'	365'
Westbound US 54	С	34.2	0.85	240'	300'	D	39.0	0.94	670'	660'	С	29.1	0.69	215'	425'
Northbound Business Route 5	D	41.9	0.76	65'	105'	D	50.9	0.86	185'	240'	D	45.1	0.73	125'	190'
Southbound Business Route 5	D	53.8	0.85	250'	350'	D	50.8	0.58	55'	90'	D	54.6	0.83	100'	175'
Overall Intersection	D	44.6	0.83			D	45.0	0.85			D	37.4	0.80		

Table 36: Intersection Operating Conditions – 2030 Build (Phase 1) (VISSIM)

		Nover	nber AM Peak Ho	our		November P	M Peak Hour			August PN	/I Peak Hour	
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
				l	JS 54 & Cecil Stre	et (Signalized)						
Eastbound US 54	Α	7.7	45'	160'	В	15.0	90'	260'	В	10.5	55'	165'
Westbound US 54	В	11.0	35'	465'	С	23.4	190'	1230'	С	27.4	390'	1905'
Southbound Cecil Street	В	18.9	<25'	85'	С	33.7	85'	505'	С	30.6	30'	215'
Overall Intersection	Α	9.6			С	20.9			С	20.9		
				US 54 & Lake	r Pride Road/Jack	Crowell Road (Sig	gnalized)					
Eastbound US 54	В	11.8	60'	415'	В	16.5	95'	560'	В	12.2	55'	400'
Westbound US 54	В	17.0	80'	385'	В	15.1	105'	1025'	В	14.8	130'	1225'
Northbound Laker Pride Road	D	46.4	55'	305'	D	42.7	70'	365'	С	32.1	<25'	105'
Southbound Jack Crowell Road	D	36.1	<25'	90'	С	25.6	<25'	90'	С	33.3	<25'	85'
Overall Intersection	В	17.4			В	18.4			В	14.7		
				US 54 &	Northbound MO	5 Ramps (Signaliz	ed)					
Eastbound US 54	В	12.0	50'	380'	В	13.8	60'	400'	В	17.7	70'	375'
Westbound US 54	Α	3.0	<25'	130'	Α	4.0	<25'	225'	Α	3.9	<25'	250'
Northbound MO 5 Off-Ramp	D	39.4	65'	260'	D	38.2	60'	260'	D	35.1	60'	260'
Overall Intersection	В	13.0			В	11.9			В	12.6		
				US 54 & 9	outhbound MO 5	Ramps (Unsignal	ized)					
Eastbound US 54	Α	0.4	<25'	<25'	Α	0.4	<25'	25'	А	0.3	<25'	<25'
Westbound US 54	Α	1.1	<25'	<25'	Α	1.9	<25'	45'	А	2.3	<25'	70'
Southbound MO 5 to Eastbound US 54 Off-Ramp	Α	6.6	<25'	245'	Α	5.8	<25'	195'	А	4.8	<25'	145'
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	3.1	<25'	120'	Α	3.6	<25'	75'	Α	3.0	<25'	95'
Overall Intersection	Α	1.6			Α	1.6			Α	1.8		
				US	54 & Business Rou	ute 5 (Signalized)						
Eastbound US 54	С	33.1	155'	640'	С	30.5	145'	590'	С	33.8	130'	470'
Westbound US 54	С	32.2	155'	565'	С	29.5	155'	675'	С	26.6	120'	600'
Northbound Business Route 5	С	34.9	<25'	150'	D	50.7	150'	1330'	D	37.0	35'	245'
Southbound Business Route 5	D	45.9	100'	510'	D	45.2	25'	125'	D	45.2	70'	235'
Overall Intersection	D	35.3			D	35.0			С	33.3		

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 117 of 152

Table 37: MO 5 Capacity Analysis – 2030 Build (Phase 1) (VISSIM)

Traffic						Nov	ember AM Peak ho	ur		Nov	ember PM Peak Ho	ur		Αι	ıgust PM Peak Hour	•
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume
							Southbo	ound MO 5								
2030	Before US 54 Interchange	SB	Basic	2	Α	5.4	60.0	642	Α	9.0	60.0	1054	Α	9.3	60.0	1083
2030	US 54 Off-Ramp	SB	Diverge	3	Α	3.3	64.0	638	Α	5.5	64.0	1052	Α	5.7	64.0	1081
2030	Between US 54 Ramps	SB	Basic	2	Α	3.6	64.0	454	Α	7.2	64.0	923	Α	7.2	64.0	916
2030	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	Α	4.6	50.0	672	Α	8.7	53.0	1378	Α	8.9	53.0	1406
2030	Between US 54 Ramps	SB	Basic	2	Α	2.6	62.0	320	Α	9.0	63.0	1133	Α	9.2	63.0	1159
2030	US 54 On-Ramp	SB	Merge	3	Α	2.1	63.0	404	Α	6.6	63.0	1245	Α	6.6	63.0	1259
2030	After US 54 Interchange	SB	Basic	2	Α	3.1	64.0	403	Α	9.8	64.0	1243	Α	9.9	64.0	1257
							Northbo	ound MO 5								
2030	Before US 54 Interchange	NB	Basic	2	Α	7.9	60.0	920	Α	10.3	60.0	1196	Α	10.2	60.0	1189
2030	US 54 Off-Ramp	NB	Diverge	3	Α	4.9	62.0	920	Α	6.3	63.0	1193	Α	6.3	63.0	1187
2030	Between US 54 Ramps	NB	Basic	2	Α	3.3	65.0	427	Α	5.2	64.0	674	Α	5.2	64.0	670
2030	US 54 On-Ramp	NB	Merge	3	Α	3.6	63.0	675	Α	6.7	62.0	1241	Α	6.8	62.0	1271
2030	After US 54 Interchange	NB	Basic	2	Α	5.3	64.0	676	Α	9.7	64.0	1243	Α	10.0	64.0	1275

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **118** of **152**

2050 No-Build Operations

The 2050 No-Build traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 38** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 39** and **Table 40** for the November AM, November PM, and August PM peak hours.

The SYNCHRO results show that the overall operating conditions of the following intersections are expected to operate at undesirable LOS (LOS E or worse):

- US 54 and Cecil Street during the November and August PM peak hours (LOS F);
- US 54 and Laker Pride Road/Jack Crowell Road during the November AM, November PM, and August PM peak hours (LOS F); and
- US 54 and Business Route 5 during the November AM and PM peak hours (LOS E).

Additionally, the SYNCHRO results show that the following intersection approaches are expected to operate at undesirable LOS:

- Westbound US 54 at Cecil Street during the November and August PM peak hours (LOS F):
- Southbound Cecil Street at US 54 during the November PM peak hour (LOS F);
- Eastbound US 54 at Laker Pride Road/Jack Crowell Road during the November AM, November PM, and August PM peak hours (LOS F);
- Westbound US 54 at Laker Pride Road/Jack Crowell Road during the November and August PM peak hours (LOS F);
- Northbound Laker Pride Road at US 54 during the November AM and PM peak hours (LOS E and LOS F);
- Southbound Jack Crowell Road at US 54 during the November PM peak hour (LOS E);
- Eastbound US 54 at Northbound MO 5 ramps during the November AM, November PM, and August PM peak hours (LOS E, LOS F, and LOS F);
- Southbound MO 5 Off-Ramp at US 54 during the November AM, November PM, and August PM peak hours (LOS F);
- Eastbound US 54 at Business Route 5 during the November AM and PM peak hours (LOS F and LOS E);
- Westbound US 54 at Business Route 5 during the November and August PM peak hours (LOS E); and
- Southbound Business Route 5 at US 54 during the November AM peak hour (LOS E).

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 119 of 152

The VISSIM results show that the overall operating conditions of the following intersections are expected to operate at an undesirable LOS:

- US 54 and Cecil Street during the November and August PM peak hours (LOS E and LOS F);
- US 54 and Laker Pride Road/Jack Crowell Road during the November AM, November PM, and August PM peak hours (LOS F, LOS E, and LOS F);
- US 54 and Northbound MO 5 ramps during the November AM and August PM peak hours (LOS E and LOS F); and
- US 54 and Southbound MO 5 ramps during the November AM and August PM peak hours (LOS E and LOS F).

The VISSIM results show that the following intersection approaches are expected to operate at undesirable LOS:

- Westbound US 54 at Cecil Street during the November and August PM peak hours (LOS F);
- Southbound Cecil Street at US 54 during the November and August PM peak hours (LOS F):
- Westbound US 54 at Laker Pride Road/Jack Crowell Road during the November AM, November PM, and August PM peak hours (LOS F);
- Northbound Laker Pride Road at US 54 during the November PM peak hour (LOS E);
- Southbound Jack Crowell Road at US 54 during the November AM, November PM, and August PM peak hours (LOS E, LOS E, and LOS F);
- Eastbound US 54 at Northbound MO 5 ramps during the November AM, November PM, and August PM peak hours (LOS E);
- Westbound US 54 at Northbound MO 5 ramps during the August PM peak hour (LOS F);
- Northbound MO 5 Ramps and US 54 during the November AM, November PM, and August PM peak hours (LOS F);
- Eastbound US 54 at Southbound MO 5 ramps during the November AM and PM peak hours (LOS F and LOS E);
- Westbound US 54 at Southbound MO 5 ramps during the August PM peak hour (LOS F);
- Southbound MO 5 Off-Ramp at US 54 during the November AM, November PM, and August PM peak hours (LOS F);
- Northbound Business Route 5 at US 54 during the November PM peak hour (LOS E); and
- Southbound Business Route 5 at US 54 during the November AM peak hour (LOS E).

The VISSIM results show that the following sections of southbound MO 5 are expected to operate at undesirable LOS:

- Before US 54 Interchange during the August PM peak hour (LOS F);
- US 54 Off-Ramp during the November AM and August PM peak hours (LOS E and LOS F);
- Between US 54 Ramps during the November AM, November PM, and August PM peak hours (LOS F, LOS E, and LOS F);

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **120** of **152**

• Between US 54 On-Ramp and US 54 Off-Ramp during the November AM, November PM, and August PM peak hours (LOS F);

The above undesirable LOS for segments of southbound MO 5 is caused by the eastbound US 54 approach queues at Laker Pride Road/Jack Crowell Road. As shown in **Figure 55**, **Figure** 56, and **Figure** 57 the approach queue reaches mainline southbound MO 5 during the November AM, November PM, and August PM peak hours, respectively, which increases the density and decreases the speed of the impacted segments of southbound MO 5.

Furthermore, **Figure 55**, **Figure** 56, and **Figure** 57 also show that the maximum westbound US 54 approach queues at several study intersections during the November AM, November PM, and August PM peak hours, respectively. As can be seen, these lengthy queues reach the limits of the models, resulting in approximately 66, 1773, and 3445 vehicles during the November AM, November PM, and August PM peak hours, respectively, are unable to enter the model due to capacity constraints on US 54.

Overall, the results show that several intersection approaches and intersections overall are expected to operate at failing level of service under 2050 No-Build conditions during all peak hours. Additional lane capacity along US 54 is needed to improve peak hour operations.

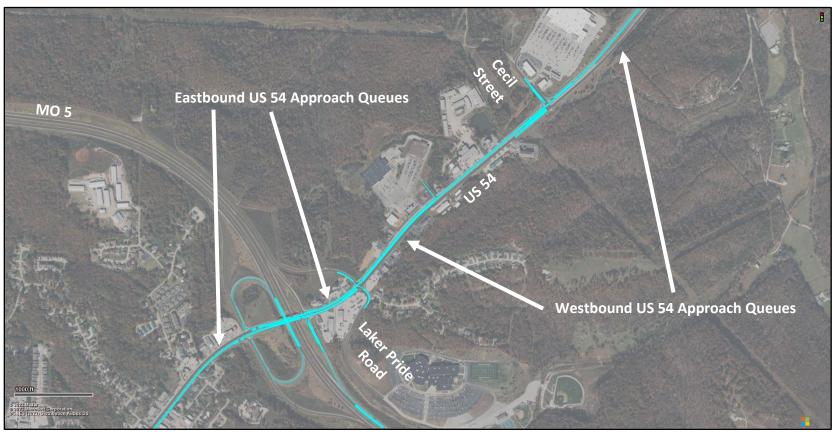


Figure 55: Maximum US 54 Approach Queues – 2050 No-Build November AM

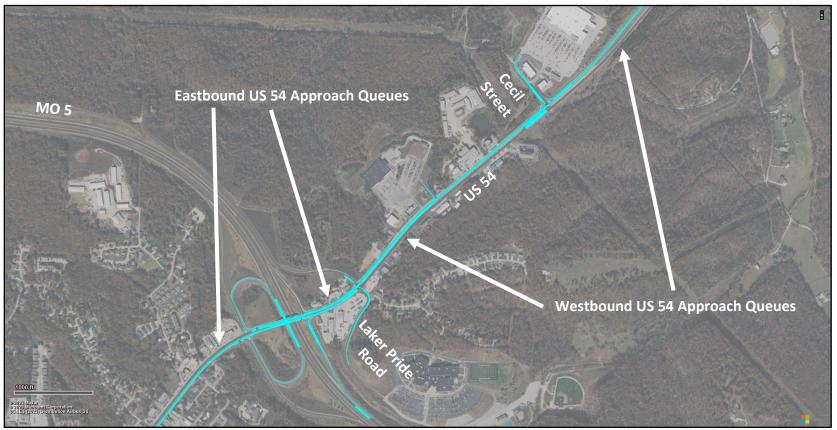


Figure 56: Maximum US 54 Approach Queues – 2050 No-Build November PM

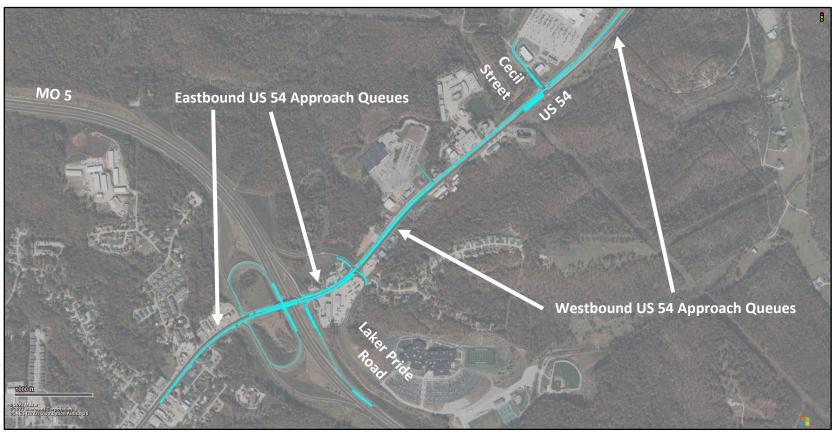


Figure 57: Maximum US 54 Approach Queues – 2050 No-Build August PM

Table 38: Intersection Operating Conditions – 2050 No-Build (SYNCHRO)

		Nov	ember AM Pe		tion Operat	8		nber PM Pea	•			Augi	ust PM Peak	Hour	
Intersection/Approach	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
					US 54 &	Cecil Street ((Signalized)								
Eastbound US 54	В	13.0	0.78	300'	470'	С	28.6	0.91	635'	775'	В	13.0	0.68	225'	400'
Westbound US 54	В	20.0	0.81	390'	585'	F	142.7	1.28	1175'	1305'	F	199.8	1.40	1310'	1685'
Southbound Cecil Street	С	25.8	0.54	<25	60'	F	126.4	1.24	405'	635'	С	21.9	0.69	<25	75'
Overall Intersection	В	16.4	0.72			F	88.5	1.04			F	115.8	1.06		
				US 54	& Laker Pride	Road/Jack Cr	owell Road (Signalized)							
Eastbound US 54	F	159.4	1.32	1080'	1045'	F	116.6	1.20	1150'	1075'	F	93.6	1.15	1045'	1180'
Westbound US 54	С	32.2	1.08	355'	435'	F	117.1	1.20	1315'	1445'	F	141.1	1.26	1430'	1560'
Northbound Laker Pride Road	E	66.4	1.08	130'	260'	F	102.7	1.19	200'	355'	С	33.3	0.39	50'	100'
Southbound Jack Crowell Road	С	34.2	0.44	35'	90'	E	67.6	1.00	50'	145'	С	28.4	0.30	35'	70'
Overall Intersection	F	101.3	1.20			F	114.2	1.13			F	116.2	1.07		
				U	S 54 & Northb	ound MO 5 F	Ramps (Signa	lized)							
Eastbound US 54	Е	61.2	1.06	695'	835'	F	91.7	1.12	845'	985'	F	85.0	0.94	600'	775'
Westbound US 54	Α	5.3	0.63	90'	115'	В	19.9	0.99	100'	90'	Α	4.2	0.89	35'	30'
Northbound MO 5 Off-Ramp	С	30.0	0.72	130'	185'	D	35.5	0.72	190'	255'	С	32.9	0.59	190'	250'
Overall Intersection	D	35.0	0.80			D	47.6	0.94			D	35.3	0.87		
				US	54 & Southbo	und MO 5 Ra	amps (Unsign	alized)							
Eastbound US 54	Α	<1.0	0.44		<25'	Α	<1.0	0.50		<25'	Α	<1.0	0.44		<25'
Westbound US 54	Α	<1.0	0.35		<25'	Α	<1.0	0.55		<25'	Α	<1.0	0.48		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	F	>200	1.41		640'	F	132.8	1.41		355'	F	78.0	0.98		275'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	11.2	0.31		35'	С	20.5	0.41		50'	В	14.6	0.36		40'
Overall Intersection	D	30.4	0.75			Α	10.0	0.72			Α	6.7	0.66		
					US 54 & Bu	siness Route	5 (Signalized)							
Eastbound US 54	F	106.8	1.13	740'	835'	E	71.5	1.03	605'	910'	D	44.0	0.75	340'	530'
Westbound US 54	D	44.3	0.84	425'	515'	E	63.9	1.02	765'	1065'	Е	55.2	0.96	520'	865'
Northbound Business Route 5	D	41.5	0.61	105'	150'	D	49.4	0.79	185'	340'	D	49.6	0.74	145'	255'
Southbound Business Route 5	Е	64.6	0.86	310'	455'	D	49.6	0.43	50'	105'	D	52.0	0.68	120'	205'
Overall Intersection	E	70.1	0.90			E	62.9	0.93			D	50.6	0.88		

Table 39: Intersection Operating Conditions – 2050 No-Build (VISSIM)

		Noven	nber AM Peak Ho	our		November P	M Peak Hour			August PN	1 Peak Hour	
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
				l	JS 54 & Cecil Stre	et (Signalized)						
Eastbound US 54	Α	8.2	40'	535'	В	15.4	100'	350'	Α	8.4	50'	325'
Westbound US 54	D	49.1	510'	3005'	F	153.0	3040'	3310'	F	371.2	3195'	3280'
Southbound Cecil Street	D	43.3	60'	455'	F	131.7	755'	865'	F	606.5	745'	860'
Overall Intersection	С	27.9			E	76.0			F	116.2		
				US 54 & Lake	r Pride Road/Jack	Crowell Road (Sig	gnalized)					
Eastbound US 54	С	34.1	580'	875'	С	26.1	495'	855'	С	27.1	525'	855'
Westbound US 54	F	162.7	1680'	3380'	F	125.1	2920'	3380'	F	382.6	3275'	3385'
Northbound Laker Pride Road	С	31.2	45'	305'	Е	63.0	200'	1070'	D	52.1	25'	175'
Southbound Jack Crowell Road	Е	55.6	40'	245'	Е	55.7	25'	150'	F	216.7	65'	215'
Overall Intersection	F	80.6			E	68.0			F	115.1		
				US 54 &	Northbound MO	5 Ramps (Signaliz	ed)					
Eastbound US 54	Е	79.0	620'	900'	E	61.5	570'	885'	E	61.4	565'	885'
Westbound US 54	С	27.8	350'	870'	С	23.5	365'	875'	F	167.8	775'	880'
Northbound MO 5 Off-Ramp	F	124.6	555'	1845'	F	107.7	370'	1520'	F	137.1	530'	1595'
Overall Intersection	Е	69.8			D	52.5			F	103.3		
	•			US 54 & 9	outhbound MO 5	Ramps (Unsignal	ized)	•			-	•
Eastbound US 54	F	59.7	1305'	2910'	Е	38.8	835'	2500'	D	34.8	250'	1405'
Westbound US 54	Α	6.4	260'	695'	Α	8.9	185'	685'	F	131.6	630'	705'
Southbound MO 5 to Eastbound US 54 Off-Ramp	F	98.4	2345'	3550'	F	320.2	1940'	3545'	F	398.6	3505'	3565'
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	3.6	<25'	130'	Α	2.6	<25'	80'	Α	2.5	<25'	140'
Overall Intersection	Е	36.5			D	30.7			F	84.0		
	-			US	54 & Business Rou	te 5 (Signalized)						
Eastbound US 54	D	51.8	280'	1450'	D	37.2	230'	1385'	С	30.0	130'	520'
Westbound US 54	D	36.8	145'	530'	D	46.2	215'	870'	С	28.7	55'	430'
Northbound Business Route 5	D	36.1	<25'	145'	Е	79.6	380'	1550'	С	31.6	35'	240'
Southbound Business Route 5	Е	59.7	125'	645'	D	45.1	30'	155'	D	35.1	65'	210'
Overall Intersection	D	46.8			D	50.0			С	31.1		

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 126 of 152

Table 40: MO 5 Capacity Analysis – 2050 No-Build (VISSIM)

Traffic						Nov	ember AM Peak ho	ur		Nov	ember PM Peak Ho	ur		Αι	ıgust PM Peak Hour	
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume
							Southbo	ound MO 5								
2050	Before US 54 Interchange	SB	Basic	2	D	27.0	31.0	816	В	13.2	55.0	1355	F	56.2	22.0	1257
2050	US 54 Off-Ramp	SB	Diverge	3	E	42.1	6.0	691	В	16.9	30.0	1309	F	71.8	6.0	1136
2050	Between US 54 Ramps	SB	Basic	2	F	74.6	3.0	438	E	42.1	14.0	1109	F	131.5	4.0	951
2050	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	F	108.3	1.0	441	F	84.4	5.0	1306	F	157.0	2.0	1053
2050	Between US 54 Ramps	SB	Basic	2	Α	1.7	59.0	199	Α	9.2	61.0	1121	Α	7.3	57.0	819
2050	US 54 On-Ramp	SB	Merge	3	Α	1.6	63.0	306	Α	6.7	63.0	1266	Α	5.1	62.0	951
2050	After US 54 Interchange	SB	Basic	2	Α	2.4	64.0	306	Α	10.0	64.0	1271	Α	7.5	63.0	952
							Northbo	ound MO 5								
2050	Before US 54 Interchange	NB	Basic	2	Α	10.7	59.0	1224	В	13.7	59.0	1584	В	13.8	59.0	1585
2050	US 54 Off-Ramp	NB	Diverge	3	В	17.7	34.0	1223	В	11.1	51.0	1582	В	13.5	45.0	1585
2050	Between US 54 Ramps	NB	Basic	2	Α	4.4	64.0	561	Α	7.0	64.0	900	Α	7.0	64.0	899
2050	US 54 On-Ramp	NB	Merge	3	Α	4.2	63.0	799	Α	7.6	62.0	1424	Α	6.3	63.0	1181
2050	After US 54 Interchange	NB	Basic	2	Α	6.2	64.0	801	В	11.2	64.0	1430	Α	9.3	64.0	1183

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **127** of **152**

2050 Build (Phase 1) Operations

The 2050 Build (Phase 1) traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 41** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 42** and **Table 43** for the November AM, November PM, and August PM peak hours.

The SYNCHRO results show that the overall operating conditions of the following intersections are expected to operate at undesirable LOS (LOS E or worse):

- US 54 and Cecil Street during the November and August PM peak hours (LOS F);
- US 54 and Business Route 5 during the November AM peak hour (LOS E).

Additionally, the SYNCHRO results show that the following intersection approaches are expected to operate at undesirable LOS:

- Westbound US 54 at Cecil Street during the November and August PM peak hours (LOS F);
- Southbound Cecil Street at US 54 during the November PM peak hour (LOS F);
- Eastbound US 54 at Laker Pride Road/Jack Crowell Road during the November AM and November PM peak hours (LOS E and LOS F);
- Northbound Laker Pride Road at US 54 during the November PM peak hour (LOS F);
- Southbound Jack Crowell Road at US 54 during the November PM peak hour (LOS E);
- Eastbound US 54 at Northbound MO 5 ramps during the November PM peak hour (LOS E);
- Southbound MO 5 Off-Ramp at US 54 during the November AM, November PM, and August PM peak hours (LOS F); and
- Eastbound US 54 at Business Route 5 during the November AM peak hour (LOS F).

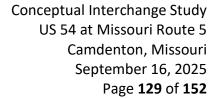
The VISSIM results show that the overall operating conditions of the following intersections are expected to operate at an undesirable LOS:

- US 54 and Laker Pride Road/Jack Crowell Road during the November AM peak hour (LOS E);
- US 54 and Business Route 5 during the November PM peak hour (LOS E).

The VISSIM results show that the following intersection approaches are expected to operate at undesirable LOS:

- Westbound US 54 at Cecil Street during the November and August PM peak hours (LOS F and LOS E);
- Southbound Cecil Street at US 54 during the November PM peak hour (LOS F);
- Westbound US 54 at Laker Pride Road/Jack Crowell Road during the November AM and PM peak hours (LOS F and LOS E);
- Northbound Laker Pride Road at US 54 during the November AM and PM peak hours (LOS F);

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page 128 of 152


- Southbound MO 5 Off-Ramp at US 54 Off-Ramp during the November PM peak hour (LOS F);
- Northbound Business Route 5 at US 54 during the November PM peak hour (LOS E); and
- Southbound Business Route 5 at US 54 during the November PM peak hour (LOS E).

Also, the VISSIM results show all sections of MO 5 are expected to operate at acceptable LOS during all peak hours. However,

The above results show that the Phase 1 configuration does provide an improvement in traffic operations during all peak hours under 2050 Build (Phase 1) conditions compared to 2050 No-Build conditions. However, the failing approach operations shown in the SYNCHRO and VISSIM intersections results during the November and August PM peak hours are caused by the capacity constraint on eastbound and westbound US 54 between Laker Pride Road/Jack Crowell Road and Cecil Street. The two through lanes in each direction provided on this segment of US 54 are unable to handle the forecasted 2050 traffic volumes during the November and August PM peak hours.

Furthermore, **Figure 58** and **Figure 59** show that the maximum eastbound and westbound US 54 approach queues at several intersections during the November and August PM peak hours, respectively. As can be seen, these lengthy queues reach the limits of the models, resulting in approximately 572 and 1114 vehicles during November and August PM peak hours, respectively, are unable to enter the model due to capacity constraints on US 54.

Overall, the proposed Boulevard (Phase 1) concept improvements are expected to provide operations improvements from 2050 No-Build conditions during all peak hours. However, the existing capacity constraint on US 54 between Laker Pride Road/Jack Crowell Road and Cecil Street is expected to result in several intersection approaches operating at failing level of service under 2050 Build (Phase 1) conditions during the November and August PM peak hours. Additional lane capacity along US 54 is needed to improve peak hour operations.

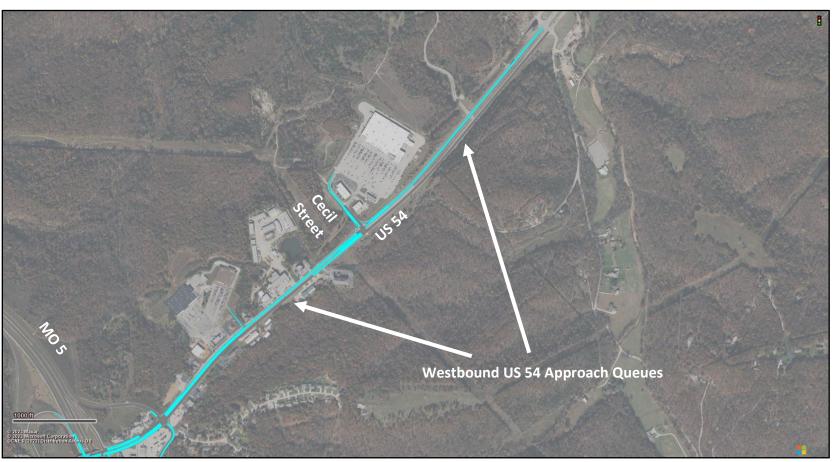
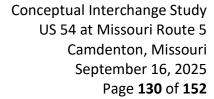



Figure 58: Maximum US 54 Approach Queues – 2050 Build (Phase 1) November PM

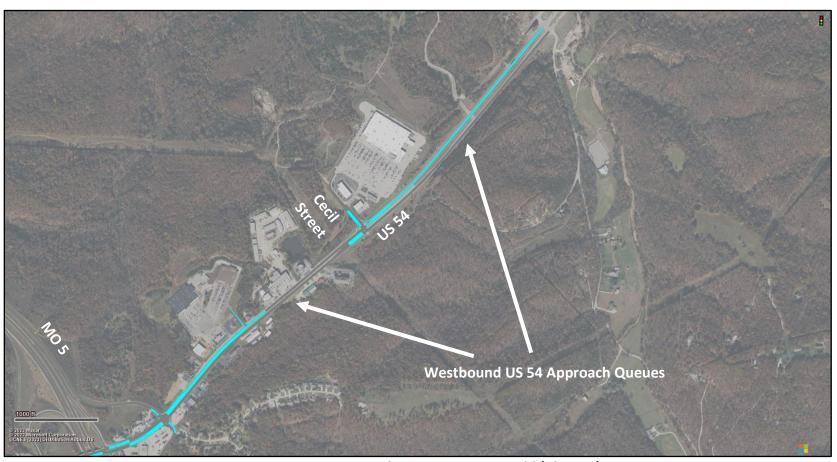


Figure 59: Maximum US 54 Approach Queues – 2050 Build (Phase 1) August PM

Table 41: Intersection Operating Conditions – 2050 Build (Phase 1) (SYNCHRO 10)

	Operating C			nber PM Peal	•	,	August PM Peak Hour								
Intersection/Approach	LOS	Delay	ember AM Pe Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
US 54 & Cecil Street (Signalized)															
Eastbound US 54	Α	8.7	0.74	100'	90'	С	34.5	1.19	240'	210'	В	12.3	0.81	105'	370'
Westbound US 54	В	16.4	0.72	405'	570'	F	156.9	1.31	1175'	1310'	F	159.1	1.31	1490'	1730'
Southbound Cecil Street	С	30.3	0.58	25'	60'	F	107.0	1.18	420'	650'	С	33.0	0.77	45'	125'
Overall Intersection	В	12.7	0.72			F	94.6	1.04			F	93.9	1.06		
US 54 & Laker Pride Road/Jack Crowell Road (Signalized)															
Eastbound US 54	Е	61.1	1.09	995'	1115'	F	82.0	1.13	1070'	1115'	С	21.0	0.93	380'	640'
Westbound US 54	С	31.7	1.21	235'	415'	Α	8.0	0.84	120'	95'	В	18.4	1.24	230'	155'
Northbound Laker Pride Road	D	54.4	0.94	140'	275'	F	94.1	1.06	185'	340'	D	35.9	0.45	55'	105'
Southbound Jack Crowell Road	D	38.0	0.40	50'	105'	Е	72.4	1.02	50'	145'	С	30.2	0.33	35'	75'
Overall Intersection	D	49.1	1.11			D	48.2	1.13			С	20.2	0.96		
	=	-		U	S 54 & Northb	ound MO 5 F	Ramps (Signa	lized)	•			-		•	
Eastbound US 54	D	40.0	0.92	285'	300'	Е	78.7	1.12	315'	890'	С	30.9	0.91	335'	415'
Westbound US 54	Α	4.9	0.61	100'	135'	В	15.2	0.99	1030'	1145'	Α	5.9	0.89	90'	115'
Northbound MO 5 Off-Ramp	D	37.0	0.62	180'	245'	D	39.4	0.72	205'	275'	D	36.8	0.59	200'	270'
Overall Intersection	С	26.3	0.80			D	41.0	0.94			В	18.4	0.87		
		·		US	54 & Southbo	und MO 5 Ra	amps (Unsign	alized)	•			-			-
Eastbound US 54	Α	<1.0	0.44		<25'	Α	<1.0	0.50		<25'	Α	<1.0	0.44		<25'
Westbound US 54	Α	<1.0	0.35		<25'	Α	<1.0	0.55		<25'	Α	<1.0	0.48		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	F	>200	1.41		640'	F	132.8	1.41		355'	F	78.0	0.98		275'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	11.2	0.31		35'	С	20.5	0.41		50'	В	14.6	0.36		40'
Overall Intersection	D	30.4	0.75			Α	10.0	0.72			Α	6.7	0.66		
US 54 & Business Route 5 (Signalized)															
Eastbound US 54	F	98.7	1.11	660'	730'	D	48.3	0.93	530'	720'	D	43.0	0.82	315'	555'
Westbound US 54	D	39.5	0.92	315'	405'	D	38.7	0.95	700'	755'	D	35.5	0.85	375'	700'
Northbound Business Route 5	D	49.0	0.83	85'	130'	D	49.6	0.84	185'	270'	D	46.9	0.76	140'	205'
Southbound Business Route 5	D	54.7	0.87	265'	385'	D	50.6	0.56	50'	105'	D	53.4	0.84	115'	195'
Overall Intersection	E	64.7	0.90			D	44.7	0.93			D	42.2	0.88		

Table 42: Intersection Operating Conditions – 2050 Build (Phase 1) (VISSIM)

		Noven	nber AM Peak H	our			M Peak Hour	•	August PM Peak Hour				
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	
				l	JS 54 & Cecil Stre	et (Signalized)							
Eastbound US 54	Α	8.1	60'	210'	В	18.5	150'	775'	В	10.9	75'	210'	
Westbound US 54	D	37.9	295'	1455'	F	83.2	2905'	3315'	E	61.3	2675'	3280'	
Southbound Cecil Street	D	35.3	25'	220'	F	102.8	670'	870'	D	36.1	50'	300'	
Overall Intersection	С	21.2			D	54.3			D	37.0			
				US 54 & Lake	r Pride Road/Jack	Crowell Road (Sig	gnalized)						
Eastbound US 54	В	16.5	170'	840'	В	17.2	155'	800'	В	12.7	85'	480'	
Westbound US 54	F	117.5	1535'	3325'	Е	58.9	1845'	3200'	С	21.2	260'	1735'	
Northbound Laker Pride Road	F	101.5	350'	1455'	F	105.2	535'	1600'	D	35.5	<25	155'	
Southbound Jack Crowell Road	D	39.4	<25	115'	С	29.9	<25	105'	С	34.2	<25	120'	
Overall Intersection	E	59.9			D	44.2			В	18.1			
	-			US 54 &	Northbound MO	5 Ramps (Signaliz	ed)						
Eastbound US 54	В	17.8	135'	830'	D	36.0	410'	885'	С	21.5	135'	690'	
Westbound US 54	Α	3.4	<25	155'	Α	5.5	45'	420'	Α	4.6	25'	260'	
Northbound MO 5 Off-Ramp	D	54.2	100'	390'	D	47.6	90'	345'	D	40.8	90'	345'	
Overall Intersection	В	18.6			С	22.8			В	16.2			
	-	-		US 54 & 9	outhbound MO 5	Ramps (Unsignal	ized)						
Eastbound US 54	Α	1.8	<25	75'	С	17.0	160'	1020'	Α	0.7	<25	45'	
Westbound US 54	Α	1.5	<25	<25	Α	3.4	30'	425'	Α	2.5	<25	85'	
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	31.6	160'	765'	F	130.9	730'	2455'	В	10.1	<25	260'	
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	4.5	<25	150'	Α	3.9	<25	90'	Α	3.5	<25	110'	
Overall Intersection	Α	5.8			С	16.4			Α	2.5			
	-			US	54 & Business Rou	ute 5 (Signalized)							
Eastbound US 54	D	39.5	240'	1330'	D	38.5	260'	1590'	D	37.3	170'	585'	
Westbound US 54	D	35.2	195'	620'	Е	67.1	550'	1710'	С	30.5	135'	635'	
Northbound Business Route 5	D	43.2	35'	300'	Е	76.3	335'	1550'	D	38.9	45'	240'	
Southbound Business Route 5	D	48.0	115'	595'	D	55.0	40'	180'	D	44.7	80'	285'	
Overall Intersection	D	40.0			Е	58.3			D	36.3			

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **133** of **152**

Table 43: MO 5 Capacity Analysis – 2050 Build (Phase 1) (VISSIM)

Traffic	Traffic Volume Segment Scenario	Direction Type			November AM Peak hour				November PM Peak Hour					August PM Peak Hour			
			Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	
Southbound MO 5																	
2050	Before US 54 Interchange	SB	Basic	2	Α	7.3	60.0	856	В	11.7	60.0	1360	В	12.3	60.0	1426	
2050	US 54 Off-Ramp	SB	Diverge	3	Α	4.5	63.0	854	Α	7.1	64.0	1358	Α	7.5	64.0	1424	
2050	Between US 54 Ramps	SB	Basic	2	Α	4.8	64.0	612	В	13.3	53.0	1196	Α	9.6	64.0	1216	
2050	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	Α	6.2	49.0	882	D	33.4	27.0	1655	В	11.2	52.0	1743	
2050	Between US 54 Ramps	SB	Basic	2	Α	3.2	62.0	400	В	11.1	61.0	1361	В	11.4	62.0	1415	
2050	US 54 On-Ramp	SB	Merge	3	Α	2.7	63.0	511	Α	8.0	63.0	1507	Α	8.2	63.0	1545	
2050	After US 54 Interchange	SB	Basic	2	Α	4.0	64.0	509	В	11.9	63.0	1508	В	12.2	63.0	1541	
Northbound MO 5																	
2050	Before US 54 Interchange	NB	Basic	2	Α	10.6	59.0	1224	В	13.7	59.0	1584	В	13.8	59.0	1585	
2050	US 54 Off-Ramp	NB	Diverge	3	Α	6.6	62.0	1223	Α	8.4	63.0	1583	Α	8.4	63.0	1585	
2050	Between US 54 Ramps	NB	Basic	2	Α	4.4	64.0	561	Α	7.0	64.0	900	Α	7.0	64.0	899	
2050	US 54 On-Ramp	NB	Merge	3	Α	4.7	63.0	890	Α	8.4	62.0	1555	Α	8.4	62.0	1559	
2050	After US 54 Interchange	NB	Basic	2	Α	6.9	64.0	890	В	12.2	64.0	1557	В	12.3	64.0	1563	

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **134** of **152**

2050 Build Operations (Phase 2)

The 2050 Build (Phase 2) traffic volumes were evaluated in SYNCHRO and VISSIM. The SYNCHRO evaluations are summarized in **Table 44** for the November AM, November PM, and August PM peak hours. The VISSIM evaluations are summarized in **Table 45** and **Table 46** for the November AM, November PM, and August PM peak hours.

The SYNCHRO results show that the overall operating conditions of all study intersections are expected to operate at an acceptable level of service (LOS D or better) during all peak hours. Furthermore, all individual intersection approaches are expected to operate at an acceptable LOS during all peak hours except for of the following approaches:

- Northbound U-Turn at US 54 during the November AM, November PM, and August PM peak hours (LOS E);
- Southbound Cecil Street at US 54 during the November PM peak hour (LOS F);
- Southbound MO 5 Off-Ramp at US 54 during the November AM, November PM, and August PM peak hours (LOS F); and
- Southbound Business Route 5 at US 54 during the November AM peak hour (LOS E).

The VISSIM results show that the overall operating conditions of all study area intersections and individual intersection approaches are expected to operate at acceptable LOS during all peak hours. Furthermore, the VISSIM results show that all sections of MO 5 are expected to operate at an acceptable LOS during all peak hours.

Furthermore, **Figure 60**, **Figure 61**, and **Figure 62** show that the maximum eastbound and westbound approach queues at several intersections during the November AM, November PM, and August PM peak hours, respectively. As can be seen these approach queues are expected to decrease significantly from 2050 No-Build conditions.

Note, the SYNCHRO results show LOS F operations at the southbound Cecil Street approach at US 54 during the November PM peak hour and the southbound MO 5 to eastbound US 54 offramp during all peak hours due to the heavy right-turn volume. SYNCHRO has difficulties accurately analyzing yielding right-turn delays when the movement is heavy. Under 2050 Build (Phase 2) conditions the southbound Cecil Street at US 54 right-turn volume is 565 vph during the November PM peak hour and the southbound MO 5 to eastbound US 54 off-ramp volume is 475 vph, 325 vph, and 330 vph during the November AM, November PM, and August PM peak hours, respectively. The VISSIM results show that the southbound Cecil Street approach at US 54 is expected to operate at LOS D during the November PM peak hour and the southbound MO 5 to eastbound US 54 off-ramp is expected to operate at LOS D or better during all peak hours. It is our experience that the VISSIM results are more accurate at predicting yielding right-turn delay when the movement is heavy.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **135** of **152**

Additionally, the SYNCHRO results show LOS E operations at the southbound Business Route 5 approach at US 54 during the November AM peak hour and at the northbound U-Turn approach at US 54 during all peak hours due to the signal timing adjustments at both these intersections. Under 2050 Build (Phase 2) conditions, the signal timing at Business Route 5 and Cecil Street were adjusted to be coordinated with the other traffic signals along US 54. Much of the green time at Business Route 5 and Cecil Street are allocated to the eastbound and westbound US 54 through movements. The longer green times were used to maximize progress of traffic volume on the major throughfares (US 54), which resulted in increased delays for the side-street movements.

Overall, the proposed Boulevard (Phase 2) concept improvements are expected to address mobility concerns along US 54 by providing additional lane capacity along the corridor between the Northbound MO 5 ramps and Cecil Street, which is expected to relieve the eastbound and westbound US 54 bottlenecks along the corridor.

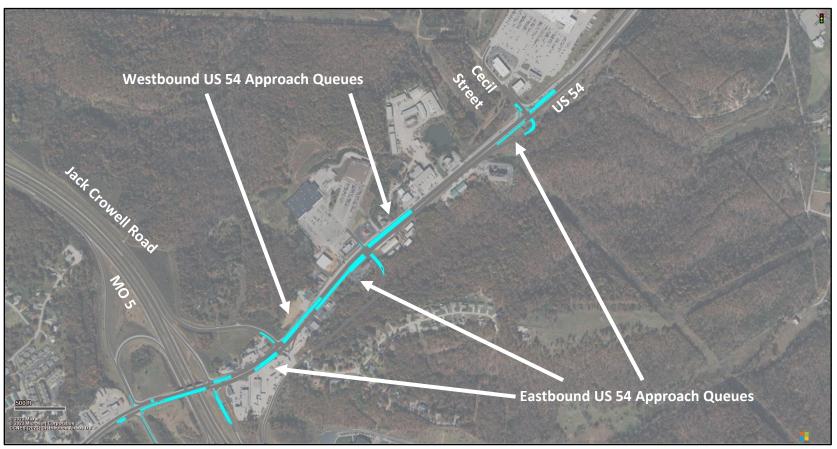


Figure 60: Maximum US 54 Approach Queues - 2050 Build (Phase 2) November AM

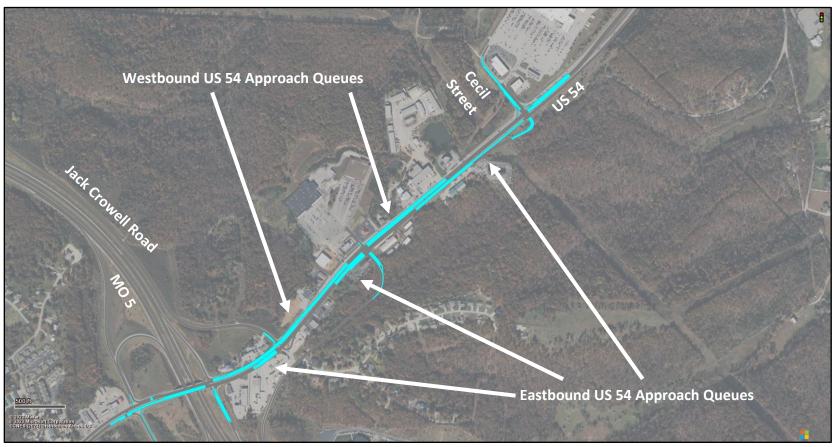


Figure 61: Maximum US 54 Approach Queues – 2050 Build (Phase 2) November PM

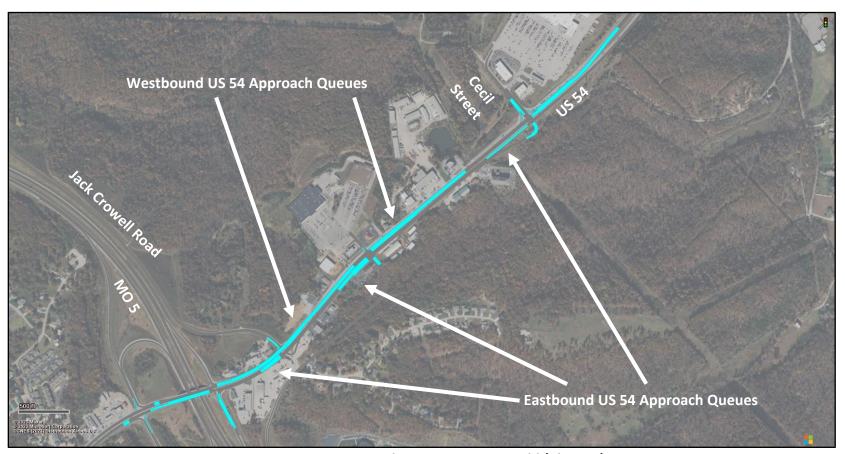


Figure 62: Maximum US 54 Approach Queues – 2050 Build (Phase 2) August PM

Table 44: Intersection Operating Conditions – 2050 Build (Phase 2) (SYNCHRO)

		Nov							(Jour			A	ust DM Dook I	lla	
Intersection/Approach	 	INOV	ember AM Pe Max V/C		NA a viva v va		Noven	nber PM Peal		D.C		Aug	ust PM Peak I	I	D.C. common common
intersection/Approach	LOS	Delay	& ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue	LOS	Delay	Max V/C & ICU	Average Queue	Maximum Queue
		•			US 54 &	Cecil Street ((Signalized)					•	•	•	
Eastbound US 54	С	22.3	0.94	340'	310'	D	49.2	1.03	565'	1095'	С	32.3	0.91	395'	490'
Westbound US 54	В	11.6	0.50	230'	265'	В	15.9	0.72	410'	465'	С	34.0	0.97	775'	935'
Northbound U-Turn	Е	58.7	0.65	105'	150'	Е	78.7	0.95	215'	325'	Е	60.7	0.71	120'	195'
Southbound Cecil Street	С	32.2	0.61	25'	65'	F	528.8	2.36	630'	860'	D	46.4	0.84	85'	180'
Overall Intersection	С	20.7	0.81			F	100.0	1.07			D	35.6	0.93		
US 54 & Laker Pride Road/Commercial Driveway (Signalized)															
Eastbound US 54	С	32.9	0.91	340'	410'	С	24.0	0.85	295'	310'	С	20.7	0.84	385'	480'
Westbound US 54	С	28.6	0.66	345'	405'	В	18.5	0.88	360'	375'	С	27.4	0.84	590'	615'
Northbound Laker Pride Road	D	45.5	0.73	70'	160'	Е	60.8	0.76	145'	270'	D	35.5	0.41	30'	70'
Southbound Driveway	Α	1.4	0.17	<25	<25	Α	2.1	0.20	<25	<25	А	1.4	0.17	<25	<25
Overall Intersection	С	32.0	0.79			С	24.5	0.81			С	24.7	0.81		
US 54 & Jack Crowell Road (Signalized)															
Eastbound US 54	В	12.5	0.75	260'	285'	В	12.8	0.70	310'	355'	Α	9.5	0.66	220'	285'
Westbound US 54	В	19.2	0.59	395'	445'	В	10.5	0.91	430'	160'	В	12.7	0.90	120'	120'
Southbound Jack Crowell Road	D	40.4	0.47	60'	115'	С	32.2	0.41	50'	100'	D	35.8	0.38	45'	95'
Overall Intersection	В	16.1	0.70			В	12.2	0.72			В	11.9	0.71		
				U:	5 54 & Northb	ound MO 5 F	Ramps (Signal	ized)							
Eastbound US 54	С	31.0	0.92	545'	630'	С	27.5	0.97	290'	365'	С	24.7	0.80	450'	555'
Westbound US 54	Α	7.2	0.68	75'	95'	С	27.5	1.04	630'	1175'	В	13.1	0.97	135'	1005'
Northbound MO 5 Off-Ramp	D	42.3	0.65	205'	275'	D	42.0	0.68	220'	295'	D	39.3	0.66	215'	285'
Overall Intersection	С	23.9	0.80			С	29.3	0.94			С	20.5	0.87		
				US	54 & Southbo	und MO 5 Ra	amps (Unsigna	alized)							
Eastbound US 54	Α	<1.0	0.44		<25'	Α	<1.0	0.50		<25'	А	<1.0	0.44		<25'
Westbound US 54	Α	<1.0	0.35		<25'	Α	<1.0	0.55		<25'	Α	<1.0	0.48		<25'
Southbound MO 5 to Eastbound US 54 Off-Ramp	F	>200	1.41		640'	F	132.8	1.41	-	355'	F	78.0	0.98		275'
Southbound MO 5 to Westbound US 54 Off-Ramp	В	11.6	0.33		35'	С	19.0	0.38		45'	С	17.9	0.43		55'
Overall Intersection	D	30.5	0.75			Α	9.9	0.72			Α	6.8	0.66		
					US 54 & Bu	siness Route	5 (Signalized								
Eastbound US 54	D	38.5	0.88	500'	550'	С	34.8	0.84	490'	595'	С	24.6	0.57	275'	345'
Westbound US 54	D	36.9	1.10	210'	320'	С	29.2	0.90	515'	490'	С	24.3	0.80	320'	385'
Northbound Business Route 5	D	40.4	0.75	85'	135'	D	51.4	0.88	170'	255'	D	43.0	0.80	115'	180'
Southbound Business Route 5	Е	68.6	0.96	275'	420'	D	49.1	0.58	45'	90'	D	53.8	0.77	120'	185'
Overall Intersection	D	43.3	0.90			D	36.4	0.93			С	31.9	0.88		

Table 45: Intersection Operating Conditions – 2050 Build (Phase 2) (VISSIM)

		Nover	nber AM Peak Ho				M Peak Hour	-		August PN	1 Peak Hour	
Intersection/Approach	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
	<u> </u>	<u>. </u>	·		JS 54 & Cecil Stre	et (Signalized)					•	•
Eastbound US 54	Α	5.6	<25'	365'	С	21.5	305'	1390'	В	17.9	95'	525'
Westbound US 54	В	11.1	35'	335'	В	16.9	90'	550'	С	24.9	245'	1240'
Northbound U-Turn	D	42.4	35'	210'	D	41.2	70'	330'	С	32.1	30'	210'
Southbound Cecil Street	В	19.1	<25'	95'	D	37.4	145'	725'	С	26.8	35'	265'
Overall Intersection	В	10.5			С	23.2			С	23.0		
				US 54 & Laker I	Pride Road/Comm	nercial Driveway (Signalized)					
Eastbound US 54	С	29.4	215'	720'	С	21.8	125'	410'	В	15.3	75'	420'
Westbound US 54	С	27.3	160'	585'	С	20.6	195'	1050'	С	23.7	265'	1255'
Northbound Laker Pride Road	С	32.0	45'	250'	С	34.1	65'	535'	С	31.0	<25'	90'
Southbound Driveway	В	16.5	<25'	60'	В	17.0	<25'	55'	В	18.5	<25'	55'
Overall Intersection	С	28.8			С	22.3			С	20.4		
	=			US 5	4 & Jack Crowell	Road (Signalized)						
Eastbound US 54	В	15.1	50'	280'	В	10.2	50'	280'	А	8.1	40'	245'
Westbound US 54	В	16.4	70'	585'	В	15.0	110'	1010'	В	19.3	150'	1045'
Southbound Jack Crowell Road	D	51.7	25'	180'	D	43.2	25'	135'	D	39.2	<25'	140'
Overall Intersection	В	16.8			В	13.7			В	15.0		
				US 54 &	Northbound MO	5 Ramps (Signaliz	red)					
Eastbound US 54	В	14.2	100'	690'	С	23.7	220'	830'	В	18.7	115'	615'
Westbound US 54	Α	7.1	<25'	180'	В	13.0	100'	805'	В	15.7	125'	835'
Northbound MO 5 Off-Ramp	D	45.8	100'	375'	D	46.1	105'	370'	D	44.9	105'	385'
Overall Intersection	В	16.7			С	21.1			С	20.6		
	-	_		US 54 & S	outhbound MO 5	Ramps (Unsignal	ized)					-
Eastbound US 54	Α	0.8	<25'	95'	Α	2.5	<25'	170'	Α	0.6	<25'	65'
Westbound US 54	Α	1.3	<25'	30'	Α	3.1	<25'	25'	Α	3.5	<25'	50'
Southbound MO 5 to Eastbound US 54 Off-Ramp	D	26.6	135'	765'	D	30.3	110'	645'	Α	8.2	<25'	215'
Southbound MO 5 to Westbound US 54 Off-Ramp	Α	4.6	<25'	140'	Α	5.7	<25'	120'	Α	6.0	<25'	140'
Overall Intersection	Α	4.6			Α	4.9			Α	3.0		
				US	54 & Business Rou	ute 5 (Signalized)						
Eastbound US 54	С	23.9	125'	630'	С	23.6	130'	640'	С	22.5	95'	465'
Westbound US 54	С	33.7	185'	670'	С	25.2	175'	980'	С	20.2	105'	735'
Northbound Business Route 5	D	46.1	40'	450'	D	48.1	290'	1555'	С	33.1	35'	220'
Southbound Business Route 5	D	49.6	110'	605'	D	44.4	30'	135'	D	43.5	80'	265'
Overall Intersection	С	34.2			С	30.2			С	26.5		

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **141** of **152**

Table 46: MO 5 Capacity Analysis – 2050 Build (Phase 2) (VISSIM)

Traffic						Nov	ember AM Peak ho	ur		Nov	ember PM Peak Ho	ur	August PM Peak Hour			
Volume Scenario	Segment	Direction	Type	Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume	LOS	Density (pc/mi/ln)	Average Speed (mph)	Total Traffic Volume
	Southbound MO 5															
2050	Before US 54 Interchange	SB	Basic	2	Α	7.3	60.0	856	В	11.7	60.0	1360	В	12.3	60.0	1426
2050	US 54 Off-Ramp	SB	Diverge	3	Α	4.5	63.0	854	Α	7.1	64.0	1358	Α	7.5	64.0	1424
2050	Between US 54 Ramps	SB	Basic	2	Α	4.8	64.0	612	Α	9.5	64.0	1203	Α	9.6	64.0	1216
2050	Between US 54 On-Ramp and US 54 Off-Ramp	SB	Weave	3	Α	6.5	48.0	900	В	11.7	51.0	1795	В	12.0	52.0	1841
2050	Between US 54 Ramps	SB	Basic	2	Α	3.4	62.0	419	В	11.9	62.0	1473	В	12.2	62.0	1514
2050	US 54 On-Ramp	SB	Merge	3	Α	2.8	63.0	531	Α	8.6	63.0	1619	Α	8.7	63.0	1644
2050	After US 54 Interchange	SB	Basic	2	Α	4.1	64.0	528	В	12.8	63.0	1617	В	13.0	63.0	1643
							Northbo	ound MO 5								
2050	Before US 54 Interchange	NB	Basic	2	Α	10.6	59.0	1224	В	13.7	59.0	1584	В	13.8	59.0	1585
2050	US 54 Off-Ramp	NB	Diverge	3	Α	6.6	62.0	1223	Α	8.4	63.0	1583	Α	8.4	63.0	1585
2050	Between US 54 Ramps	NB	Basic	2	Α	4.4	64.0	561	Α	7.0	64.0	900	Α	7.0	64.0	899
2050	US 54 On-Ramp	NB	Merge	3	Α	4.8	63.0	899	Α	8.8	61.0	1627	Α	9.1	61.0	1681
2050	After US 54 Interchange	NB	Basic	2	Α	7.0	64.0	898	В	12.8	63.0	1627	В	13.2	63.0	1679

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **142** of **152**

SAFETY ANALYSIS

Predictive Safety Analysis

To evaluate the safety implication of the proposed changes, safety conditions were analyzed using the AASHTO Highway Safety Manual (HSM; 1st Edition, 2010). The Highway Safety Manual methodologies are the preferred method for predictive safety analysis. The HSM provides guidance for quantifying crashes resulting from design decisions on a specific facility. The HSM methodology estimates future safety performance using Safety Performance Functions (SPFs) for specific facilities that are based in statistical crash data and geometric features. HSM methodologies also allows the ability to apply local calibration factors for specific roadway and intersection types to better estimate the safety performance.

National Cooperative Highway Research Program (NCHRP) has developed spreadsheet tools to assist with the implementation of HSM Part C, predictive methods, based on research studies. The HSM suburban/urban arterial spreadsheet was used to predict crashes along US 54 to compare the No-build Conditions to the Build Conditions.

The first edition of the HSM lacks expansive research on freeway facilities. However, Chapters 18 and 19 of the 2014 Supplement to the HSM includes research on the freeway segments and speed-change lanes as well as freeway ramps and freeway terminals. The Enhanced Interchange Safety Analysis Tool (ISATe), developed in cooperation with NCHRP, incorporates research from Chapters 18 and 19 of HSM for assessing the safety effects of basic geometric design along the freeway mainline, freeway ramps, and freeway terminals. As a result, the ISATe spreadsheet tool was used to predict the change in safety along the mainline freeway, freeway ramps and ramp terminals along the Missouri Route 5 corridor within the project area. The HSM segmentation guidance was followed as closely as practical. Crash prediction models were developed for the future traffic analysis years of 2030 (the projected opening year) to 2050 (design year).

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **143** of **152**

No-Build Condition

The No-build scenario assumes that the existing geometrics along the freeway and at the existing interchange will stay same over the 20-year timeframe. MO 5 freeway (red lines), freeway ramps (purple lines), and freeway terminals (green circles) and HSM Arterial segments (blue lines) and HSM Arterial intersections (yellow circles) are shown in **Figure 63** for the No-build Condition.

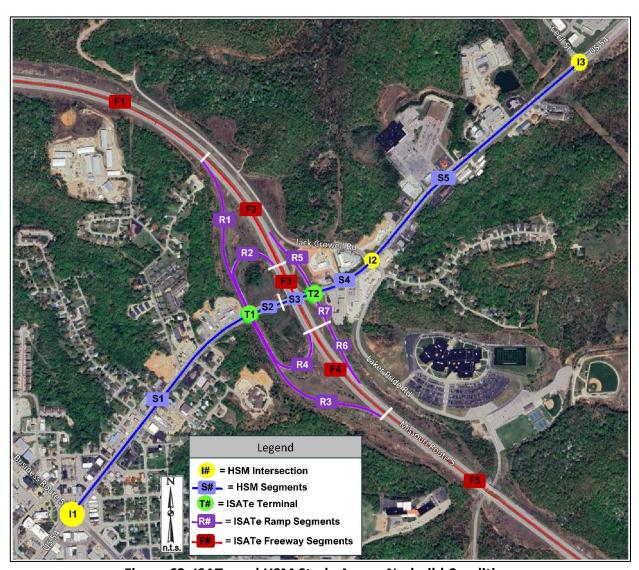


Figure 63: ISATe and HSM Study Area – No-build Condition

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **144** of **152**

Build Condition

The Build Condition assumes that Laker Pride Road (south side of US 54) will be rerouted to form a new 3-leg signalized intersection with US 54 between Jack Crowell Road and Cecil Street. It also includes expanding US 54 from an undivided five-lane section (two lanes in each direction plus a center two-way left-turn lane) to a divided six-lane section (three lanes in each direction) from Cecil Street to the intersection with the northbound MO 5 ramps, where the westbound lane terminates as a separate right-turn lane to go north on MO 5. It should be noted that the HSM methodology does not currently include a six-lane divided roadway facility type for safety analysis, so a four-lane divided highway was used as the next closest analysis available for the segments. Additionally, for the intersections east of the northbound terminals, the mainline left-turn phasing was assumed to be changed to protected only since mainline left-turns would be crossing three through lanes in the opposing direction. MO 5 (red lines), freeway ramps (purple lines), and freeway terminals (green circles) and HSM Arterial segments (blue lines) and HSM Arterial intersections (yellow circles) are shown in **Figure 64** for the Build Condition.

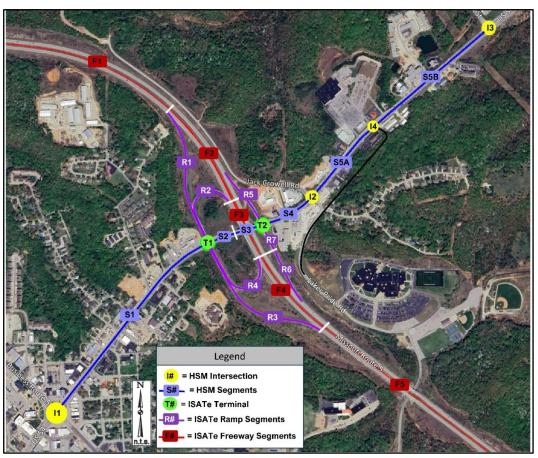


Figure 64: ISATe and HSM Study Area - Build Condition

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **145** of **152**

The safety analysis considers the same 20-year period (2030 to 2050) as the traffic analysis to determine the potential change in safety between the No-Build Condition and the Build Condition. **Table 47** below shows the predicted change in crashes over twenty years along MO 5 and US 54 between the No-Build Condition and the Build Condition. The detailed results, segmentation map, and printouts of the ISATe/HSM inputs and outputs are provided in the **Appendix G**. It should be noted that the ISATe program does not consider vertical curvature, slowdowns in traffic due to congestion or queuing issues that could be experienced along the corridor(s). As seen in Table 47, the Build improvements to US 54 are predicted to have a 10.4% reduction to the overall study area.

Table 48 below shows the predicted change in crashes over twenty years but limited to the improvement area, along US 54 between the MO 5 northbound ramps and Cecil Street. When focusing in on the improvement area, the proposed changes are predicted to have a **17.2% reduction in crashes when compared to the No Build condition**.

The US 54 and Jack Crowell Road/Laker Pride Road intersection will change from a four-leg intersection to a three-leg intersection which is predicted to have a reduction in crashes. With this change, Laker Pride Road will be re-routed to a separate three-leg signalized intersection with US 54 between Jack Crowell Road and Cecil Street which will add crashes that the no-build condition does not have. Overall, this modification is predicted to have a slight reduction in crashes at the intersections.

For the arterial segments east of the MO 5 northbound terminal (segments 4 and 5), the decrease in crashes is much more significant with a 57.3% reduction as is the direct result of providing a divided highway (median barrier) in the build scenario, which eliminates left-turn conflicts in the segments and proves to be a significant safety improvement.

The minor decrease in crashes at US 54 and Northbound MO 5 ramp terminal is due to the addition of a westbound US 54 right-turn lane at the terminal. Because of the additional lanes along US 54 east of the terminal, the westbound approach gains a separate right-turn lane with improved storage capacity to improve traffic flow.

As mentioned earlier, the HSM calculations do not include impacts related to congestion or queuing. Further, the current HSM methodology does not have the ability to evaluate the safety impacts of adding a through lane at intersections. Therefore, the HSM safety analysis at the intersection of US 54 and Cecil Street does not reflect a reduction in predicted crashes in Table 47 or Table 48. Although the analysis and tables do not show a crash reduction, it is reasonable to anticipate a reduction in crashes due to additional through lanes along US 54 which is intended to reduce queuing and therefore minimize the potential for rear end collisions.

Overall, the Build Condition is predicted to have approximately 17.2% fewer crashes over the 20-year period when compared to the No-Build Condition within the area of improvement.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **146** of **152**

Table 47: Safety Results – Change in Predicted Crashes in Overall Study Area Over 20-Years (ISATe & HSM)

·	No-E	Build Cond	dition	Bu	ild Condi	tion		Changes	in Crashe	es
Facility	F&I	PDO	Total	F&I	PDO	Total	F&I	PDO	Total	% Change in Total
Intersection 1 crashes: (US 54 & Business Route 5)	158.9	251.5	410.4	158.9	251.5	410.4	0.0	0.0	0.0	0.0%
Intersection 2 crashes: (No-Build: US 54 & Jack Crowell Road/Laker Pride Road) (Build: US 54 & Jack Crowell Road)	253.6	390.5	644.1	77.9	134.3	212.1	-175.8	-256.2	-432.0	-67.1%
Intersection 3 crashes: (US 54 & Cecil Street)	100.5	192.3	292.8	100.5	192.3	292.8	0.0	0.0	0.0	0.0%
Intersection 4 crashes: (Build: US 54 & Laker Pride Road)				108.7	209.1	317.8	108.7	209.1	317.8	
Arterial segments (1-3) crashes:	67.3	167.7	235.0	67.3	167.7	235.0	0.0	0.0	0.0	0.0%
Arterial segments (4-5) crashes:	97.2	246.4	343.6	37.8	108.8	146.7	-59.4	-137.6	-197.0	-57.3%
Total Arterial HSM Crashes	677.5	1248.4	1925.9	551.0	1063.7	1614.7	-126.5	-184.7	-311.2	-16.2%
Freeway segments, crashes:	72.4	245.7	318.1	72.4	245.7	318.1	0.0	0.0	0.0	0.0%
Ramp segments, crashes:	46.0	84.6	130.6	46.0	84.6	130.6	0.0	0.0	0.0	0.0%
Crossroad ramp terminals, crashes:	261.4	737.9	999.3	238.6	722.1	960.7	-22.8	-15.8	-38.6	-4.0%
Total ISATe Crashes	379.8	1068.3	1448.0	356.9	1052.5	1409.4	-22.8	-15.8	-38.6	-2.7%
Total Study Area Crashes	1057.3	2316.7	3373.9	907.9	2116.3	3024.2	-149.3	-200.4	-349.8	-10.4%

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **147** of **152**

Table 48: Safety Results – Change in Predicted Crashes in Modified Study Area Over 20-Years (ISATe & HSM)

	No-E	Build Cond	dition	Bu	ild Condi	tion		Changes	in Crash	es
Facility	F&I	PDO	Total	F&I	PDO	Total	F&I	PDO	Total	% Change in Total
Intersection 2 crashes: (No-Build: US 54 & Jack Crowell Road/Laker Pride Road) (Build: US 54 & Jack Crowell Road)	253.6	390.5	644.1	77.9	134.3	212.1	-175.8	-256.2	-432.0	-67.1%
Intersection 3 crashes: (US 54 & Cecil Street)	100.5	192.3	292.8	100.5	192.3	292.8	0.0	0.0	0.0	0.0%
Intersection 4 crashes: (Build: US 54 & Laker Pride Road)				108.7	209.1	317.8	108.7	209.1	317.8	
US 54 segments (4-5) crashes: (MO 5 NB ramps to Cecil St):	97.2	246.4	343.6	37.8	108.8	146.7	-59.4	-137.6	-197.0	-57.3%
US 54 and NB MO 5 ramp terminal, crashes:	201.6	556.1	757.7	178.8	540.4	719.1	-22.8	-15.8	-38.6	-5.1%
Total Study Area Crashes	652.9	1385.3	2038.2	503.7	1184.9	1688.5	-149.3	-200.5	-349.8	-17.2%

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **148** of **152**

SUMMARY OF FINDINGS

US Route 54 (US 54) is a key mobility corridor for regional and intercity traffic. Nationally, US 54 runs 1,200 miles from Griggsville, Illinois to El Paso, Texas. In Missouri, US 54 connects the Lake of the Ozarks to communities such as Louisiana (near the Champ Clark Mississippi River Bridge at the Illinois border), Bowling Green (at US 61), Mexico, Kingdom City (at I-70), Jefferson City (crossing the Senator Roy Blunt Missouri River Bridge and intersecting US 50 and US 63), and Nevada (at I-49 near the Kansas border). Within the study area, US 54 provides access to/from Missouri Route 5 (MO 5), recreational and entertainment opportunities associated with the Lake of the Ozarks, commercial and residential properties, and schools such as Camdenton High School, Oak Ridge Intermediate School, and Hawthorn Elementary School.

MoDOT has been upgrading US 54 to an expressway through the Lake of the Ozarks area over the past 15 years, resulting in the removal of all the traffic signals between Kingdom City and Camdenton. As a result, the traffic signals at the intersections of US 54 with Laker Pride and Cecil Street are the only traffic signals remaining on US 54 between Kingdom City and MO 5. These intersections create capacity bottlenecks along this section of US 54 resulting in congestion and associated roadway crashes.

This study was undertaken to identify and examine alternatives to improve the short and long-term safety and traffic operations of the US 54/MO 5 interchange and of US 54 in Camdenton between the south end of the Lake of the Ozarks US 54 Expressway and the MO 5 interchange. As such, the study examined US 54 between Cecil Street and Business Route 5 as well as MO 5 between Business Route 5 and Missouri Route 7.

The study's preferred alternative is a "Boulevard" configuration, that:

- Widens US 54 to six (6) lanes between Cecil Street and the MO 5 interchange.
- Installs a raised center median in the widened section to control left turns.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a new traffic signal at a commercial driveway in the vicinity of Gerbes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Road traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

The Boulevard concept recognizes the commercial nature of his section of US 54 and provides an opportunity to extend Camdenton's US 54 urban character east of MO 5 to Cecil Street through elements such as lower speeds, signalized intersections, street lighting, and gateway signage. The posted speed limit for this section of US 54 under the Boulevard concept is recommended to be 35 miles per hour.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **149** of **152**

MoDOT can build this project in two phases. Phase 1 widens US 54 between the northbound MO 5 ramps and Laker Pride/Jack Crowell Road. Phase 2 relocates Laker Pride Road, installs the Uturn movements, and widens US 54 between Jack Crowell Road and Cecil Street.

Phase 1 includes:

- The construction of a third eastbound lane on US 54 from the northbound MO 5 ramps to Laker Pride Road where it terminates as a right-turn lane at Laker Pride Road.
- Building a third westbound lane on US 54 lane from the eastern approach to Laker Pride Road, terminating as a right-turn at the northbound MO 5 ramps.
- Installs a raised center median on US 54 between the northbound MO 5 ramps to Laker Pride Road/Jack Crowell Road.
- Restriction of all driveways on US 54 between MO 5 and Laker Pride/Jack Crowell Road to right-in right-out access.
 - Businesses on the north side of US 54 have left turn access to/from US 54 via existing connections to Jack Crowell Road.
 - Businesses on the south side of US 54 have left-turn access to/from US 54 via existing and new driveway connections to Laker Pride Road.

Based on property lines obtained from the Camden County GIS website, the construction of Phase 1 will require the acquisition of approximately 0.37 acres, impacting six parcels. The actual existing right-of-way needs will be more precisely determined in the design phase. The construction estimate (rounded) for Phase 1 is \$4,500,000.

Phase 2 extends the widening of US 54 to six lanes from Laker Pride/Jack Crowell Road to Cecil Street. Phase 2 also:

- Installs a raised center median in the widened section to control left turns. The results in the restriction of all driveways on US 54 between Jack Crowell Road and Cecil Street to right-in right-out access.
- Relocates the Laker Pride Road intersection approximately 1200 feet to the east to a
 new traffic signal at a commercial driveway in the vicinity of Gerbes. This intersection
 will include an eastbound US 54 right-turn lane and northbound dual left-turn lanes.
- Provides a signalized U-turn movement at the Jack Crowell Road traffic signal for westbound traffic.
- Provides a signalized U-turn movement at the Cecil Street traffic signal for eastbound traffic via a new jughandle. The existing eastbound to northbound left turn traffic will also use the new jughandle.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **150** of **152**

Based on property lines obtained from the Camden County GIS website, the construction of Phase 2 will require the acquisition of approximately 3.33 acres, impacting twenty-four parcels. The actual existing right-of-way needs will be more precisely determined in the design phase. The construction estimate (rounded) for Phase 2 is \$11,000,000.

The study team conducted an analysis of historical crash data and predicted future safety performance. Crashes in the segments between the northbound MO 5 Ramps and Cecil Street are comprised of approximately 39% rear ends and approximately 28% left-turn related crashes. Should improvements be made to minimize or eliminate left-turns from driveways and to reduce congestion and queuing, then significant safety improvements could be expected along these segments, especially when considering the predominate types of crashes in the historical crash data.

The proposed improvements aim to reduce crashes related to left turning vehicles and rear ends through access management practices. Implementing a median barrier on US 54 instead of a two-way left-turn lane eliminates left-turning conflict points at driveways. The additional lane on US 54 in both directions serves to separate turning vehicles from through traffic to improve traffic flow and reduce the potential for rear end collisions.

Based on the predictive safety analysis, the Phase 2 Build condition is predicted to have approximately 17.2% fewer crashes over the 20-year period when compared to the No-Build Condition within the area of improvement. Also, the US 54 segments between the signalized intersections of the northbound MO 5 ramps and Cecil Street is predicted to have approximately 57.3% reduction in crashes due to the proposed divided highway (median barrier) provided in the build scenario, which eliminates left-turn conflicts in the segments and provides a significant safety improvement.

For the arterial segments east of the MO 5 northbound terminal (segments 4 and 5), the decrease in crashes is much more significant with a 57.3% reduction as is the direct result of providing a divided highway (median barrier) in the build scenario, which eliminates left-turn conflicts in the segments and proves to be a significant safety improvement.

The study team completed traffic modeling with the VISSIM traffic analysis software to determine capacity needs and estimate how much the proposed improvements would lower delay. The team modeled several scenario years, including 2024 (completion of base traffic counts), 2030 (estimated Phase 1 construction year), and 2050 (design year). For each of these years the study team evaluated AM and PM peak periods for November conditions (when school is in session) as well as the August PM peak period for August traffic.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **151** of **152**

Traffic modeling shows that Phase 1 improvements will provide an acceptable level of service (LOS D or better) during the November AM and PM peak periods as well as August PM peak period until sometime around 2035. The Phase 1 improvements, by themselves, will reach their capacity sometime between 2035 and 2050 due to capacity constraints in the existing four-lane section between the Lake Pride/Jack Crowe Road and Cecil Street traffic signals. Phase 2 improvements provide adequate capacity for an acceptable level of service (LOS D or better) through 2050.

In addition to intersection and freeway operations, VISSIM provides network-wide performance measures that measure the effectiveness of alternatives. VISSIM modeling shows the following network delay reductions for 2024 and 2030 build conditions from 2024 and 2030 no-build conditions, respectively.

Peak Periods	2024 Traffic Volumes	2030 Traffic Volumes
November AM Peak	39% delay reduction	54% delay reduction
November PM Peak	57% delay reduction	69% delay reduction
August PM Peak	66% delay reduction	64% delay reduction

These results show considerable improvement in the overall roadway network performance for Phase 1 for short-term growth.

VISSIM modeling shows the following network delay reductions for 2050 traffic volumes.

Peak Periods	Phase 1 with 2050 Traffic Volumes	Phase 2 with 2050 Traffic Volumes			
November AM Peak	66% delay reduction	78% delay reduction			
November PM Peak	38% delay reduction	70% delay reduction			
August PM Peak	81% delay reduction	83% delay reduction			

2050 modeling results show that both Phases 1 and 2 provide an improvement in all network-wide metrics. However, the VISSIM models also show that with Phase 1, by 2050 approximately 572 vehicles are unable to enter the road network during the November PM peak period. This "unmet demand" shows that there is not adequate capacity for all the vehicles seeking to travel on US 54 during that time, resulting in roadway congestion. The August PM peak period has an unmet demand of 1114 vehicles. The modeling data also shows that there is an additional travel delay reduction with Phase 2 improvements. The results of this analysis show that Phase 1 improvements will address existing congestion, but that Phase 2 construction will be needed to provide the capacity required for projected traffic growth.

Conceptual Interchange Study
US 54 at Missouri Route 5
Camdenton, Missouri
September 16, 2025
Page **152** of **152**

The proposed improvements improve safety and traffic operations by providing needed capacity along US 54 between MO 5 and Cecil Street. These improvements can be constructed in 2 phases. Widening US 54 in this section and widening to 6 lanes recognizes the commercial nature of his section of US 54 and provides an opportunity to extend Camdenton's US 54 urban character east of MO 5 to Cecil Street through elements such as lower speeds, signalized intersections, street lighting, and gateway signage.

cbbtraffic.com

Appendix A – Travel Time Data

US 54 & MO 5 Weekday AM Travel Runs CBB # 073-24

Study Name : US 54 & MO 5 Weekday AM - EB

Study Date : 10/17/2024

Page No. : 1

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 54 & MO-5 AM-2-EB-003	10/17/24	07:08	8024	Before	Primary
US 54 & MO-5 AM-2-EB-004	10/17/24	07:19	8086	Before	Primary
US 54 & MO-5 AM-2-EB-005	10/17/24	07:30	8126	Before	Primary
US 54 & MO-5 AM-2-EB-006	10/17/24	07:42	8073	Before	Primary
US 54 & MO-5 AM-2-EB-007	10/17/24	07:53	8177	Before	Primary

Node Info

#	Len	Name
1	0	Business Route 5
2	3132	SB MO-5 Off-Ramp
3	769	NB MO-5 On-Ramp
4	810	Laker Pride Road
5	3340	Cecil Street

Length of Study Route = 8,051 feet

Notes:

US 54 & MO 5 Weekday AM Travel Runs CBB # 073-24

Study Name : US 54 & MO 5 Weekday AM - EB

Study Date : 3/3/2025 Page No. : 2

Overall Output Statistics

Node	Length	Node	Travel	# of	Avg	Total	Time <=	Time <=	Time <=
#			Time	Stops	Speed	Delay	35 MPH	40 MPH	45 MPH
1	0	Business Route 5							
2	3132	SB MO-5 Off-Ramp	58.0	0.0	36.8	10.0	15.4	41.8	58.0
3	769	NB MO-5 On-Ramp	48.0	0.8	10.9	36.0	44.6	46.6	48.0
4	810	Laker Pride Road	41.4	0.8	13.3	28.8	41.4	41.4	41.4
5	3340	Cecil Street	57.4	0.0	39.7	7.4	12.2	22.4	47.4
Total	8,051		204.8	1.6	26.8	82.2	113.6	152.2	194.8

Stats based on 5 BEFORE runs. Stops based on a Stop Speed of 5 MPH. Total Delay based on a Normal Speed of 45 MPH.

US 54 & MO 5 Weekday AM Travel Runs CBB # 073-24

Study Name : US 54 & MO 5 Weekday AM - EB

Study Date : 3/3/2025

Page No. : 3

Detailed Statistics By Run

Travel Time (sec) by Section

US 54 & MO-5 AM-2-EB-003

US 54 & MO-5 A

US 54 & MO-5 A

US 54 & MO-5 A US 54 & MO-5 AM-2-EB-004 US 54 & MO-5 AM-2-EB-005 US 54 & MO-5 AM-2-EB-006 US 54 & MO-5 AM-2-EB-007

Node	Length	Node Name	Run #1	Run #2	Run #3	Run #4	Run #5
#							
1	0	Business Route 5					
2	3132	SB MO-5 Off-Ramp	56	61	61	57	55
3	769	NB MO-5 On-Ramp	38	15	62	74	51
4	810	Laker Pride Road	28	25	56	53	45
5	3340	Cecil Street	56	53	58	67	53
Totals	8051		178	154	237	251	204

US 54 & MO 5 Weekday AM Travel Runs CBB # 073-24

Study Name : US 54 & MO 5 Weekday AM - WB

Study Date : 10/17/2024

Page No. :1

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 54 & MO-5 AM-2-WB-002	10/17/24	06:54	8054	Before	Primary
US 54 & MO-5 AM-2-WB-003	10/17/24	07:04	8071	Before	Primary
US 54 & MO-5 AM-2-WB-004	10/17/24	07:13	8043	Before	Primary
US 54 & MO-5 AM-2-WB-005	10/17/24	07:24	8058	Before	Primary
US 54 & MO-5 AM-2-WB-006	10/17/24	07:36	8072	Before	Primary

Node Info

#	Len	Name
1	0	Cecil Street
2	3340	Laker Pride Road
3	810	NB MO-5 On-Ramp
4	769	SB MO-5 Off-Ramp
5	3132	Business Route 5

Length of Study Route = 8,051 feet

Notes:

US 54 & MO 5 Weekday AM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Weekday AM - WB

Study Date : 3/3/2025 Page No. : 2

Overall Output Statistics

Node	Length	Node	Travel	# of	Avg	Total	Time <=	Time <=	Time <=
#			Time	Stops	Speed	Delay	35 MPH	40 MPH	45 MPH
1	0	Cecil Street							
2	3340	Laker Pride Road	56.2	0.0	40.5	5.2	4.6	20.4	45.8
3	810	NB MO-5 On-Ramp	25.2	0.6	21.9	12.8	17.0	22.4	25.2
4	769	SB MO-5 Off-Ramp	16.2	0.0	32.4	4.2	9.4	16.2	16.2
5	3132	Business Route 5	96.4	0.8	22.2	49.2	52.6	75.0	95.4
Total	8,051		194.0	1.4	28.3	71.4	83.6	134.0	182.6

Stats based on 5 BEFORE runs. Stops based on a Stop Speed of 5 MPH. Total Delay based on a Normal Speed of 45 MPH.

US 54 & MO 5 Weekday AM Travel Runs

CBB # 073-24

Study Name: US 54 & MO 5 Weekday AM - WB

Study Date : 3/3/2025

Page No. : 3

Detailed Statistics By Run

Travel Time (sec) by Section

US 54 & MO-5 AM-2-WB-002

US 54 & MO-5 AM

US 54 & MO-5 AM

US 54 & MO-5 AM US 54 & MO-5 AM-2-WB-003 US 54 & MO-5 AM-2-WB-005 US 54 & MO-5 AM-2-WB-006 US 54 & MO-5 AM-2-WB-004

Node	Length	Node Name	Run #1	Run #2	Run #3	Run #4	Run #5
#							
1	0	Cecil Street					
2	3340	Laker Pride Road	59	54	55	52	61
3	810	NB MO-5 On-Ramp	41	15	23	14	33
4	769	SB MO-5 Off-Ramp	18	13	18	15	17
5	3132	Business Route 5	87	102	118	123	52
Totals	8051		205	184	214	204	163

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Friday PM - EB

Study Date : 10/18/2024

Page No. :1

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 54 & MO-5 FRI PM-EB-003	10/18/24	15:10	8167	Before	Primary
US 54 & MO-5 FRI PM-EB-004	10/18/24	15:23	8164	Before	Primary
US 54 & MO-5 FRI PM-EB-005	10/18/24	15:37	8140	Before	Primary
US 54 & MO-5 FRI PM-EB-006	10/18/24	15:49	8124	Before	Primary
US 54 & MO-5 FRI PM-EB-007	10/18/24	16:03	8054	Before	Primary

Node Info

#	Len	Name
1	0	Business Route 5
2	3132	SB MO-5 Off-Ramp
3	769	NB MO-5 On-Ramp
4	810	Laker Pride Road
5	3340	Cecil Street

Length of Study Route = 8,051 feet

Notes:

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Friday PM - EB

Study Date : 3/3/2025

Page No. : 2

Overall Output Statistics

Node	Length	Node	Travel	# of	Avg	Total	Time <=	Time <=	Time <=
#			Time	Stops	Speed	Delay	35 MPH	40 MPH	45 MPH
1	0	Business Route 5							
2	3132	SB MO-5 Off-Ramp	62.0	0.0	34.4	14.2	31.0	54.4	62.0
3	769	NB MO-5 On-Ramp	27.0	0.6	19.4	15.0	20.8	25.2	27.0
4	810	Laker Pride Road	31.8	0.4	17.4	19.2	31.8	31.8	31.8
5	3340	Cecil Street	60.6	0.0	37.6	10.0	19.6	41.2	53.6
Total	8,051		181.4	1.0	30.3	58.4	103.2	152.6	174.4

Stats based on 5 BEFORE runs. Stops based on a Stop Speed of 5 MPH. Total Delay based on a Normal Speed of 45 MPH.

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Date : 3/3/2025

Detailed Statistics By Run

Study Name: US 54 & MO 5 Friday PM - EB

Page No. : 3

Travel Time (sec) by Section

US 54 & MO-5 FRI PM-EB-003

US 54 & MO-5 FRI US 54

US 54 & MO-5 FRI US 54 US 54 & MO-5 FRI PM-EB-004 US 54 & MO-5 FRI PM-EB-005 US 54 & MO-5 FRI PM-EB-006 US 54 & MO-5 FRI PM-EB-007

Node	Length	Node Name	Run #1	Run #2	Run #3	Run #4	Run #5
#							
1	0	Business Route 5					
2	3132	SB MO-5 Off-Ramp	60	58	66	66	60
3	769	NB MO-5 On-Ramp	14	15	14	47	45
4	810	Laker Pride Road	23	45	43	25	23
5	3340	Cecil Street	61	53	59	68	62
Totals	8051		158	171	182	206	190

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Friday PM - WB Study Date : 10/18/2024

Page No. : 1

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 54 & MO-5 Fri PM-WB-003	10/18/24	15:14	8080	Before	Primary
US 54 & MO-5 Fri PM-WB-004	10/18/24	15:29	8077	Before	Primary
US 54 & MO-5 Fri PM-WB-005	10/18/24	15:42	8094	Before	Primary
US 54 & MO-5 Fri PM-WB-006	10/18/24	15:55	8042	Before	Primary
US 54 & MO-5 Fri PM-WB-007	10/18/24	16:09	8055	Before	Primary

Node Info

#	Len	Name
1	0	Cecil Street
2	3340	Laker Pride Road
3	810	NB MO-5 On-Ramp
4	769	SB MO-5 Off-Ramp
5	3132	Business Route 5

Length of Study Route = 8,051 feet

Notes:

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Friday PM - WB

Study Date : 3/3/2025

Page No. : 2

Overall Output Statistics

Node	Length	Node	Travel	# of	Avg	Total	Time <=	Time <=	Time <=
#			Time	Stops	Speed	Delay	35 MPH	40 MPH	45 MPH
1	0	Cecil Street							
2	3340	Laker Pride Road	159.4	2.8	14.3	108.4	159.4	159.4	159.4
3	810	NB MO-5 On-Ramp	47.6	1.0	11.6	35.0	47.6	47.6	47.6
4	769	SB MO-5 Off-Ramp	17.0	0.0	30.8	5.0	13.4	17.0	17.0
5	3132	Business Route 5	95.0	0.6	22.5	47.6	64.6	87.6	94.0
Total	8,051		319.0	4.4	17.2	196.0	285.0	311.6	318.0

Stats based on 5 BEFORE runs. Stops based on a Stop Speed of 5 MPH. Total Delay based on a Normal Speed of 45 MPH.

US 54 & MO 5 Friday PM Travel Runs CBB # 073-24

Study Name: US 54 & MO 5 Friday PM - WB

Study Date : 3/3/2025

Page No. : 3

Detailed Statistics By Run

Travel Time (sec) by Section

US 54 & MO-5 Fri PM-WB-003

US 54 & MO-5 Fri US 54 US 54 & MO-5 Fri PM-WB-005 US 54 & MO-5 Fri PM-WB-004 US 54 & MO-5 Fri PM-WB-006 US 54 & MO-5 Fri PM-WB-007

Node	Length	Node Name	Run #1	Run #2	Run #3	Run #4	Run #5
#							
1	0	Cecil Street					
2	3340	Laker Pride Road	187	138	160	159	153
3	810	NB MO-5 On-Ramp	55	59	19	48	57
4	769	SB MO-5 Off-Ramp	18	18	17	16	16
5	3132	Business Route 5	60	143	105	99	68
Totals	8051		320	358	301	322	294

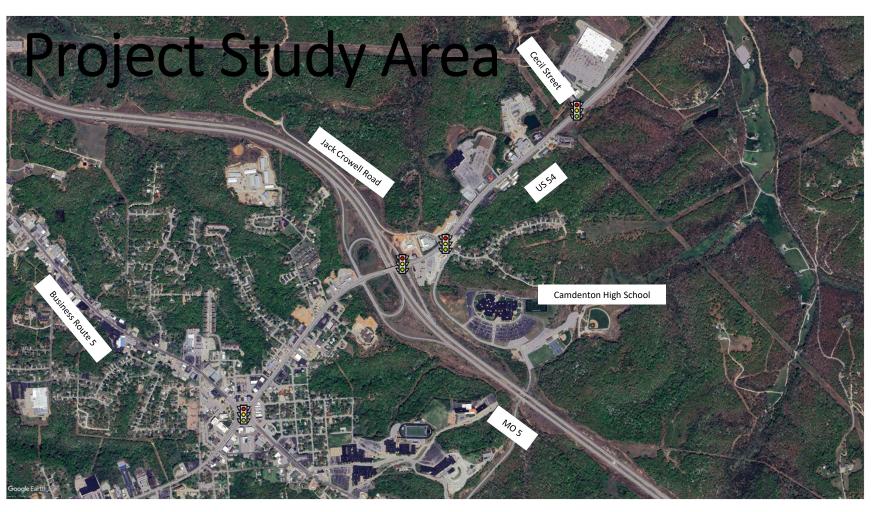
cbbtraffic.com

Appendix B – Presentation from March 13, 2025, Meeting

340 Regency Centre

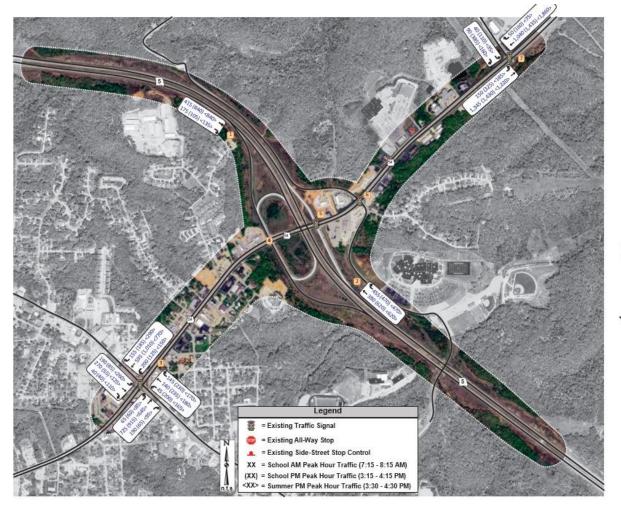
Collinsville, IL 62234

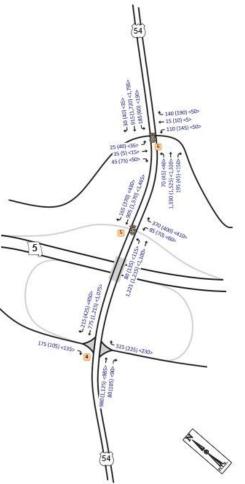
US 54 & MO 5 Interchange Study Concept Brainstorm


Camdenton, Missouri

Meeting Agenda

- Introductions
- Existing Conditions
- Traffic Forecasts
- Initial Concepts
- Reasonable Alternatives
- Alternative Discussion




Modeling Methods & Assumptions

- Traffic Counts
- Signal Timing Data
- SYNCHRO
- VISSIM

2024 Traffic Volumes

2024 School AM VISSIM Model



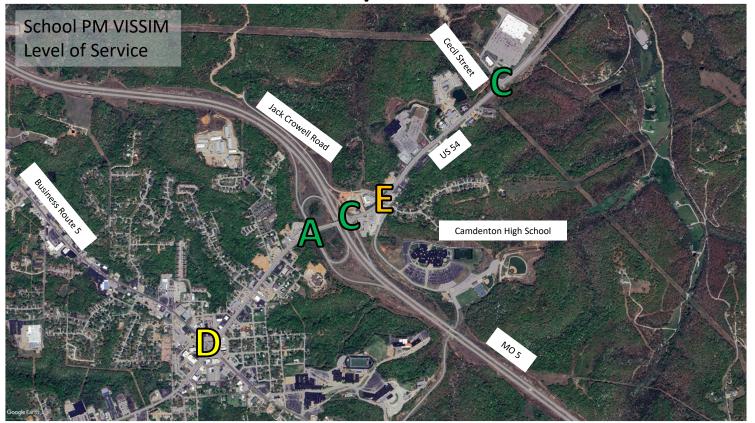
2024 School AM VISSIM Queues


2024 School/Summer PM VISSIM Model

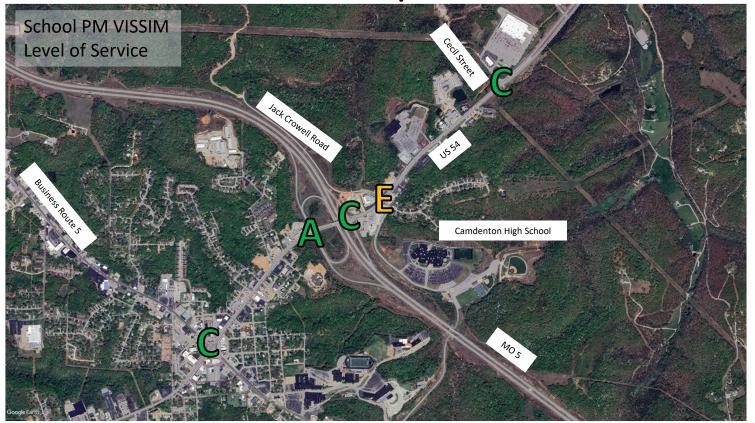
2024 School PM VISSIM Queues


Calibration Results

 Travel times and traffic flows are within MoDOT's target range

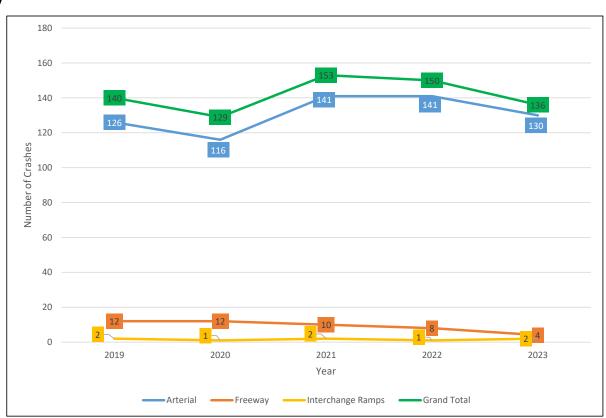

School AM Travel Times					
Direction	Field Average (s)	VISSIM Average (s)	Percent Difference		
Eastbound US 54	205	210	+2.6%		
Westbound US 54	194	193	-0.3%		
	School PM	Travel Times			
Direction	Field Average (s)	VISSIM Average (s)	Percent Difference		
Eastbound US 54	181	191	+5.0%		
Westbound US 54	319	319	0.0%		

Dook Hour	Total Tra	affic Flow	GEH	Percent
Peak Hour	Field (veh)	VISSIM (veh)	GER	Difference
School AM	13950	13741	1.78	-1.5%
School PM	17910	18085	1.30	+1.0%
Summer PM	16860	16824	0.28	-0.2%


2024 School AM Operations

2024 School PM Operations

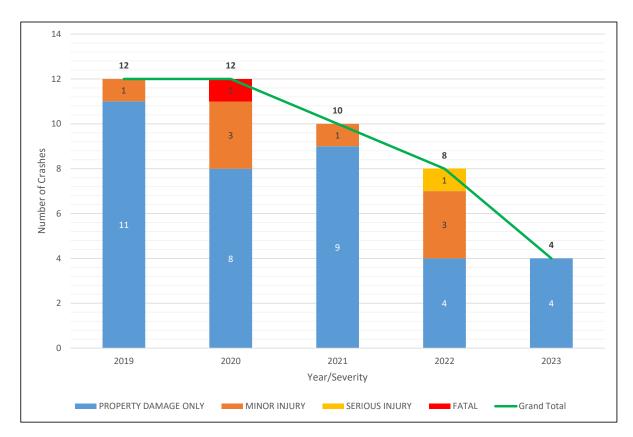
2024 Summer PM Operations



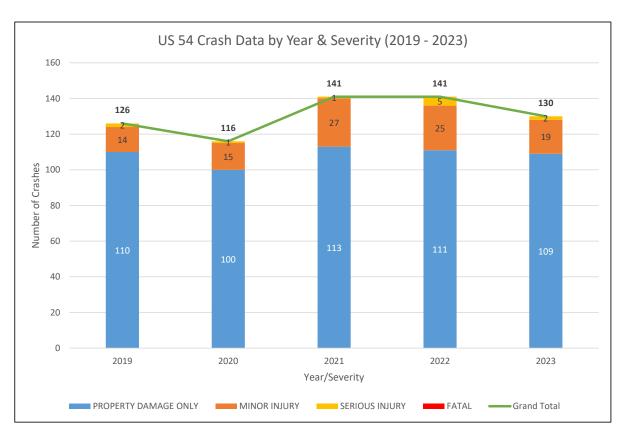
US 54 & MO 5 Study Area

(2019-2023)

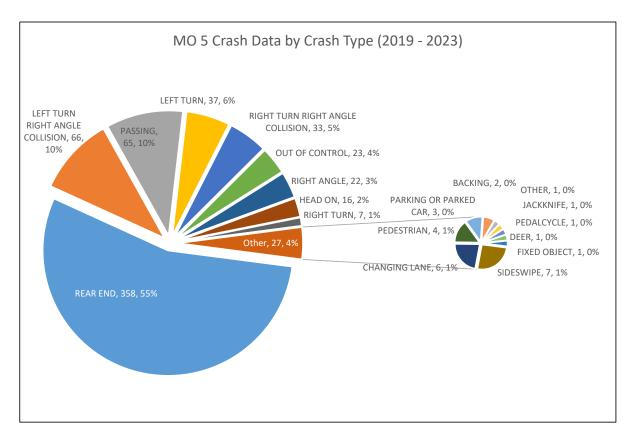
• 708 total/141.6 crashes per year


- US 54: 654 total/130.8 crashes per year
- MO 5: 46 total/9.2 crashes per year
- MO 5 On/Off Ramps: 8 total/1.6 crashes per year

MO 5 (2019-2023)


- 78% property damage only
- 8% minor injury
- 1 Disabling Injury (2022)
- 1 Fatal Crash (2020)

US 54 (2019-2023)


- 83% property damage only
- 15% minor injury
- 11 Disabling Injury
- 0 Fatal Crash

US 54 (2019-2023)

- Rear end (55%)
- Left turns (10%)
- Passing (10%)
- Typical in signalized corridors with congestion and access management issue

US 54 (2019-2023)

- 483 total crashes at intersections
- Cecil Street (25%)
- SB MO 5 Ramps (17%)
- Business Route 5 (16%)
- NB MO 5 Ramps (14%)
- Laker Pride Road (6%)

US 54 & Cecil Street (2019-2023)

- Rear end (79%)
 - 55 SB Cecil Street
 - 6 Minor Injury
 - 24 WB US 54
 - 2 Minor Injury
 - 16 EB US 54
 - 2 Minor Injury
- Passing (8%)
- Left turns (3%)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			10	85	95
PASSING			1	9	10
LEFT TURN RIGHT ANGLE COLLISION			2	2	4
OUT OF CONTROL		1		2	3
HEAD ON				3	3
RIGHT ANGLE				2	2
CHANGING LANE				1	1
JACKKNIFE				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
Total	0	1	13	106	120

US 54 & SB MO 5 Ramps (2019-2023)

- Rear end (68%)
 - 50 on the SB MO5 to EB US 54Ramp
 - 6 Minor Injury
- Passing (14%)
- Right-Turns (8%)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			6	51	57
PASSING				12	12
RIGHT TURN RIGHT ANGLE COLLISION				7	7
LEFT TURN RIGHT ANGLE COLLISION			2	1	3
RIGHT TURN				2	2
LEFT TURN				1	1
OUT OF CONTROL				1	1
OTHER				1	1
Total	0	0	8	76	84

US 54 & Business Route 5 (2019-2023)

- Rear end (76%)
- Passing (4%)
- Left-Turns (4%)
- Right-Turns (4%)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			8	50	58
PASSING				3	3
LEFT TURN				3	3
RIGHT ANGLE			2	1	3
OUT OF CONTROL			1	1	2
HEAD ON				2	2
CHANGING LANE				1	1
PEDESTRIAN			1		1
PEDALCYCLE		1			1
LEFT TURN RIGHT ANGLE COLLISION				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
Grand Total	0	1	12	63	76

US 54 & NB MO 5 Ramps (2019-2023)

• Rear end (48%)

• Left-Turns (13%)

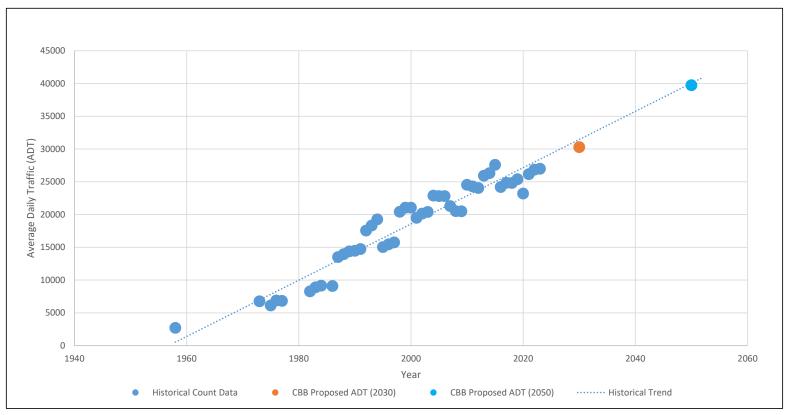
• Right-Turns (10%)

Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			3	30	33
LEFT TURN		1		8	9
RIGHT TURN RIGHT ANGLE COLLISION				7	7
PASSING				5	5
LEFT TURN RIGHT ANGLE COLLISION				5	5
OUT OF CONTROL			1	2	3
HEAD ON			1	2	3
CHANGING LANE			1		1
FIXED OBJECT				1	1
RIGHT TURN				1	1
SIDESWIPE				1	1
Total	0	1	6	62	69

US 54 & Laker Pride Road (2019-2023)

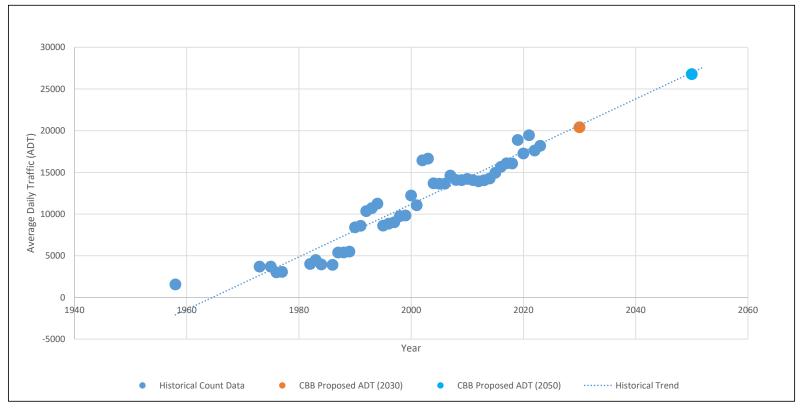
TRANSPORTATION ENGINEERS+PLANNERS

• Rear end (61%)

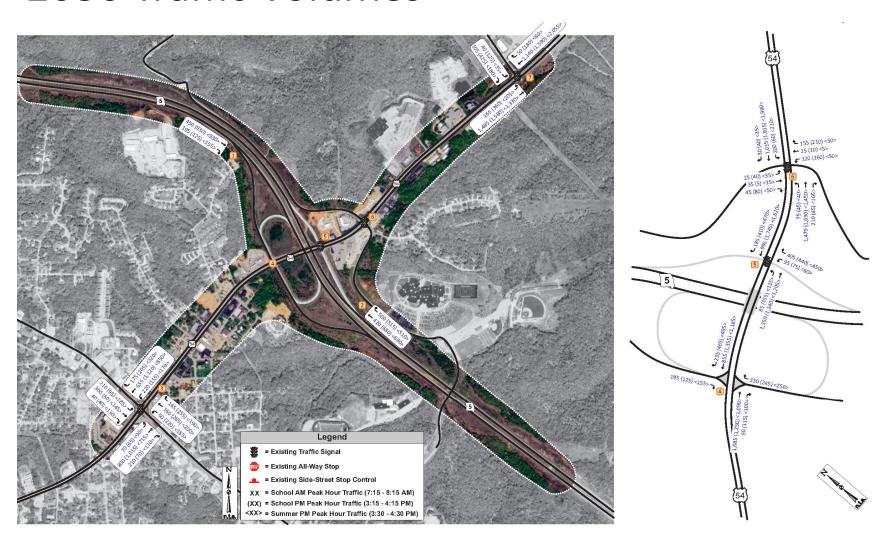

• Passing (13%)

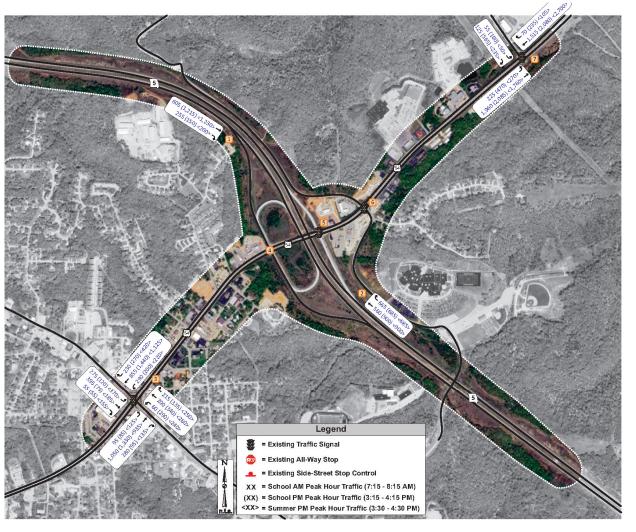
• Left-Turns (10%)

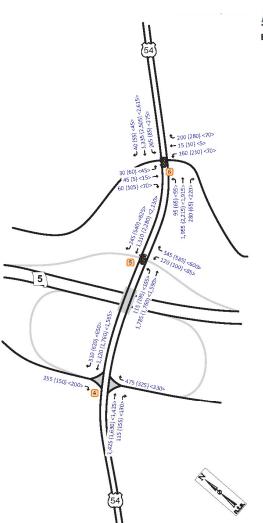
Crash Type	FATAL	SERIOUS INJURY	MINOR INJURY	PROPERTY DAMAGE ONLY	Total
REAR END			3	16	19
PASSING				4	4
LEFT TURN				3	3
LEFT TURN RIGHT ANGLE COLLISION				2	2
HEAD ON				1	1
RIGHT TURN RIGHT ANGLE COLLISION				1	1
SIDESWIPE				1	1
Total	0	0	3	28	31


Traffic Forecast (US 54)

- Consistent
 Growth for
 approximately 60
 years
- Growth rate of 1.75% per year


Traffic Forecast (MO 5)

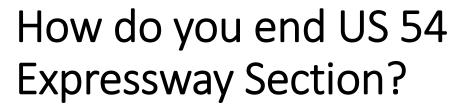

- Consistent
 Growth for
 approximately 60
 years
- Growth rate of 1.75% per year


2030 Traffic Volumes

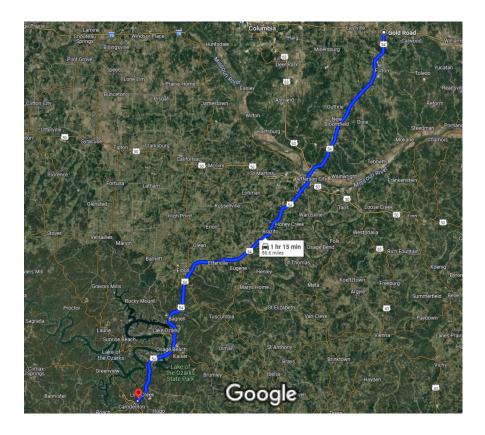
2050 Traffic Volumes

27

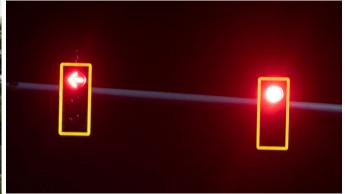
Nearby Development


- Potential Future Development
- Currently in the initial phases of development

2050 No-Build Conditions


- Already congested conditions exacerbated by increased volumes
- US 54 at Business Route 5 and Cecil Street bottleneck traffic to/from the interchange
- 2050 No-Build conditions create major operational and safety conditions for all users of the roadway

- US 54 is free-flow for approximately 86 miles
- No traffic signals between Janice Avenue (Kingdom City) and Cecil Street (Camdenton)


- 1. Basic Safety/Operational Improvements
- 2. 3rd Westbound Lane
- 3. J-Turn
- 4. Jughandles
- 5. Jackson Street Interchange
- 6. Northside CD Road
- 7. Combinations

Basic Operations

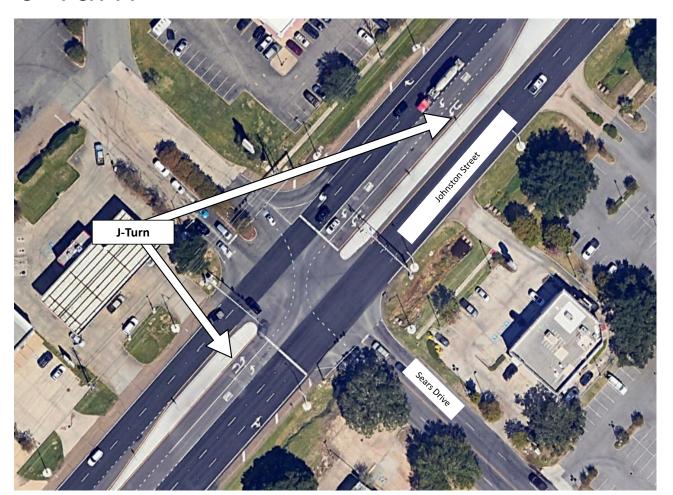
- Optimize Signal Timing
- Safety Improvements
 - Dynamic Signal Warning Flashers
 - Reflective Signal Backplates
 - Consider Access Management

Basic Operations

	PRO'S	CON'S
CONFIGURATION	Minimal changes to the existing network	No improvement to intersection spacing
PROPERTY IMPACTS	No property impacts	
OPERATIONS	Minor improvements to operations	
SAFETY	Reduction in crashes at study intersections	No improvement to intersection spacing
SCHOOL	No impact on high school operations	

3rd Westbound Lane

3rd Westbound Lane


	PRO'S	CON'S
CONFIGURATION	 Provide individual lanes to heavy westbound US 54 movements 	No improvement to intersection spacing
PROPERTY IMPACTS	•	 Driveways impacted along the west side of US 54
OPERATIONS	 Provide additional roadway capacity to WB US 54 	No improvement to intersection spacing
SAFETY	EB US 54 to NB Jack Crowell Road converted to protected phasing	No conflict points eliminated
SCHOOL	No impact on high school operations	•

	PRO'S	CON'S
CONFIGURATION	Remove heavy left-turn movements at US 54 & Laker Pride Road	No improvement to intersection spacing
PROPERTY IMPACTS	 No impact on properties near US 54 & Laker Pride 	 Will impact properties at the J-turn location
OPERATIONS	 Reduce the number of phases at US 54 & Laker Pride Road Optimize signal timing at US 54 and Laker Pride Road 	 No improvement to intersection spacing Increases travel time for two movements
SAFETY	Remove heavy left-turn movements at US 54 & Laker Pride Road	•
SCHOOL	•	 Impacts northbound Laker Pride Road left- turn vehicles

Jughandles

Jughandles

	PRO'S	CON'S
CONFIGURATION	 Reduces movements at US 54 & Laker Pride Road Roundabouts provide a transition from two-way to one-way roadways 	 Converts existing two-way roadways to one-way roadways
PROPERTY IMPACTS	•	 Major impacts on properties along Laker Pride Road and Jack Crowell Road
OPERATIONS	 Reduce the number of phases at US 54 & Laker Pride Road Optimize signal timing at US 54 and Laker Pride Road 	•
SAFETY	 Reduced number of conflict points at US 54 & Laker Pride Road 	No improvement to intersection spacing
SCHOOL	•	 Major impact on high school operations

Jackson Street Interchange

Jackson Street Interchange

	PRO'S		CON'S
CONFIGURATION	 Provide additional access to/from MO 5 Reduce traffic volumes at US 54 and Laker Pride Road 	•	No improvement to intersection spacing
PROPERTY IMPACTS	 No impact on properties along US 54 	•	Potential property impacts near Jackson Street
OPERATIONS	 Optimize signal timing at US 54 and Laker Pride Road 	•	No improvement to intersection spacing
SAFETY	 Reduce traffic volumes at Southbound MO 5 Weave 	•	No conflict points eliminated
SCHOOL	•	•	Potential impact on high school operations

TRANSPORTATION ENGINEERS+PLANNERS

Northside CD Road

Northside CD Road

	PRO'S	CON'S
CONFIGURATION	 Convert US 54 & Laker Pride Road to Right-In/Right-Out Provide CD roadway between US 54 and Jackson Street 	 Access impacts on properties along Jack Crowell Road/Laker Pride Road
PROPERTY IMPACTS	 No impacts on existing properties along US 54/Laker Pride Road 	 Impacts properties along Jack Crowell Road
OPERATIONS	Removes a signalized intersection	 Concentrates traffic to one intersection
SAFETY	 Reduced number of conflict points at US 54 & Laker Pride Road Increases intersection spacing between signalized intersections 	Concentrates traffic to one intersection
SCHOOL	 Direct access from northbound MO 5 to schools 	Major impact on high school operations

TRANSPORTATION ENGINEERS+PLANNER

Other Ideas?

cbbtraffic.com

Appendix C – Presentation from March 28, 2025, Meeting

340 Regency Centre

Collinsville, IL 62234

US 54 & MO 5 Interchange Study Concept Alternatives

Camdenton, Missouri

Meeting Agenda

- Introductions
- Boulevard Concept
- Jughandle Concept
- Roundabout Concept
- High Level Opinion of Cost

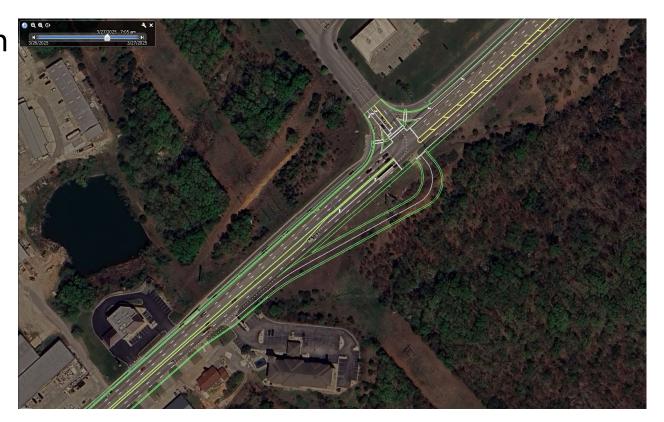
Boulevard Concept

- Provide 3 lanes along US 54 between Cecil Street and NB MO 5 Ramps
- Provide a median between Cecil Street and NB MO 5 Ramps
- Provide J-Turns for left-turn movements between intersections
- Relocate Laker Pride Road

Boulevard Concept – J-Turns

• WB to EB US 54 J-Turn at Laker Pride Road

Boulevard Concept – J-Turns


• EB to WB US 54 J-Turn at Cross Creek Drive

Boulevard Concept – J-Turns

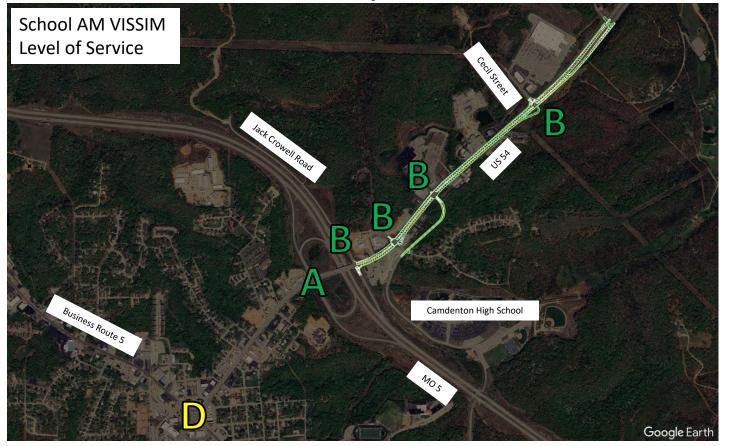
• EB to WB US 54 J-Turn at Cecil Street

Boulevard Concept – Relocated Laker Pride Road

- Opposite East Gerbes Driveway
- Impacts the US Bank Drive-Through

Boulevard Concept – Relocated Laker Pride Road

- Opposite West Gerbes Driveway
- Impacts the US Bank parking lot


Boulevard Concept – Relocated Laker Pride Road

- Minimize impact on the US Bank site
- Not Opposite of a Gerbes Driveway

2050 School AM Operations

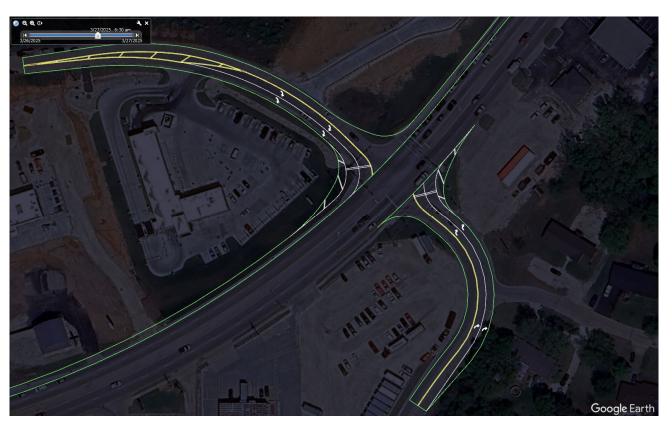
2050 School PM Operations

2050 Summer PM Operations

Jughandle Concept

- Reduce the need for widening along US 54
- Provide two roundabouts on both sides of US 54
- Provide a CD road connection between the roundabouts
- Provide an EB to WB US 54 J-Turn

Jughandle Concept – US 54 Widening


 3 lanes along WB US 54 between Laker Pride Road and NB MO 5 Ramps

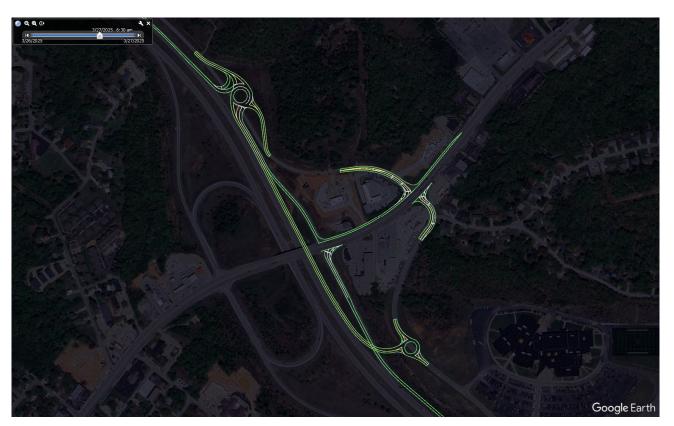
Jughandle Concept – RIRO Intersections

- Right-In/Right-Out at Laker Pride Road
- Signalized intersection to provide capacity for right-turn movements

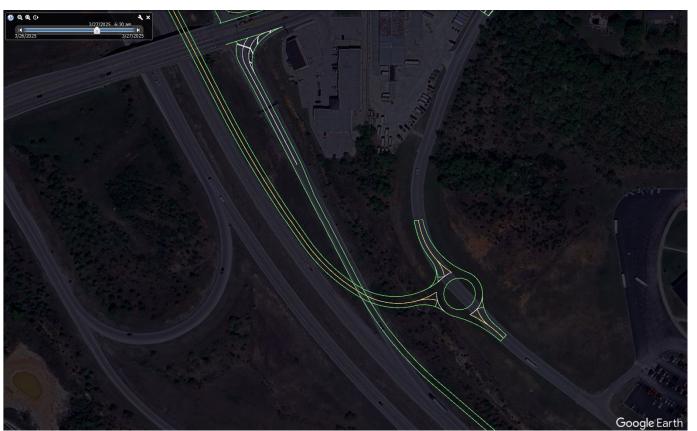
Jughandle Concept – RIRO Intersections

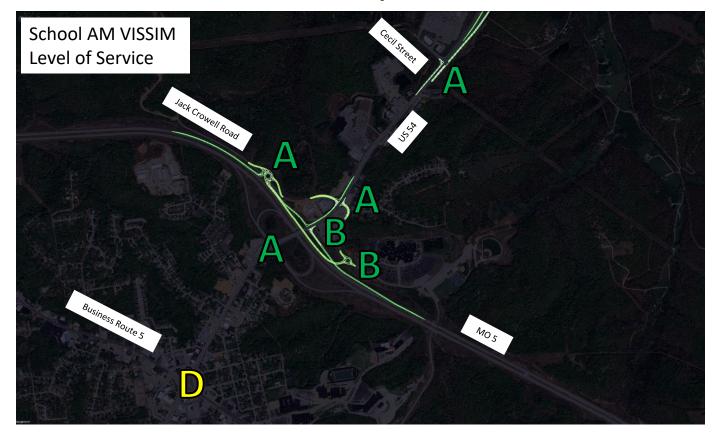
- Right-In/Right-Out at Cecil Street
- EB LT and SB LT movement provided by J-Turn and Jughandle
- Acceleration Lane for SB Right-Turn Movement

Jughandle Concept – J-Turn

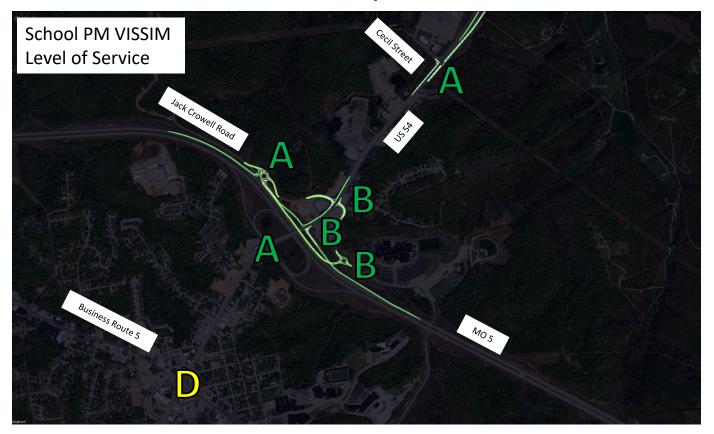

- EB to WB US 54 J-Turn at Cross Creek Drive
- J-Turn provides the EB LT to Cecil Street
- Acceleration Lane is provided
- Requires shifting EB US54 alignment

Jughandle Concept – Roundabouts

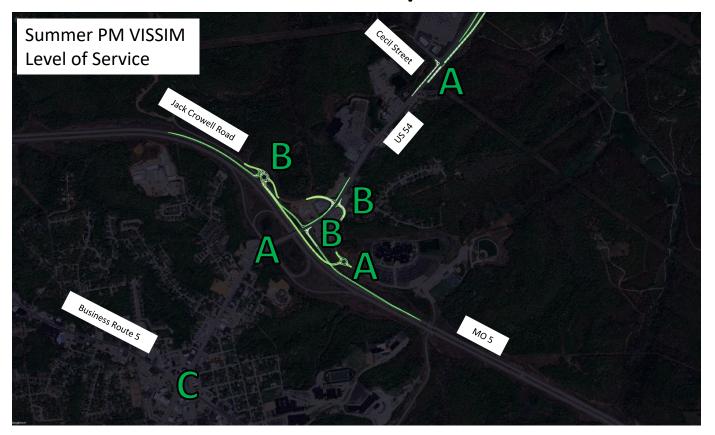

- Roundabouts at Jack Crowell Road and Laker Pride Road
- CD Road connects roundabouts


Jughandle Concept – Braided Ramp

Braided Ramp for Northbound MO5 Off-Ramp



2050 School AM Operations



2050 School PM Operations

2050 Summer PM Operations

Roundabout Concept

- Dual Lane
 Roundabouts at
 Laker Pride Road,
 NB MO 5 Ramps,
 and SB MO 5 Ramps
- Undesirable operations under 2050 conditions

Intersection	2050 Intersection Operations				
intersection	School AM	School PM	Summer PM		
Laker Pride Road	F (61.5)	F (141.5)	F (113.0)		
Northbound MO 5 Ramps	F (99.8)	F (135.4)	F (103.6)		
Southbound MO 5 Ramps	E (43.8)	C (19.4)	C (15.3)		

High Level Opinion of Cost

- Boulevard Concept
 - \$14,500,000
- Jughandle Concept
 - \$13,912,500
- Roundabout Concept
 - Not developed due to undesirable operations

Discussion and Next Steps

- Feedback on Concepts
- Complete Conceptual Study Report

cbbtraffic.com

Appendix D – Opinion of Cost for Phase 1

DESCRIPTION	QUANTITY	UNIT	UNIT COST	соѕтѕ
ROADWAY ITEMS				
Mobilization		5%	of Roadway	\$40,200
Sidewalk (Removal)	550	SQYD	\$15	\$8,250
8" PCC (Roadway Removal)	1075	SQYD	\$15	\$16,125
6" PCC (Entrance Removal)	470	SQYD	\$15	\$7,050
Curb & Gutter (Removal)	2255	FT	\$10	\$22,550
PCC (Parking Lot Removal)	70	SQYD	\$15	\$1,050
Tree Removal	1	AC	\$15,000	\$9,000
Other Removals		10%	of Removal	\$6,500
Sawcut	2450	FT	\$10	\$24,500
8" PCC (Roadway)	2795	SQYD	\$65	\$181,675
6" PCC (Entrance)	1740	SQYD	\$60	\$104,400
Curb & Gutter	2875	FT	\$35	\$100,625
ADA Ramps	5	EA	\$3,500	\$17,500
Sidewalk	720	SQYD	\$80	\$57,600
Tie Bars	2450	LBS	\$5	\$12,250
2" BP-1	2795	SQYD	\$60	\$167,700
4" Aggregate Base	4220	SQYD	\$10	\$42,200
Lawn area (Sodding)	4195	SQYD	\$10	\$41,950
Median (Removal)	195	SQYD	\$15	\$2,925
6" Concrete Median Strip (Doweled On)	860	SQYD	\$55	\$47,300
Cut Through	1	EA	\$2,000	\$2,000
Earthwork	1	LS	\$270,000	\$270,000
Drainage	1	LS	\$175,100	\$175,100
ROADWAY ITEMS SUB-TOTAL =				\$1,358,450

QUANTITY UNIT COST DESCRIPTION UNIT COSTS **MARKING & SIGNING ITEMS** \$1,691 6" White Standard Waterborne Pavement Marking Paint 2255 FT \$0.75 12" White Standard Waterborne Pavement Marking Paint 470 FT \$1.50 \$705 4" Yellow Standard Waterborne Pavement Marking Paint 2040 FT \$0.50 \$1,020 0 \$1.50 \$0 12" Yellow Standard Waterborne Pavement Marking Paint FT Preformed Thermoplastic Pavement Marking, White Symbols 9 EΑ \$1,000 \$9,000 Preformed Thermoplastic Pavement Marking, 24" White \$3,400 170 FT \$20 1 LS \$11,900 \$11,900 Signing MARKING & SIGNING ITEMS SUB-TOTAL= \$27,716 SIGNAL & LIGHTING ITEMS Signal Cost 1 L SUM \$470,000 \$470,000 1 L SUM \$80,000 Lighting \$80,000 SIGNAL, ITS, & LIGHTING ITEMS SUB-TOTAL= \$550,000 **MISCELLANEOUS** 15% of Project **Utility Relocation** \$290,500 5% of Project \$96,900 Survey Cost 20% of Project Contingency \$387,300 Engineering 15% of Project \$290,500 Traffic Control 10% of Project \$193,700 Inflation 3% per year for 2 years \$118,400 **ROW** and Easements L SUM \$1,179,690 **MISCELLANEOUS SUB-TOTAL=** \$2,556,990 Total Project Costs (Rounded) = \$4,500,000

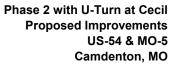
cbbtraffic.com

Appendix E – MoDOT Right-of-Way Cost Estimate

340 Regency Centre

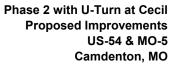
Collinsville, IL 62234

MEMORANDUM


Missouri Department of Transportation

DATE:	7/11/2	025						
TO:	-	Ryan Libbert Design Engineer						
	File-rv	V						
FROM:		David Ordway Certified Appraiser						
SUBJECT:	Right of	f Way Cost Est	timate					
	Route: Job:	CD0053, ST0	0156 rsection east to .	Altern				
	Date:	7/11/2025		Prepar	er:	<u>David Ordway</u>		
Project Deve Stage: 1. Project I 2. Concept Location 3. Prelimin	Initializat ual Plan/ 1 Study	ion 🔀		4. 5.	_	t of Way Plan Complete isition Complete		
Estimated R	ight of W	ay Acquisition	n Costs:			<u>\$1,149,690</u>		
Estimate of Incidental Costs:			\$ <u>30,000</u>					
Total Right	of Way C	Cost Estimate:				<u>\$1,179,690</u>		
Previous To \$ Date	_	of Way Cost E Explanation f	Estimate: for change from	previo	us estir	mate:		
No known p	revious e	estimate exists.						

cbbtraffic.com


Appendix F – Opinion of Cost for Phase 2

OPC

ENGINEERS+PLANNERS		1	OPC	
DESCRIPTION	QUA	NTITY	UNIT COST	COSTS
ROADWAY ITEMS				
Mobilization		5%	of Roadway	\$171,600
Sidewalk (Removal)	1335	SQYD	\$15	\$20,025
8" PCC (Roadway Removal)	3985	SQYD	\$15	\$59,775
6" PCC (Entrance Removal)	2305	SQYD	\$15	\$34,575
Curb & Gutter (Removal)	6605	FT	\$10	\$66,050
Tree (Removal)	2	AC	\$15,000	\$30,000
Other Removals		10%	of Removal	\$21,100
Sawcut	8050	FT	\$10	\$80,500
8" PCC (Roadway)	17240	SQYD	\$65	\$1,120,600
6" PCC (Entrance)	2305	SQYD	\$60	\$138,300
Curb & Gutter	9635	FT	\$35	\$337,225
ADA Ramps	3	EA	\$3,500	\$10,500
Sidewalk	2195	SQYD	\$80	\$175,600
Tie Bars	7205	LBS	\$5	\$36,025
2" BP-1	16845	SQYD	\$60	\$1,010,700
4" Aggregate Base	19145	SQYD	\$10	\$191,450
Lawn area (Sodding)	10705	SQYD	\$10	\$107,050
Shoulder	1325	SQYD	\$65	\$86,125
Shoulder (Removal)	250	SQYD	\$15	\$3,750
Median (Removal)	0	SQYD	\$15	\$0
6" Concrete Median Strip (Doweled On)	2225	SQYD	\$55	\$122,375
6" Concrete Island (Doweled On)	140	SQYD	\$55	\$7,700
Cut Through	2	EA	\$2,000	\$4,000
Earthwork		30%	of Roadway	\$1,029,600
Drainage		30%	of Roadway	\$1,029,600
ROADWAY ITEMS	S SUB-T	OTAL =		\$5,894,225

OPC

ENGINEERS+PLANNERS								
DESCRIPTION	QUA	NTITY	UNIT COST	COSTS				
MARKING & SIGNING ITEMS								
6" White Standard Waterborne Pavement Marking Paint	7495	FT	\$0.75	\$5,621				
12" White Standard Waterborne Pavement Marking Paint	320	FT	\$1.50	\$480				
4" Yellow Standard Waterborne Pavement Marking Paint	15325	FT	\$0.50	\$7,663				
12" Yellow Standard Waterborne Pavement Marking Paint	345	FT	\$1.50	\$518				
Preformed Thermoplastic Pavement Marking, White Symbols	14	EA	\$1,000	\$14,000				
Preformed Thermoplastic Pavement Marking, 24" White	305	FT	\$20	\$6,100				
Signing		30%	of Marking	\$10,400				
MARKING & SIGNING ITEMS SUB-TOTAL=								
SIGNAL & LIGHTING ITEMS								
Signal Cost	1	L SUM	\$870,000	\$870,000				
Lighting	1	L SUM	\$200,000	\$200,000				
SIGNAL, ITS, & LIGHTING ITEM	IS SUB-	TOTAL=		\$1,070,000				
MISCELLANEOUS								
Utility Relocation		15% of F	Project	\$1,051,400				
Survey Cost		5% of P	roject	\$350,500				
Contingency		20% of F	Project	\$1,401,900				
Engineering		15% of F	Project	\$1,051,400				
Traffic Control		10% of F	Project	\$701,000				
Inflation	3%	per year	for 2 years	\$430,000				
ROW and Easements		L SU	JM	TBD				
MISCELLANEOU	S SUB-	TOTAL=		\$3,934,800				
Tot	al Proje	ct Costs	(Rounded) =	\$11,000,000				

cbbtraffic.com

Appendix G – Safety Analysis Printouts

cbbtraffic.com

TECHNICAL MEMORANDUM

Date: July 23, 2025

To:

From: Brian Rensing, P.E., PTOE, RSP 21

CBB Job Number: 73-2024

US 54 - MO 5 MoDOT On-Call Project:

Predictive Crash Analysis Summary

Camdenton, Missouri

Predictive Safety Analysis: US 54 and MO 5 Interchange

In order to evaluate the safety implication of the proposed changes, safety conditions were analyzed using the AASHTO Highway Safety Manual (HSM; 1st Edition, 2010). The Highway Safety Manual methodologies are the preferred method for predictive safety analysis. The HSM provides guidance for quantifying crashes resulting from design decisions on a specific facility. The HSM methodology estimates future safety performance using Safety Performance Functions (SPFs) for specific facilities that are based in statistical crash data and geometric features. HSM methodologies also allows the ability to apply local calibration factors for specific roadway and intersection types to better estimate the safety performance.

National Cooperative Highway Research Program (NCHRP) has developed spreadsheet tools to assist with the implementation of HSM Part C, predictive methods, based on research studies. The HSM suburban/urban arterial spreadsheet was used to predict crashes along US 54 to compare the No-build Conditions to the Build Conditions.

The first edition of the HSM lacks expansive research on freeway facilities. However, Chapters 18 and 19 of the 2014 Supplement to the HSM includes research on the freeway segments and speed-change lanes as well as freeway ramps and freeway terminals. The Enhanced Interchange Safety Analysis Tool (ISATe), developed in cooperation with NCHRP, incorporates the research from Chapters 18 and 19 of HSM for assessing the safety effects of basic geometric design along the freeway mainline, freeway ramps, and freeway terminals. As a result, the ISATe spreadsheet tool was used to predict the change in safety along the mainline freeway, freeway ramps and ramp terminals along the Missouri Route 5 corridor within the project area. The HSM segmentation guidance was followed as closely as practical. Crash prediction models were developed for the future traffic analysis years of 2030 (the projected opening year) to 2050 (design year).

340 Regency Centre

Collinsville, IL 62234

No Build Condition

The No-build scenario assumes that the existing geometrics along the freeway and at the existing interchange will stay same over the 20-year timeframe. The Missouri Route 5 freeway (red lines), freeway ramps (purple lines), and freeway terminals (green circles) and HSM Arterial segments (blue lines) and HSM Arterial intersections (yellow circles) are shown in **Figure 1** for the No-build Condition.

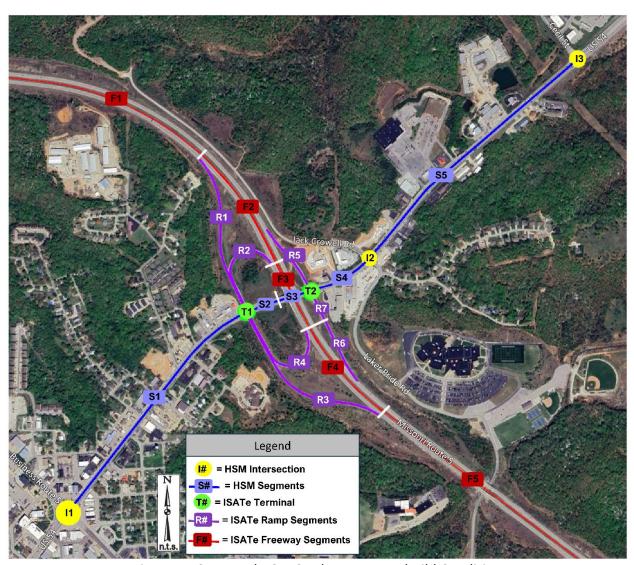


Figure 1: ISATe and HSM Study Area – No-build Condition

Build Condition

The Build Condition assumes that Laker Pride Road (south side of US 54) will be rerouted to form a new 3-leg signalized intersection with US-54 between Jack Crowell Road and Cecil Street. It also includes expanding US-54 from an undivided five-lane section (two lanes in each direction plus a center two-way left-turn lane) to a divided six-lane section (three lanes in each direction) from Cecil Street to the intersection with the northbound MO 5 ramps, where the westbound lane terminates as a separate right-turn lane to go north on MO 5. It should be noted that the HSM methodology does not currently include a six-lane divided roadway facility type for safety analysis, so a four-lane divided highway was used as the next closest analysis available for the segments. Additionally, for the intersections east of the northbound terminals, the mainline left-turn phasing was assumed to be changed to protected only since mainline left-turns would be crossing three through lanes in the opposing direction. The Missouri Route 5 freeway (red lines), freeway ramps (purple lines), and freeway terminals (green circles) and HSM Arterial segments (blue lines) and HSM Arterial intersections (yellow circles) are shown in Figure 2 for the Build Condition.

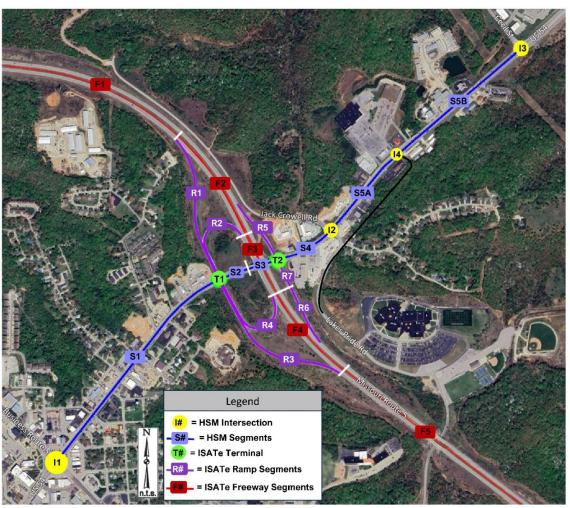


Figure 2: ISATe and HSM Study Area – Build Condition

Predictive Safety Analysis Summary – US-54 & MO 5 Interchange Camdenton, Missouri July 23, 2025 Page 4 of 5

The safety analysis considers the same 20-year period (2030 to 2050) as the traffic analysis to determine the potential change in safety between the No-Build Condition and the Build Condition. **Table 1** below shows the predicted change in crashes over twenty years along the Missouri Route 5 corridor and the US 54 corridors between the No-build Condition and the Build Condition. The detailed results, segmentation map, and printouts of the ISATe/HSM inputs and outputs are provided in the Safety Appendix. It should be noted that the ISATe program does not take into account vertical curvature, slowdowns in traffic due to congestion or queuing issues that could be experienced along the corridor(s).

As seen in Table 1, the Build improvements to US-54 are predicted to have a 16.2% reduction to the US 54 arterial. The US-54 and Jack Crowell Road/Laker Pride Road intersection will change from a four-leg intersection to a three-leg intersection which is predicted to have a reduction in crashes. With this change, Laker Pride Road will be re-routed to a separate three-leg signalized intersection with US-54 between Jack Crowell Road and Cecil Street which will add crashes that the no-build condition does not have. Overall, this modification is predicted to have a slight reduction in crashes at the intersections.

For the arterial east of the MO 5 northbound terminal (segments 4 and 5), the decrease in crashes is due to the addition of providing a divided highway (median barrier) and another lane in both directions of travel along US 54. Instead of a center two-way left-turn lane, the median barrier in the build scenario eliminates left-turn conflicts in the segments.

The minor decrease in crashes at ramp terminals is due to the addition of a westbound US-54 right-turn lane at the terminal with westbound Missouri Route 5. Because of the additional lanes along US-54 east of the terminal, the westbound approach gains a separate right-turn lane with improved storage capacity to improve traffic flow.

Overall, the Build Condition is predicted to have approximately 10.4% fewer crashes over the 20-year period when compared to the No-Build Condition.

Table 1: Safety Results – Change in Predicted Crashes in Study Area Over 20-Years (ISATe & HSM)

						Changes in Crashes				
	No-Build Condition			Build Condition			Changes in Crashes			
Facility	F&I	PDO	Total	F&I	PDO	Total	F&I	PDO	Total	% Change in Total
Intersection 1 crashes: (US-54 & Business Route 5)	158.9	251.5	410.4	158.9	251.5	410.4	0.0	0.0	0.0	0.0%
Intersection 2 crashes: (No-Build: US-54 & Jack Crowell Road/Laker Pride Road) (Build: US-54 & Jack Crowell Road)	253.6	390.5	644.1	77.9	134.3	212.1	-175.8	-256.2	-432.0	-67.1%
Intersection 3 crashes: (US-54 & Cecil Street)	100.5	192.3	292.8	100.5	192.3	292.8	0.0	0.0	0.0	0.0%
Intersection 4 crashes: (Build: US-54 & Laker Pride Road)				108.7	209.1	317.8	108.7	209.1	317.8	
Arterial segments (1-3) crashes:	67.3	167.7	235.0	67.3	167.7	235.0	0.0	0.0	0.0	0.0%
Arterial segments (4-5) crashes:	97.2	246.4	343.6	37.8	108.8	146.7	-59.4	-137.6	-197.0	-57.3%
Total Arterial HSM Crashes	677.5	1248.4	1925.9	551.0	1063.7	1614.7	-126.5	-184.7	-311.2	-16.2%
Freeway segments, crashes:	72.4	245.7	318.1	72.4	245.7	318.1	0.0	0.0	0.0	0.0%
Ramp segments, crashes:	46.0	84.6	130.6	46.0	84.6	130.6	0.0	0.0	0.0	0.0%
Crossroad ramp terminals, crashes:	261.4	737.9	999.3	238.6	722.1	960.7	-22.8	-15.8	-38.6	-4.0%
Total ISATe Crashes	379.8	1068.3	1448.0	356.9	1052.5	1409.4	-22.8	-15.8	-38.6	-2.7%
Total Study Area Crashes	1057.3	2316.7	3373.9	907.9	2116.3	3024.2	-149.3	-200.4	-349.8	-10.4%

Safety Appendix – US 54 & MO 5 Interchange

Notes for ISATe and HSM Model

No-Build Condition - ISATe & HSM Results (2030 - 2050)

ISATe Inputs & Output Summary Report
HSM Inputs & Outputs Summary Report

Predicted Build Condition - ISATe & HSM Results (2030 - 2050)

ISATe Inputs & Output Summary Report
HSM Inputs & Outputs Summary Report

No-Build AADT (2024, 2030, 2050)

Change in Predicted Crashes in Study Area Over 20-Years (ISATe & HSM results)

Notes for ISATe and HSM Models

- The Interchange Statistical Analysis Tool enhanced (ISATe) tool was used to analyze the MO 5 freeway mainline, freeway ramps, and freeway terminals.
 - One ISATe terminal file was generated each for the No-Build Condition and Build Condition under the Folded Diamond Configuration since the terminal type does not change.
 - The ADT included in the ISATe model (freeways and ramps) were calculated based on the 2030 and 2050 forecasted AM and PM peak hours using the following formula.

ADT = (AM Peak hour Volume + PM Peak hour Volume) * 5

- The HSM spreadsheets were used to analyze US 54 including segments and intersections.
 - The 2030 ADT included in the HSM models (segments and intersections) were calculated based on the 2030 forecasted AM and PM peak hours using the following formula.

ADT = (AM Peak hour Volume + PM Peak hour Volume) * 5

- Two HSM files were created for the arterial. In the No-Build Condition, three intersections and five segments were analyzed. The Build Condition consisted of a new 3-leg intersection, switching an existing 4-leg intersection to 3-leg, and expanding US-54 from an undivided five-lane section to a divided six-lane section from Cecil Street to the northbound MO 5 ramps, for a total of 4 intersections and six segments.
 - It should be noted that the HSM methodology does not currently include a six-lane divided roadway facility type for safety analysis, so a four-lane divided highway was used as the next closest analysis available for the segments.
- o HSM growth rate was assumed to be 1.75% per year for all segments and intersections from 2030 to 2050.

Missouri Calibration Factors included as follows:

Missouri Calibration Factors for ISATe

Facility Type	Fatal & Injury	Property Damage Only					
Freeway							
Urban Four-Lane Freeway Segments for Multiple Vehicle Crashes	0.71	1.46					
Urban Four-Lane Freeway Segments for Single Vehicle Crashes	0.60	1.20					
Urban Four-Lane Entrance Speed-Change Lane	0.598	1.314					
Urban Four-Lane Exit Speed-Change Lane	0.455	0.519					
Ramps							
Urban Entrance Ramp for Multiple Vehicle Crashes	2.681	6.36					
Urban Exit Ramp for Multiple Vehicle Crashes	2.354	5.252					
Urban Entrance Ramp for Single Vehicle Crashes	0.913	1.121					
Urban Exit Ramp for Single Vehicle Crashes	0.84	1.266					
Terminals							
Urban Stop-Controlled D4 Diamond Interchange with Four Lane	1.226	2.025					
Crossroads Terminal							
Signalized D4 Diamond Interchange with Four Lane Crossroads Terminal	0.853	1.83					

Missouri Calibration Factors for HSM Analysis

Facility Type	All Crashes							
Segments								
5T – Five-Lane Arterials with center two-way Left-Turn Lane	0.84							
4D – Four Lane Divided Arterials	0.91							
Intersection								
4 SG – Signalized 4-leg intersection	5.21							
3 SG – Signalized 3-leg intersection	2.95							

No-Build – ISATe & HSM Results (2030-2050)

Safety Summary Table – No-Build Conditions

Encility	No	-Build Conditi	on
Facility	F&I	PDO	Total
Intersection 1 crashes:	158.9	251.5	410.4
(US-54 & Business Route 5)	156.9	251.5	410.4
Intersection 2 crashes:	253.6	390.5	644.1
(US-54 & Jack Crowell Road/Laker Pride Road)	255.6	390.5	044.1
Intersection 3 crashes:	100.5	192.3	292.8
(US-54 & Cecil Street)	100.5	192.3	292.0
Arterial segments (1-3) crashes:	67.3	167.7	235.0
Arterial segments (4-5) crashes:	97.2	246.4	343.6
Total Arterial HSM Crashes	677.5	1248.4	1925.9
Freeway segments, crashes:	72.4	245.7	318.1
Ramp segments, crashes:	46.0	84.6	130.6
Crossroad ramp terminals, crashes:	261.4	737.9	999.3
Total ISATe Crashes	379.8	1068.3	1448.0
Total Study Area Crashes	1057.3	2316.7	3373.9

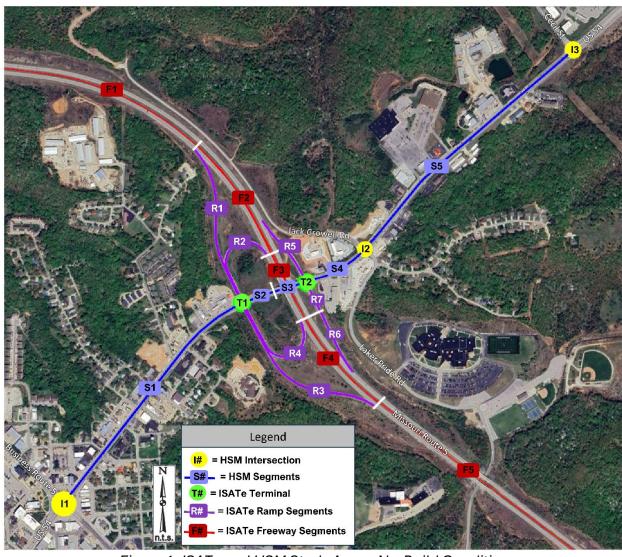


Figure 1: ISATe and HSM Study Area – No-Build Condition

ISATe Inputs & Output Summary Report (No-Build)

Enhanced Interchange Safety Analysis Tool										
General Information										
Project description:	US54-MO5	Predictive	Safety Ana	lysis						
Analyst:	CBB		Date:	7/22/2025	Area	type:	Urban			
First year of analysis:	2030									
Last year of analysis:	2050									
Crash Data Description										
Freeway segments	No crash o	lata	F							
Ramp segments	No crash o	lata	F							
Ramp terminals	No crash o	lata	Ţ							
						,				
Program Control										
Enter data in the Ma Click Perform Calcu		, ,		ut Ramp Segments, Inp process.	out Ra	mp Termina	ls worksheets.			
Perfo	rm Calculat	ions	Prin	t Results (optional)		Print Site S	Summary (optio	nal)		
	results can			otionally, click the Print tput Freeway Segment						

Warning Messages											
Freeway Segments	Ramp Segments	Ramp Terminals									
1											

	Inp	ut Worksheet for Freeway Segm							
Clear	Echo Input Values	Check Input Values	Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
			Study	Study	Study	Study	Study	Study	Study
Basic Roadv	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period
	rough lanes (n):			4	4	4	4	4	
	ment description:			· ·	· ·		<u> </u>	·	
Segment leng	jth (L), mi:			1.64	0.29	0.16	0.36	1.4	
Alignment D									
Horizontal C		▼-See note	_						
	orizontal curve in segment?	· ·		Both Dir.	Both Dir.	Both Dir.	Both Dir.	Both Dir.	
<u> </u>	urve radius (R ₁), ft:			3335	3335	3269	3269	3269	
<u> </u>	ength of curve (L _{c1}), mi:			0.68	0.68	0.36	0.36	0.36	
	ength of curve in segment (0.41	0.27	0.07	0.25	0.04	
<u> </u>	orizontal curve in segment?	<u>':</u>		Both Dir. 3315	No	No	No	Both Dir. 4260	
<u> </u>	urve radius (R ₂), ft:								
ı —	ength of curve (L _{c2}), mi:			0.64				0.81	
	ength of curve in segment (0.64				0.39	
<u> </u>	orizontal curve in segment?	:		No			-	No	
<u> </u>	urve radius (R ₃), ft:								
	ength of curve (L _{c3}), mi:								
	ength of curve in segment (L _{c3,seg}), mi:							
Cross Section				10		40	40	40	
Lane width (V	**			12	11	12	12	12	
	lder width (W _s), ft:			10	10	7	9.5	8	
Inside should	er width (W _{is}), ft:			5	4.5	5	4	5	
Median width	(W _m), ft:			50	50	50	50	50	
Rumble strips	on outside shoulders?:			Yes	Yes	Yes	Yes	Yes	
_	ngth of rumble strips for travel in i			1.64	0.12	0.16	0.12	1.30	
	ngth of rumble strips for travel in on inside shoulders?:	lecreasing milepost direction, mi:		1.52 Yes	0.24 Yes	0.00 Yes	0.21 Yes	1.19 Yes	
	ngth of rumble strips for travel in i	acreasing milenost direction, mir		1.64	0.29	0.16	0.36	1.35	
	ngth of rumble strips for travel in			1.64	0.29	0.16	0.36	1.35	
Presence of b	parrier in median:	5 .		Some	None	Some	None	Some	
1 Le	ength of barrier (L _{ib,1}), mi:			0.07		0.04		0.11	
Di	stance from edge of traveled	way to barrier face (W _{off,in,1}), ft:		5		22		5	
2 L€	ength of barrier (L _{ib,2}), mi:							0.11	
Di	stance from edge of traveled	way to barrier face (W _{off,in,2}), ft:						5	
	ength of barrier (L _{ib,3}), mi:								
Di	stance from edge of traveled	way to barrier face (W _{off,in,3}), ft:							
	ength of barrier (L _{ib,4}), mi:								
		way to barrier face (W _{off,in,4}), ft:							
	ength of barrier (L _{ib,5}), mi:								
		way to barrier face (W _{off,in,5}), ft:							
	er width (W _{ib}), ft:								
	-	way to barrier face (W _{near}), ft:							
Roadside Da									
Clear zone wi				20	18	20	18	14	
	parrier on roadside:			Some	None	None	None	Some	
l —	ength of barrier (L _{ob,1}), mi:			0.05				0.30	
Di	istance from edge of travel	ed way to barrier face (W _{off,o,1}), ft:		10				8	
	ength of barrier (L _{ob,2}), mi:							0.27	
Di	stance from edge of travel	ed way to barrier face (W _{off,o,2}), ft:						8	
3 Le	ength of barrier (L _{ob,3}), mi:								
Di	istance from edge of travel	ed way to barrier face (W _{off,o,3}), ft:							
4 Le	ength of barrier (L _{ob,4}), mi:								
_	istance from edge of travel								
	ength of barrier (L _{ob.5}), mi:	, ton,0,471							
		ed way to barrier face (W _{off.o.5}), ft:							
	ge of traveled way to barrier face								
				1					

Ramp Acc	cess Data								
Travel in I	Increasing Milepost Direction								
	Ramp entrance in segment? (If yes, indicate type.):			No	S-C Lane	No	No	No	
Ramp	Distance from begin milepost to upstream entrance ramp gore (X _{b,ent}), mi:		0.22		999	999	999	
	Length of ramp entrance (L _{en,inc}), mi:				0.14				
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:				0.14				
	Entrance side?:				Right				
Exit	Ramp exit in segment? (If yes, indicate type.):			No 999	No	No 999	S-C Lane	No	
Ramp	Distance from end milepost to downstream exit ramp gore (X _{e,e)}	_t), mi:		999	999	999	0.13	999	
	Length of ramp exit (L _{ex,inc}), mi:						0.13		
	Length of ramp exit in segment (L _{ex,seg,inc}), mi: Exit side?:						Right		
Weave	Type B weave in segment?:		No	No	No	No	No	No	
vvcavc	Length of weaving section (L _{wev,inc}), mi:		140	140	140	140	140	140	
	Length of weaving section in segment (L _{wev,seg,inc}), I	mi·							
Traval in l	Decreasing Milepost Direction								
Entrance	Ramp entrance in segment? (If yes, indicate type.):			No	No	Lane Add	No	S-C Lane	
Ramp	Distance from end milepost to upstream entrance ramp gore (X			999	999	Lanortaa	0.16	C C Lunc	
	Length of ramp entrance (L _{en,dec}), mi:	C,CHO.						0.15	
	Length of ramp entrance in segment (Lensed, dec), mi	:						0.15	
	Entrance side?:							Right	
Exit	Ramp exit in segment? (If yes, indicate type.):			S-C Lane	No	Lane Drop	No	No	
Ramp	Distance from begin milepost to downstream exit ramp gore (X _b	,ext), mi:			0.16		999	999	
	Length of ramp exit (L _{ex,dec}), mi:			0.12					
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:			0.12					
	Exit side?:			Right					
Weave	Type B weave in segment?:			No	No	No	No	No	
	Length of weaving section (L _{wev,dec}), mi:			1					
	Length of weaving section in segment ($L_{wev,seg,dec}$),								
Traffic Da		Year							
	of AADT during high-volume hours (P _{hv}):								
	Segment Data	2030		18175	16575	15900	12925	19025	
-	aily traffic (AADT _{fs}) by year, veh/d:	2031							
	ta only for those years for which	2032							
it is avail	able, leave other years blank)	2033							
		2034 2035							
		2036							
		2037							
		2038							
		2039							
		2040							
		2041							
		2042							
		2043 2044							
		2045							
		2046							
		2047							
		2048							
		2049							
		2050		23900	21875	21050	17050	25150	
		2051		1					
		2052 2053		1					
Entrance 5	Ramp Data for Travel in Increasing Milepost Dir.	Year							
	aily traffic (AADT _{b ent}) by year, veh/d:	2030		4175	4175				
-	ta only for those years for which	2031							
,	able, leave other years blank)	2032							
	,	2033							
		2034							
		2035							
		2036							
		2037 2038							
		2038							
		2040							
		2041							
		2042							
		2043							
		2044							
		2045							
		2046 2047							
		2047							
		2046							
		2050		5475	5475				
								l	
		2051							
		2051 2052							

Exit Ramp Data for Travel in Increasing Milepost Direction	Year						
Average daily traffic (AADT _{e,ext}) by year, veh/d:	2030				5075		
(enter data only for those years for which	2030				3073		
it is available, leave other years blank)	2031						
it is available, leave outer years blanky	2033						
	2034						
	2035						
	2036						
	2037						
	2038						
	2039						
	2040						
	2041						
	2042						
	2043						
	2044						
	2045						
	2047						
	2048						
	2049						
	2050				6750		
	2051						
	2052						
	2053						
Entrance Ramp Data for Travel in Decreasing Milepost Dir.	Year						
Average daily traffic (AADT _{e,ent}) by year, veh/d:	2030			3500	3500	1025	
(enter data only for those years for which	2031						
it is available, leave other years blank)	2032						
	2033						
	2034						
	2035						
	2036						
	2037						
	2038						
	2039						
	2041						
	2042						
	2043						
	2044						
	2045						
	2046						
	2047						
	2048						
	2049						
	2050			4650	4650	1350	
	2051						
	2052						
Fuit Danie Data for Travel in Danie and Milana of Direction	2053						<u> </u>
Exit Ramp Data for Travel in Decreasing Milepost Direction	Year						
	2020	4000	0075	2075			
	2030	1600	2975	2975			
(enter data only for those years for which	2031	1600	2975	2975			
	2031 2032	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2041	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2038 2039 2040 2041 2041 2042 2043	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2043	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2044 2045	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2044 2044 2044 2044 2045	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2041 2042 2042 2043 2044 2045 2046 2047	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2047	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2048 2049						
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2044 2045 2046 2047 2048 2049	1600	2975	2975			
(enter data only for those years for which	2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2048 2049						

Crash Data	Year		Segment C	rashes>			
Count of Fatal-and-Injury (FI) Crashes by Year	1						
Multiple-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,mv,fi})	2031						
, , , , , , , , , , , , , , , , , , , ,	2032						
	2033						
	2034						
Single-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,sv,fi})	2031						
	2032	1					
	2033	1					
	2034						
Ramp-entrance-related crashes	2030						
$(N_{o,sc,EN,at,fi})$	2031						
	2032						
	2033						
	2034						
Ramp-exit-related crashes	2030	1					
$(N_{o,sc,EX,at,fi})$	2031						
	2032						
	2033						
	2034						
Count of Property-Damage-Only (PDO) Crashes					 		
Multiple-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,mv,pdo})	2031						
	2032						
	2033						
	2034						
Single-vehicle crashes	2030	4					
(not ramp related) (N _{o,fs,n,sv,pdo})	2031						
	2032	1					
	2033	1					
	2034						
Ramp-entrance-related crashes	2030	4					
$(N_{o,sc,EN,at,pdo})$	2031	1					
	2032	4					
	2033	4					
	2034						
Ramp-exit-related crashes	2030	4					
(N _{o,sc,EX,at,pdo})	2031	1					
	2032	1					
	2033	4					
	2034						

	Input Worksheet for Ramp Segme	ents							
Clear		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8
Clear	Echo Input Values Check Input Values	Study	Study	Study	Study	Study	Study	Study	Study
Pasia Bas	(View results in Column CJ) (View results in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period	Period
	adway Data through lanes (n):	1	1	1 1	1 1	1	1	2	
	ment description:		SB Loop On	 	<u> </u>			NB Off-Ramp	("2" lanes)
Segment le	ength (L), mi:	0.36	0.22	0.39	0.25	0.16	0.16	0.06	
	affic speed on the freeway (V _{frwy}), mi/h:	65	65	65	65	65	65	65	
	ype (ramp or collector-distributor road):	Exit	Entrance	Entrance	Exit	Entrance	Exit	Exit	
Alignment	ntrol at crossroad ramp terminal:	Yield	None	None	Yield	Signal	Signal	Signal	
ľ	I Curve Data ▼See notes →								
	Horizontal curve?:	In Seg.	In Seg.	In Seg.	In Seg.	In Seg.	In Seg.	No	
	Curve radius (R ₁), ft:	1040	235	810	262	830	1214		
ł	Length of curve (L _{c1}), mi:	0.14	0.14	0.15	0.15	0.07	0.07		
	Length of curve in segment (L _{c1,seg}), mi:	0.14	0.14	0.15	0.15	0.07	0.07		
	Ramp-mile of beginning of curve in direction of travel (X ₁), mi:	0.00	0.08	0.12	0.00	0.00	0.00		
2	Horizontal curve?:	In Seg.	No	In Seg.	No	In Seg.	No		
	Curve radius (R ₂), ft:	783		1496		862			
ł	Length of curve (L _{c2}), mi:	0.07		0.08		0.05			
l	Length of curve in segment (L _{c2,seg}), mi:	0.07		0.08		0.05			
	Ramp-mile of beginning of curve in direction of travel (X ₂), mi:	0.18		0.31		0.11			
3	Horizontal curve?:	No		No		No			
i	Curve radius (R ₃), ft:								
1	Length of curve (L _{c3}), mi:								
İ	Length of curve in segment (L _{c3,seg}), mi:								
	Ramp-mile of beginning of curve in direction of travel (X ₃), mi:								
4	Horizontal curve?:								
İ	Curve radius (R ₄), ft:								
İ	Length of curve (L _{c4}), mi:								
İ	Length of curve in segment (L _{c4,seg}), mi:								
ļ	Ramp-mile of beginning of curve in direction of travel (X ₄), mi:								
5	Horizontal curve?: Curve radius (R _s), ft:								
	Cuive radius (N ₅), it.			I	1		1	1	
1	Longth of ourse (L.) mis								
	Length of curve (L _{c5}), mi:								
	Length of curve in segment (L _{c5,seg}), mi:								
Cross San	Length of curve in segment $(L_{c5,seg})$, mi: Ramp-mile of beginning of curve in direction of travel (X_5) , mi:								
Cross Sec	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi:	12	12	12	12	14	14	12	
Lane width	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data 1 (W_i), ft:								
Lane width Right shou	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data (W_1), ft: Ilder width (W_{rs}), ft:	5	4	4	5	5	14 5 4	4	
Lane width Right shou Left should	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: etion Data (W_1), ft: Ider width (W_{rs}), ft: der width (W_{ls}), ft:	5 4	4	4	5 5	5 4	5 4	4 3	
Lane width Right shou Left should	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data (W_1), ft: Ilder width (W_{rs}), ft:	5	4	4	5	5	5	4	
Lane width Right shou Left should	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W_i), ft: Ider width (W_{rs}), ft: der width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi:	5 4	4	4	5 5	5 4	5 4 Lane Add	4 3	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W_i), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width (W_{ls}), ft: Ider width (W_{ls}), ft: Iden add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data Of barrier on right side of roadway:	5 4	4	4	5 5	5 4	5 4 Lane Add 0.04 Yes	4 3 No Yes	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W_i), ft: lder width (W_{rs}), ft: der width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on right side of roadway: Length of barrier ($L_{rb,1}$), mi:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right shou Left should Presence of Roadside Presence of	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W_i), ft: der width (W_{rs}), ft: der width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on right side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes	4 3 No Yes	
Lane width Right shou Left should Presence of Roadside Presence of	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W_i), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width (5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W_i), ft: Ider width (W_{rs}), ft: Ider width (W_{is}), mi: Ider width (5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2	Length of curve in segment (L _{c5,seg}), mi: Ramp-mile of beginning of curve in direction of travel (X ₅), mi: Ition Data (W ₁), ft: Ider width (W _{rs}), ft: Ider width (W _{ls}), ft: Ider width (5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width (V_{ls}), mi: Ider width (V	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W_i), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Ider width (5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width (V_{ls}), mi: Ider width (V	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Ider width (V_{ls}), mi: Ider width (V	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 Fresence of Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 Fresence of Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data (W _I), ft: Ider width (W_{rs}), ft: Ider width (W	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right shoul Left should Presence of 1 2 3 4 5 Presence of 1 2	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right shoul Left should Presence of 1 2 3 4 5 Presence of 1 2	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 3 4 5	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 3 4 5	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 4 4 5 4 4 4	Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	

Ramp Acc	cess Data	▼ See note	9								
Ramp	Ramp entrance in segment? (If yes, ind			No	No	No	No	No	No	No	
Entrance	Length of entrance s-c lane in segment	(L _{en.sea}), mi:									
Ramp	Ramp exit in segment? (If yes, indicate	type.):		No	No	No	No	No	No	No	
Exit	Length of exit s-c lane in segment (Lex,se	_{ea}), mi:									
Weaving	Weave section in collector-distributor ro		?:	No	No	No	No	No	No		
Section	Length of weaving section (L _{wev}), mi:										
000	Length of weaving section in segment (l mi·									
Traffic Da		=wev,seg/; ·····	Year								
	laily traffic (AADT _r or AADT _c) by year, veh	v/d:	2030	1600	3500	1025	2975	4175	5075	5075	
	ta only for those years for which	i/u.	2030	1000	3300	1023	2915	4175	3073	3073	
	lable, leave other years blank)		2031								
it is avail	lable, leave officer years blank)		2033								
			2034								
			2035								
			2036								
			2037								
			2038								
			2039								
			2040								
			2041								
			2042								
			2043 2044								
			2044								
			2045								
			2047								
			2048								
			2049								
			2050	2025	4650	1350	4000	5475	6750	6750	
			2051								
			2052								
			2053								
Crash Da		Year		Segment C	Crashes>						
Count of	Fatal-and-Injury (FI) Crashes by Year	0000			1	ı	1				1
	Multiple-vehicle crashes	2030									
1	$(N_{o,w,n,mv,fi})$	2031		-							
		2032		-							
		2033		 				-	-	-	
1	Single-vehicle crashes	2034 2030		-				-	-	-	-
1	=	2030		-							
i	$(N_{o,w,n,sv,fi})$	2031						-	-	-	-
1		2032									
1		2033									
Count of	Property-Damage-Only (PDO) Crashes										
	Multiple-vehicle crashes	2030		i				1	1	1	
	1 .	2030						1	I	1	
	Multiple-vehicle crashes (N _{o,w,n,mv,pdo})	2031									
	1 .										
	1 .	2031 2032									
	1 .	2031 2032 2033									
	(N _{o,w,n,mv,pdo})	2031 2032 2033 2034									
	(N _{o,w,n,mv,pdo}) Single-vehicle crashes	2031 2032 2033 2034 2030									
	(N _{o,w,n,mv,pdo}) Single-vehicle crashes	2031 2032 2033 2034 2030 2031									

	Input V	Vorksheet for Crossroad Ramp T	erminals					
01			Terminal 1	Terminal 2	Terminal 3	Terminal 4	Terminal 5	Terminal 6
Clear	Echo Input Values	Check Input Values	Study	Study	Study	Study	Study	Study
	(View results in Column T)	(View results in Advisory Messages)	Period	Period	Period	Period	Period	Period
Basic Inter	rsection Data							
Ramp term	inal configuration:		D4	D4				
	inal description:		SB Terminal	NB Terminal				
	inal traffic control type:		One stop	Signal				
ls a non-rar	mp public street leg present	at the terminal (I _{ps})?:	No	Ño				
Alignment								
Exit ramp s	skew angle (I _{sk}), degrees:		4	6				
	e next public street intersection on t		0.14	0.15				
Distance to	the adjacent ramp terminal	(L _{rmp}), mi:	0.15	0.15				
Traffic Cor	ntrol							
	Operational Mode							
Crossroad	Inside approach	Protected-only mode (I _{p,lt,in})?:	Yes	No				
	Outside approach	Protected-only mode (I _{p,lt,out})?:	Yes	No				
Right-Turn	Control Type							
Ramp	Exit ramp approach	Right-turn control type:	Yield	Yield				
Cross Sec	tion Data							
Crossroad	median width (W _m), ft:		12	10				
Number of	f Lanes							
Crossroad	Both approaches	Lanes serving through vehicles (n _{th}):	4	4				
, !	Inside approach	Lanes serving through vehicles (n _{th in}):	2	2				
	Outside approach	Lanes serving through vehicles (n _{th,out}):	2	2	0	0	0	0
Ramp	Exit ramp approach	All lanes (n _{ex}):	1	3				
Right-Turn	Channelization	see note:						
Crossroad	Inside approach	Channelization present (I _{ch,in})?:	Yes	No				
l l	Outside approach	Channelization present (I _{ch,out})?:	Yes	Yes				
	Exit ramp approach	Channelization present (I _{ch.ex})?:	Yes	Yes				
	Lane or Bay	(-cii,ex)						
	Inside approach	Lane or bay present (I _{bay,It,in})?:	No	Yes				
Crossroad	пізіце арргоасті		0	12				
,		Width of lane or bay (W _{b,in}), ft:	×	·-				
	Outside approach	Lane or bay present (I _{bay,lt,out})?:	No	No				
1		Width of lane or bay (W _{b,out}), ft:	0	0				
Right-Turn	Lane or Bay							
Crossroad	Inside approach	Lane or bay present (I _{bay,rt,in})?:	Yes	No				
	Outside approach	Lane or bay present (I _{bay,rt,out})?:	No	No				
Access Da								
Access Da			2	2				

Traffic Data	Year				
Inside Crossroad Leg Data	2030	29200	29200		
Average daily traffic (AADT _{in}) by year, veh/d:	2031				
(enter data only for those years for which	2032				
it is available, leave other years blank)	2033				1
it is available, leave exist years blank,	2034				
	2035				
	2036				
	2037				
	2038				
	2039				
	2040				
	2041				
	2042				
	2043				
	2044				
	2045				
	2046				
	2047				
	2048				
	2049				
	2050	38325	38325		
	2051				
	2052				
	2053				
Outside Crossroad Leg Data	2030	25350	34350		
Average daily traffic (AADT _{out}) by year, veh/d:	2031				
(enter data only for those years for which	2032				
it is available, leave other years blank)	2033				
,	2034				
	2035				
	2036				
	2037				
	2038				
	2039				
	2040				
	2041				
	2042				
	2043				
	2044				
	2045				
	2046				
	2047				
	2048				
	2049				
	2050	33050	45250		
	2051				
	2052				
	2053				

Exit Ramp Data		2030	4575	5075				
Average daily traffic (AADT _{ex}) by year, veh/d:		2031						
(enter data only for those years for which		2032						
it is available, leave other years blank)		2033						
		2034						
For a B4 terminal configuration, enter the AADT for th	ne	2035						
diagonal exit ramp (not the loop exit ramp).		2036						
		2037						
		2038						
		2039						
		2040 2041						
		2041						
		2042						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050	6025	6750				
		2051						
		2052 2053						
Entrance Ramp Data		2030	4525	4175				
Average daily traffic (AADT _{en}) by year, veh/d:		2030	4323	4173				
(enter data only for those years for which		2032						
it is available, leave other years blank)		2032						
it is available, leave other years blank)		2034						
For an A4 terminal configuration, enter the AADT for	the	2035						
diagonal entrance ramp (not the loop entrance ramp)		2036						
		2037						
		2038						
		2039						
		2040						
		2041						
		2042 2043						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050	6000	5475				
		2051						
		2052 2053						
Crash Data	Year	2000	Ramp Tor	<u>l</u> minal Crash	<u> </u>		<u> </u>	
Count of Fatal-and-Injury (FI) Crashes by Year	I Cal		Tamp Tell	minai CraSi	03			
(N _{o,w,ac,at,fi)}	2030			1				
(` 'U,w,au,au,ii/	2031	1	1					
	2032							
	2033							
<u> -</u>	2034							
Count of Property-Damage-Only (PDO) Crashes b	y Year					_		
	y Year 2030							
Count of Property-Damage-Only (PDO) Crashes by (N _{o,w,ac,at,pdo})								
	2030 2031 2032							
	2030 2031							

		Out	put Summa	irv					
General Information	า			,					
Project description:	US54-MO5 Predic	tive Safety Anal	vsis						
Analyst:	CBB		7/22/2025		Area type:	Ti	Jrban		
First year of analysis		Date.	112212020		riica type.		Sibaii		
Last year of analysis									
Crash Data Descrip	_	4! - - -0		NI-	I =: +	6 l l - 4 -			
Freeway segments	Segment crash da			No		f crash data			
	Project-level crash		'	No		f crash data:			
Ramp segments	Segment crash da			No		f crash data:			
	Project-level crash)	No		f crash data:			
Ramp terminals	Segment crash da	ta available?		No	First year o	f crash data:			
	Project-level crash	ı data available?	•	No	Last year of	f crash data:			
Estimated Crash St	atistics								
Crashes for Entire	Facility		Total	K	ΑΙ	В	С	PDO	
Estimated number of cras		rashes:	1448.0	4.0	17.6	101.1	257.1	1068.3	
Estimated average crash t			69.0	0.2		4.8	12.2	50.9	
Crashes by Facility		Nbr. Sites	Total	K	A	В	C	PDO	
			318.1	2.2			37.3	245.7	
Freeway segments,		5				27.5			
Ramp segments, cra		7	130.6	1.2		18.2	22.8	84.6	
Crossroad ramp tern		2	999.3	0.6		55.3	197.1	737.9	
Crashes for Entire		Year	Total	K	Α	В	С	PDO	
Estimated number of	crashes during	2030	57.0	0.2		4.1	10.1	41.9	
the Study Period, cra	ishes:	2031	58.2	0.2	0.7	4.1	10.3	42.8	
		2032	59.3	0.2	0.7	4.2	10.5	43.7	
		2033	60.5	0.2	0.7	4.3	10.7	44.5	
		2034	61.7	0.2	0.8	4.4	11.0	45.4	
		2035	62.8	0.2	0.8	4.4	11.2	46.3	
		2036	64.0	0.2	0.8	4.5	11.4	47.2	
		2037	65.2	0.2		4.6	11.6	48.1	
		2038	66.4	0.2	0.8	4.7	11.8	49.0	
		2039	67.6	0.2		4.7	12.0	49.9	
		2040	68.8	0.2		4.8	12.2	50.8	
		2041	70.1	0.2		4.9	12.4	51.7	
		2042	71.3			5.0	12.4		
				0.2				52.6	
		2043	72.5	0.2		5.0	12.9	53.5	
		2044	73.7	0.2	0.9	5.1	13.1	54.5	
		2045	75.0	0.2		5.2	13.3	55.4	
		2046	76.2	0.2		5.3	13.5	56.3	
		2047	77.5	0.2		5.4	13.8	57.3	
		2048	78.8	0.2		5.4	14.0	58.2	
		2049	80.0	0.2		5.5	14.2	59.1	
		2050	81.3	0.2	1.0	5.6	14.4	60.1	
		2051							
		2052							
		2053							
- · · · · · · · · · · · · · · · · · · ·		lity				•			
Distribution of Cras	shes for Entire Faci	Distribution of Crashes for Entire Facility Estimated Number of							
			Estima	ted Numb	er of Crash	es During t	he Study P	eriod	
Distribution of Cras Crash Type	Crash Type		Estima Total	ted Numb K	er of Crash	es During t B	he Study P	eriod PDO	
Crash Type	Crash Type		Total	K	Α	В	С	PDO	
	Crash Type Head-on crashes:	Category	Total 9.9	K	A 0.1	B 0.8	C 2.6	PDO 6.4	
Crash Type	Crash Type Head-on crashes: Right-angle crashe	Category	9.9 273.2	0.0 0.2	0.1 2.6	0.8 16.8	2.6 61.0	PDO 6.4 192.5	
Crash Type	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes	Category es:	9.9 273.2 606.7	0.0 0.2 1.0	0.1 2.6 6.7	0.8 16.8 41.3	2.6 61.0 123.8	PDO 6.4 192.5 433.9	
Crash Type	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes Sideswipe crashes	Category es: :	9.9 273.2 606.7 139.9	0.0 0.2 1.0 0.2	0.1 2.6 6.7 0.7	B 0.8 16.8 41.3 4.3	2.6 61.0 123.8 10.4	9DO 6.4 192.5 433.9 124.3	
Crash Type	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes: Sideswipe crashes Other multiple-veh	Category es: : : : : : : : : : : : : : : : : :	9.9 273.2 606.7 139.9 22.4	0.0 0.2 1.0 0.2 0.1	0.1 2.6 6.7 0.7 0.2	B 0.8 16.8 41.3 4.3 1.3	2.6 61.0 123.8 10.4 3.0	9DO 6.4 192.5 433.9 124.3 17.8	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes: Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve	es: : : : : : : : : : : : : : : : : : :	9.9 273.2 606.7 139.9 22.4 1052.1	0.0 0.2 1.0 0.2 0.1 1.5	0.1 2.6 6.7 0.7 0.2 10.3	B 0.8 16.8 41.3 4.3 1.3 64.5	2.6 61.0 123.8 10.4 3.0 200.8	9DO 6.4 192.5 433.9 124.3 17.8 775.0	
Crash Type	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve Crashes with anim	category es: :: :: :: :: :: :: :: :: :: :: :: :: :	9.9 273.2 606.7 139.9 22.4 1052.1 4.3	0.0 0.2 1.0 0.2 0.1	0.1 2.6 6.7 0.7 0.2 10.3	B 0.8 16.8 41.3 4.3 1.3	2.6 61.0 123.8 10.4 3.0	PDO 6.4 192.5 433.9 124.3 17.8 775.0 4.0	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes: Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve	category es: :: :: :: :: :: :: :: :: :: :: :: :: :	9.9 273.2 606.7 139.9 22.4 1052.1	0.0 0.2 1.0 0.2 0.1 1.5	0.1 2.6 6.7 0.7 0.2 10.3 0.0	B 0.8 16.8 41.3 4.3 1.3 64.5	2.6 61.0 123.8 10.4 3.0 200.8	9DO 6.4 192.5 433.9 124.3 17.8 775.0	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve Crashes with anim	category es: icicle crashes: chicle crashes: al: object:	9.9 273.2 606.7 139.9 22.4 1052.1 4.3	0.0 0.2 1.0 0.2 0.1 1.5	0.1 2.6 6.7 0.7 0.2 10.3 0.0 5.2	B 0.8 16.8 41.3 4.3 1.3 64.5 0.1	2.6 61.0 123.8 10.4 3.0 200.8 0.2	PDO 6.4 192.5 433.9 124.3 17.8 775.0 4.0	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve Crashes with anim Crashes with fixed Crashes with other	category es: icicle crashes: chicle crashes: al: object: r object:	9.9 273.2 606.7 139.9 22.4 1052.1 4.3 296.4	0.0 0.2 1.0 0.2 0.1 1.5 0.0	0.1 2.6 6.7 0.7 0.2 10.3 0.0 5.2	B 0.8 16.8 41.3 4.3 1.3 64.5 0.1 26.2	2.6 61.0 123.8 10.4 3.0 200.8 0.2 40.0	PDO 6.4 192.5 433.9 124.3 17.8 775.0 4.0 223.2 26.2	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes: Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-vee Crashes with anim Crashes with fixed Crashes with other Crashes with park	Category es: icle crashes: chicle crashes: chicle crashes: al: object: r object: ed vehicle:	70tal 9.9 273.2 606.7 139.9 22.4 1052.1 4.3 296.4 29.4 7.4	0.0 0.2 1.0 0.2 0.1 1.5 0.0 1.8 0.1	0.1 2.6 6.7 0.7 0.2 10.3 0.0 5.2 0.2	B 0.8 16.8 41.3 4.3 1.3 64.5 0.1 26.2 1.2	C 2.6 61.0 123.8 10.4 3.0 200.8 0.2 40.0 1.7 0.7	PDO 6.4 192.5 433.9 124.3 17.8 775.0 4.0 223.2 26.2 6.0	
Crash Type Multiple vehicle	Crash Type Head-on crashes: Right-angle crashes Rear-end crashes: Sideswipe crashes Other multiple-veh Total multiple-ve Crashes with anim Crashes with fixed Crashes with other	es: : : : : : : : : : : : : : : : : : :	70tal 9.9 273.2 606.7 139.9 22.4 1052.1 4.3 296.4 29.4	0.0 0.2 1.0 0.2 0.1 1.5 0.0 1.8	0.1 2.6 6.7 0.7 0.2 10.3 0.0 5.2 0.2 0.1	B 0.8 16.8 41.3 4.3 1.3 64.5 0.1 26.2 1.2	2.6 61.0 123.8 10.4 3.0 200.8 0.2 40.0	PDO 6.4 192.5 433.9 124.3 17.8 775.0 4.0 223.2 26.2	

				Evaluat	tion Site Si	ımmarv			
General In	formation					,			
Project des	cription:	US54-MO5	Predictive	Safety Anal	ysis				
Analyst:		CBB			7/22/2025		Area type:	Ur	ban
First year o	of analysis:	2030	Total length	n of freeway		for Study P		3.849	
Last year o		2050		-	ŭ	•	` ,		
Site Descr									
Freeway S									
Number	Lanes	Study Period	Study Perio	od Descripti	on				
		Length (mi)	,	•					
1	0	0.000	0						
2	4		0						
3	4	0.290	0						
4	4	0.160	0						
5	4	0.359	0						
6	4	1.400	0						
7	0	0.000	0						
8	0	0.000	0						
9	0	0.000	0						
10	0	0.000	0						
11	0	0.000	0						
12	0	0.000	0						
13	0	0.000	0						
14	0	0.000	0						
15	0	0.000	0						
16	0	0.000	0						
17	0	0.000	0						
18	0	0.000	0						
19	0	0.000	0						
20	0	0.000	0						
Ramp Seg		0.000					1		
Number	Study Peri	od			Number	Study Peri	od		
	Description					Description			
1	SB Off-Ramp				21	0			
2	SB Loop On				22	0			
	SB On-Ramp				23	0			
4	SB Loop Off				24	0			
	NB On-Ramp				25	0			
	NB Off-Ramp				26	0			
7	NB Off-Ramp	("2" lanes)			27	0			
8	0				28	0			
9	0				29	0			
10	0				30	0			
	0				31	0			
	0				32	0			
	0				33	0			
	0				34	0			
15	0				35	0			
	0				36	0			
	0				37	0			
	0				38	0			
	0				39	0			
20	0				40	0			
Crossroad									
Number	Config.	Control	Study Perio	od Descripti	on				
1	D4	One stop	SB Terminal						
2	D4	Signal	NB Terminal						
3	0	0	0						
4	0	0	0						
5	0	0	0						
6	0	0	0						
		•					•		

HSM Inputs & Output Summary Report (No-Build)

		PROJECT SAFETY PERFORMANCE	ANALYSIS INPUT SHEET	
		General Informa	ation	
Project Name	US54-MO5 MoD	OT On-Call	Contact Email	azarate@cbbtraffic.com
Project Description	2030 No-Build		Contact Phone	(314) 825 5841
Reference Number	Job# 073-25		Date Performed	07/23/25
Analyst	Alex Zarate		Analysis Year	2030
Agency/Company	CBB		Multiple Year Analysis?	Yes
f of Segments in Analysis	5		This spreadsheet calculates the pr	edicted and expected average crash frequency
of Intersections in Analysis	3		Duration of crash history?	
		LOCATION INFORMATION		INTERSECTIONS ONLY
INDIVIDUAL PROJECT ELEMENTS			JURISDICTION	
	Route	Location Description		Signalized or Unsignalized?
		SEGMENTS		
Segment 1	US 54	Business Rt 5 to South Terminal Mediar	MODOT	-
segment 2	US 54	South Terminal Median	MODOT	-
egment 3	US 54	outh Terminal Median to North Termin	MODOT	-
Segment 4	US 54	North Terminal to Laker Pride Rd	MODOT	-
Segment 5	US 54	Laker Pride Rd to Cecil Rd	MODOT	-
		INTERSECTIO	NS	
ntersection 1	US 54	US 54 & Business Route 5	MODOT	Signalized
	US 54	US 54 & Laker Pride Rd/Jack Crowell Rd	MODOT	Signalized
ntersection 2	03 34	03 34 & Laker I Hae Naj Jack Crowell No	100	Signatized

General Information			Location Information					
Analyst Ale	ex Zarate		Roadway	US 54				
Agency or Company CB	BB		Roadway Section	Business Rt 5 to South Terminal Media				
Date Performed 07	//23/25		Jurisdiction	MODOT				
Segment for Analysis Se	gment 1		Analysis Year 2030					
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)	way type (2U, 3T, 4U, 4D, 5T)			5T				
Length of segment, L (mi)	yth of segment, L (mi)			0.58				
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)		25,350				
Type of on-street parking (none/parallel/angle)				None		None		
Proportion of curb length with on-street parkin	ng			0				
Median width (ft) - for divided only				Not Present		15		
Lighting (present / not present)				Present		Not Present		
Auto speed enforcement (present / not present	t)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				27				
Major industrial / institutional driveways (numl	ber)			0				
Minor industrial / institutional driveways (num	ber)			13				
Major residential driveways (number)				1				
Minor residential driveways (number)				4				
Other driveways (number)				3				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			31		0		
Offset to roadside fixed objects (ft) [If greater t	han 30 or Not Present, input 30]			15		30		
Calibration Factor, Cr				0.84		1.00		
Average Annual Crash History (3 or 5-yr average	ge)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
with the venicle univeway crashes		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-vertice didsiles		PDO	Property Damage Only	0.0				
NOTES: * AADT: It is important to remember th	nat the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information			Location Information					
Analyst Al	lex Zarate		Roadway	US 54				
Agency or Company CE	ВВ		Roadway Section	South Terminal Median				
Date Performed 07	7/23/25		Jurisdiction	MODOT				
Segment for Analysis Se	egment 2		Analysis Year	2030				
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)	vay type (2U, 3T, 4U, 4D, 5T)			4D				
Length of segment, L (mi)				0.1				
AADT (veh/day) is within range	AADT _{MAX} = 66,000	(veh/day)		29,200				
Type of on-street parking (none/parallel/angle)			None		None		
Proportion of curb length with on-street parking	ng			0				
Median width (ft) - for divided only				10		15		
Lighting (present / not present)				Not Present		Not Present		
Auto speed enforcement (present / not presen	nt)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				0				
Major industrial / institutional driveways (num	nber)			0				
Minor industrial / institutional driveways (num	nber)			0				
Major residential driveways (number)				0				
Minor residential driveways (number)				0				
Other driveways (number)				0				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			0		0		
Offset to roadside fixed objects (ft) [If greater t	than 30 or Not Present, input 30]			30		30		
Calibration Factor, Cr				0.91		1.00		
Average Annual Crash History (3 or 5-yr avera	age)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
wurtpie verlicie unveway crasiles		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
ividitiple verifice nondriveway trasfies		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-verticle crasties		PDO	Property Damage Only	0.0				
NOTES: * AADT: It is important to remember th	hat the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information			Location Information			
Analyst Ale	ex Zarate		Roadway	US 54		
Agency or Company CB	BB		Roadway Section	South Terminal Median to North Term	ninal	
Date Performed 07	//23/25		Jurisdiction	MODOT		
Segment for Analysis Segment	gment 3		Analysis Year	2030		
Input Data				Site Conditions		Base Conditions
Roadway type (2U, 3T, 4U, 4D, 5T)	vay type (2U, 3T, 4U, 4D, 5T)			5T		
Length of segment, L (mi)				0.1		
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)		29,200		
Type of on-street parking (none/parallel/angle)				None		None
Proportion of curb length with on-street parkin	ng			0		
Median width (ft) - for divided only				Not Present		15
Lighting (present / not present)				Present		Not Present
Auto speed enforcement (present / not present	t)			Not Present		Not Present
Major commercial driveways (number)				0		
Minor commercial driveways (number)				0		
Major industrial / institutional driveways (numb	ber)			0		
Minor industrial / institutional driveways (numl	ber)			0		
Major residential driveways (number)				0		
Minor residential driveways (number)				0		
Other driveways (number)				0		
Speed Category			Posted	Speed Greater than 30 mph		
Roadside fixed object density (fixed objects / m	ni)			11		0
Offset to roadside fixed objects (ft) [If greater the	han 30 or Not Present, input 30]			4		30
Calibration Factor, Cr				0.84		1.00
Average Annual Crash History (3 or 5-yr average	ge)					
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0		
widthpie venicle unveway crashes		PDO	Property Damage Only	0.0		
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0		
		PDO	Property Damage Only	0.0		
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0		
Single-verticle cidSiles		PDO	Property Damage Only	0.0		
NOTES: * AADT: It is important to remember th	nat the AADT(major) = AADT(major a	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)		

General Information			Location Information					
Analyst Ale	ex Zarate		Roadway	US 54				
Agency or Company CB	зв		Roadway Section	North Terminal to Laker Pride Rd				
Date Performed 07	7/23/25		Jurisdiction	MODOT				
Segment for Analysis Se	egment 4		Analysis Year	2030				
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)	ype (2U, 3T, 4U, 4D, 5T)			5T				
Length of segment, L (mi)				0.15				
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)		34,350				
Type of on-street parking (none/parallel/angle))			None		None		
Proportion of curb length with on-street parkin	ng			0				
Median width (ft) - for divided only				Not Present		15		
Lighting (present / not present)				Present		Not Present		
Auto speed enforcement (present / not present	t)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				3				
Major industrial / institutional driveways (numl	ber)			0				
Minor industrial / institutional driveways (num	ber)			2				
Major residential driveways (number)				0				
Minor residential driveways (number)				0				
Other driveways (number)				0				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			6		0		
Offset to roadside fixed objects (ft) [If greater t	han 30 or Not Present, input 30]			23		30		
Calibration Factor, Cr				0.84		1.00		
Average Annual Crash History (3 or 5-yr average	ge)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
with the venicle univeway crashes		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-vertice didsiles		PDO	Property Damage Only	0.0				
NOTES: * AADT: It is important to remember th	nat the AADT(major) = AADT(major a	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information			Location Information					
Analyst	Alex Zarate		Roadway US 54					
Agency or Company C	СВВ		Roadway Section	Laker Pride Rd to Cecil Rd				
Date Performed 0	07/23/25		Jurisdiction	MODOT				
Segment for Analysis S	Segment 5		Analysis Year	2030				
Input Data			Site Conditions			Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)			5T					
Length of segment, L (mi)			0.64					
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)	34,250					
Type of on-street parking (none/parallel/angle	rpe of on-street parking (none/parallel/angle)			None	None			
Proportion of curb length with on-street parking			0					
Median width (ft) - for divided only			Not Present			15		
Lighting (present / not present)			Present			Not Present		
Auto speed enforcement (present / not present)			Not Present			Not Present		
Major commercial driveways (number)			2					
Minor commercial driveways (number)			19					
Major industrial / institutional driveways (number)			1					
Minor industrial / institutional driveways (number)			10					
Major residential driveways (number)			0					
Minor residential driveways (number)			0					
Other driveways (number)			2					
Speed Category			Posted Speed Greater than 30 mph					
Roadside fixed object density (fixed objects / r	mi)		49			0		
Offset to roadside fixed objects (ft) [If greater	than 30 or Not Present, input 30]		14			30		
Calibration Factor, Cr			0.84			1.00		
Average Annual Crash History (3 or 5-yr average	age)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
Multiple vehicle driveway crashes		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only	0.0				
Single-vehicle crashes KABC PDO		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only 0.0					
NOTES: * AADT: It is important to remember to	that the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

WORKSHEET 2A -- GENERAL INFORMATION AND INPUT DATA FOR URBAN AND SUBURBAN ARTERIAL INTERSECTIONS

General Information			Location Information					
Analyst Alex Zarate	Alex Zarate		Roadway US 5		US 54			
Agency or Company CBB	CBB		Location Information		US 54 & Business Route 5			
Date Performed 7/23/2025	7/23/2025		Jurisdiction		MODOT			
Intersection Intersectio	Intersection 1		Analysis Year		2030			
Signalized/Unsignalized Signalized	Signalized		Ped Volume (after Intx Type)		Not Known		▼	
Input Data				Site Con	ditions	Base Conditions		
Intersection type (3ST, 3SG, 4ST, 4SG)				4Si	G			
AADT major (veh/day) (total entering on major approaches)* AADT_MAX =		67,700	(veh/day)	24,7	775			
AADT minor (veh/day) (total entering on minor	AADT minor (veh/day) (total entering on minor approaches)* AADT _{MAX} =		33,400	(veh/day)	9,90	00		
Intersection lighting (present/not present)					Pres	ent	Not Present	
Calibration factor, C					5.2	21	1.00	
Data for unsignalized intersections only:						·		
Number of major road approaches w	vith left turn lanes (0,1,2)				θ		θ	
Number of major road approaches w	rith right turn lanes (0,1,2	2)			θ		θ	
Data for signalized intersections only:								
Number of approaches with left-turn	lanes (0,1,2,3,4) [for 3SG	i, use maximum va	lue of 3]		4		0	
Number of approaches with right-tur	n lanes: for 4SG, use max	imum value of 4,	all other, max 2	2)	4		0	
Number of approaches with left-turn	signal phasing [for 3SG,	use maximum valu	ie of 3]		4			
Type of left-turn signal phasing for Le	eg #1				Protected		Permissive	
Type of left-turn signal phasing for Le	eg #2				Protected			
Type of left-turn signal phasing for Le	eg #3				Protected			
Type of left-turn signal phasing for Leg #4 (if applicable)					Protected			
Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3]					0		0	
Intersection red light cameras (prese	nt/not present)				Not Present		Not Present	
Sum of all pedestrian crossing volume	es (PedVol) Signalized	intersections only			50			
Maximum number of lanes crossed b	y a pedestrian (n _{lanesx})				5			
Number of bus stops within 300 m (1	,000 ft) of the intersectio	n			0		0	
Schools within 300 m (1,000 ft) of the intersection (present/not present)					Pres	ent	Not Present	
Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection					1 to 8		0	
Average Annual Crash History (3 or 5-yr av	verage)							
Multiple vehicle crashes		KABC	Fatal and Inju	ury Only	0.0			
matche vende d'asnes		PDO	Property Dan	mage Only	0.0			
Single-vehicle crashes		KABC	Fatal and Inju	ury Only	0.0			
Single-verifice crastics		PDO	Property Damage Only		0.0			
NOTES: * AADT: It is important to remember	er that the AADT(major) =	AADT(major app	roach1) + AAD1	T(minor approach2)	(refer to p.12-8 in Part C of the HSM)			

WORKSHEET 2A -- GENERAL INFORMATION AND INPUT DATA FOR URBAN AND SUBURBAN ARTERIAL INTERSECTIONS

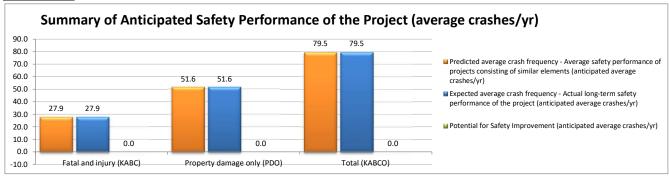
General Information			Location Information					
Analyst Alex Zarate	Alex Zarate		Roadway		US 54			
Agency or Company CBB	СВВ		Location Information		US 54 & Laker Pride Rd/Jack Crowell Rd			
Date Performed 7/23/2025	7/23/2025		Jurisdiction		MODOT			
Intersection Intersection 2	Intersection 2		Analysis Year		2030			
Signalized/Unsignalized Signalized	Signalized		Ped Volume (after Intx Type)		Not Known			
Input Data				Site Cond	ditions	Base Conditions		
Intersection type (3ST, 3SG, 4ST, 4SG)				450	3			
AADT major (veh/day) (total entering on major approaches)* AADT_MAX =		67,700	(veh/day)	34,3.	50			
AADT minor (veh/day) (total entering on minor	AADT minor (veh/day) (total entering on minor approaches)* AADT _{MAX} =		33,400	(veh/day)	6,12	25		
Intersection lighting (present/not present)					Prese	ent	Not Present	
Calibration factor, C					5.2	1	1.00	
Data for unsignalized intersections only:								
Number of major road approaches with	h left turn lanes (0,1,2)				θ		θ	
Number of major road approaches with	h right turn lanes (0,1,2	!)			θ		θ	
Data for signalized intersections only:								
Number of approaches with left-turn la	Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]					4		
Number of approaches with right-turn	lanes: for 4SG, use max	imum value of 4,	all other, max 2	2)	4	4		
Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3]					4			
Type of left-turn signal phasing for Leg	#1				Protected/Permissive		Permissive	
Type of left-turn signal phasing for Leg	#2				Protected/Permissive			
Type of left-turn signal phasing for Leg	#3				Permissive			
Type of left-turn signal phasing for Leg #4 (if applicable)					Permissive			
Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3]					0		0	
Intersection red light cameras (present,	/not present)				Not Present		Not Present	
Sum of all pedestrian crossing volumes	(PedVoI) Signalized	ntersections only			50			
Maximum number of lanes crossed by a	Maximum number of lanes crossed by a pedestrian (n _{lanesx})					5		
Number of bus stops within 300 m (1,00	00 ft) of the intersectio	n			0		0	
Schools within 300 m (1,000 ft) of the intersection (present/not present)					Not Present		Not Present	
Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection					0		0	
Average Annual Crash History (3 or 5-yr aver	rage)							
Multiple vehicle crashes		KABC	Fatal and Inju	ury Only	0.0			
		PDO	Property Dar	mage Only	0.0			
Single-vehicle crashes		KABC	Fatal and Inju	ury Only	0.0			
P			Property Damage Only		0.0			
NOTES: * AADT: It is important to remember	that the AADT(major) =	AADT(major app	roach1) + AAD	T(minor approach2)	(refer to p.12-8 in Part C of the HSM)			

Analyst Agency or Company	Alex Zarate	Alex Zarate Roadway									
			Roadway		US 54						
2 . 2	СВВ		Location In	formation	US 54 & Cecil St						
Date Performed	7/23/2025		Jurisdiction	l	MODOT						
Intersection	Intersection 3		Analysis Ye	ar	2030						
Signalized/Unsignalized	Signalized		Ped Volum	e (after Intx Type)	Not Known						
Input Data					Site Cor	nditions	Base Conditions				
Intersection type (3ST, 3SG, 4S	T, 4SG)				35	5G					
AADT major (veh/day) (total ente	ering on major approaches)*	AADT _{MAX} =	58,100	(veh/day)	34,7	250					
AADT minor (veh/day) (total ente	ering on minor approaches)*	AADT _{MAX} =	16,400	(veh/day)	7,2	250					
Intersection lighting (present/n	not present)				Pres	Not Present					
Calibration factor, C					2.95						
Data for unsignalized intersecti	ions only:										
Number of major road a	Number of major road approaches with left turn lanes (0,1,2)					•	0				
Number of major road approaches with right turn lanes (0,1,2)					-	0					
Data for signalized intersection	ns only:					-					
Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]						2	0				
Number of approaches v	with right-turn lanes: for 4SG, use m	naximum value of 4,	all other, max	(2)	2	2	0				
Number of approaches v	with left-turn signal phasing [for 3S0	G, use maximum val	ue of 3]		2	2					
Type of left-turn signal pl	hasing for Leg #1				Prote	ected	Permissive				
Type of left-turn signal pl	hasing for Leg #2				Prote	ected					
Type of left-turn signal pl	hasing for Leg #3				Not Ap	plicable					
Type of left-turn signal p	hasing for Leg #4 (if applicable)				Not Ap	plicable					
Number of approaches v	with right-turn-on-red prohibited [fo	or 3SG, use maximu	m value of 3]		(0	0				
Intersection red light can	meras (present/not present)				Not Pi	resent	Not Present				
Sum of all pedestrian cro	ossing volumes (PedVol) Signalize	d intersections only	/		5	0					
Maximum number of lan	nes crossed by a pedestrian (n _{lanesx})				4	1					
Number of bus stops wit	thin 300 m (1,000 ft) of the intersect	tion			(0	0				
Schools within 300 m (1,0	000 ft) of the intersection (present,	/not present)			Not Pr	resent	Not Present				
Number of alcohol sales	establishments within 300 m (1,000	Oft) of the intersect	tion		1 to	08	0				
Average Annual Crash History	(3 or 5-yr average)				•	<u> </u>					
Multiple vehicle creekee		KABC	Fatal and Ir	njury Only	0.0						
Multiple vehicle crashes		PDO	Property Da	amage Only	0.0						
Cincle collision !		KABC	Fatal and Ir	njury Only	0.0						
Single-vehicle crashes		PDO	Property Da	amage Only	0.0						

PROJECT SAFETY PERFORMANCE SUMMARY REPORT

General Information

Project Name US54-MO5 MoDOT On-Call Project Description 2030 No-Build


Reference Number Analyst Agency/Company Contact Email Job# 073-25 Alex Zarate CBB azarate@cbbtraffic.com

Contact Phone (314) 825 5841

Date Completed 05/12/11

Years of crash data incorporated into the analysis: 0

PROJECT SUMMARY

		Total Crashes/yr (KABCO)		Fata	and Injury Crasho (KABC)	es/yr	Property Damage Only Crashes/yr (PDO)			
Project Element	Predicted average crash frequency N _{predicted (KABCO)}	Expected average crash frequency N _{expected (KABCO)}	Potential for Improvement	Predicted average crash frequency N _{predicted (KABC)}	Expected average crash frequency N _{expected (KABC)}	Potential for Improvement	Predicted average crash frequency N _{predicted (O)}	Expected average crash frequency N _{expected (O)}	Potential for Improvement	
INDIVIDUAL SEGMENTS										
Segment 1	8.1	8.1	0.0	2.3	2.3	0.0	5.8	5.8	0.0	
Segment 2	0.6	0.6	0.0	0.2	0.2	0.0	0.4	0.4	0.0	
Segment 3	1.0	1.0	0.0	0.3	0.3	0.0	0.7	0.7	0.0	
Segment 4	2.2	2.2	0.0	0.6	0.6	0.0	1.6	1.6	0.0	
Segment 5	12.0	12.0	0.0	3.4	3.4	0.0	8.6	8.6	0.0	
INDIVIDUAL INTERSECTIONS										
Intersection 1	16.9	16.9	0.0	6.6	6.6	0.0	10.4	10.4	0.0	
Intersection 2	26.6	26.6	0.0	10.5	10.5	0.0	16.1	16.1	0.0	
Intersection 3	12.1	12.1	0.0	4.1	4.1	0.0	8.0	8.0	0.0	
COMBINED (sum of column)	79.5	79.5	0.0	27.9	27.9	0.0	51.6	51.6	0.0	

PROJECT SUMMARY -- Site-Specific EB Method Summary Results for Urban and Suburban Arterial Project

Crash severity level	N predicted(PROJECT) Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated average crashes/yr)	N expected (PROJECT) Expected average crash frequency - Actual long-term safety performance of the project (anticipated average crashes/yr)	N potential for improvement (PROJECT) Potential for Safety Improvement (anticipated average crashes/yr)
Fatal and injury (KABC)	27.9	27.9	0.0
Property damage only (PDO)	51.6	51.6	0.0
Total (KABCO)	79.5	79.5	0.0

HSM1 Extended Spreadsheet for Part C Chapter 12 v.9

Discussion of Results

Given the potential effects of project characteristics on safety performance, results indicate that:

- 1. It is anticipated that the project will, on average, experience 79.5 crashes per year (27.9 fatal and injury crashes per year; and 51.6 property damage only crashes per year).
- 2. A similar project is anticipated, on average, to experience 79.5 crashes per year (27.9 fatal and injury crashes per year; and 51.6 property damage only crashes per year).
- 3. It is anticipated the project has, on average, a potential for safety improvement of 0 crashes per year (0 fatal and injury crashes per year; and 0 property damage only crashes per year).

MULTIPLE YEAR PROJECT SAFETY PERFORMANCE SUMMARY REPORT FOR URBAN AND SUBURBAN ARTERIAL General Information US54-MO5 MoDOT On-Call Project Description 2030 No-Build Job# 073-25 Reference Number Analyst Alex Zarate Agency/Company Contact Email Contact Phone azarate@cbbtraffic.com (314) 825 5841 Date Completed Base Year Analysis Period (Years) Linear Traffic Growth Rate (annual %) PROJECT SUMMARY

■ Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated total number of crashes over 10 years)

■ Expected average crash frequency - Average long-term safety performance of the project (anticipated total number of crashes over 10 years)

■ Potential safety performance - Average project performance compared to threshold set by typical other similar projects (anticipated total number of crashes over 10 years)

			20-Year Analysis S	ummary Report						
	Pre	dicted Average Crash Frequ	ency	Expec	ted Average Crash Fre	quency	Poter	ntial for Safety Improv	ement	
Analysis Year		(Npredicted)			(Nexpected)		(crashes/yr)			
	KABC	PDO	Total (KABCO)	KABC	PDO	Total (KABCO)	KABC	PDO	Total (KABCO	
2030	27.9	51.6	79.5	27.9	51.6	79.5	N/A	N/A	N/A	
2031	28.5	52.7	81.3	28.5	52.7	81.3	N/A	N/A	N/A	
2032	29.1	53.9	83.0	29.1	53.9	83.0	N/A	0.0	N/A	
2033	29.7	55.0	84.7	29.7	55.0	84.7	N/A	N/A	N/A	
2034	30.4	56.1	86.5	30.4	56.1	86.5	N/A	N/A	N/A	
2035	31.0	57.2	88.2	31.0	57.2	88.2	N/A	0.0	N/A	
2036	31.6	58.4	90.0	31.6	58.4	90.0	N/A	N/A	N/A	
2037	32.2	59.5	91.7	32.2	59.5	91.7	0.0	0.0	N/A	
2038	32.9	60.6	93.5	32.9	60.6	93.5	0.0	N/A	N/A	
2039	33.5	61.8	95.3	33.5	61.8	95.3	0.0	N/A	0.0	
2040	34.1	62.9	97.1	34.1	62.9	97.1	N/A	N/A	N/A	
2041	34.8	64.1	98.9	34.8	64.1	98.9	N/A	N/A	N/A	
2042	35.4	65.2	100.7	35.4	65.2	100.7	N/A	N/A	N/A	
2043	36.1	66.4	102.5	36.1	66.4	102.5	N/A	N/A	N/A	
2044	36.7	67.6	104.3	36.7	67.6	104.3	N/A	N/A	N/A	
2045	37.4	68.7	106.1	37.4	68.7	106.1	N/A	N/A	N/A	
2046	38.0	69.9	107.9	38.0	69.9	107.9	N/A	N/A	N/A	
2047	38.7	71.1	109.8	38.7	71.1	109.8	N/A	N/A	N/A	
2048	39.3	72.3	111.6	39.3	72.3	111.6	N/A	N/A	N/A	
2049	40.0	73.4	113.4	40.0	73.4	113.4	0.0	0.0	0.0	
Total	677.5	1248.4	1925.9	677.5	1248.4	1925.9	N/A	N/A	N/A	

PROJECT SUMMARY -- Site-Specific EB Method Summary Results for Urban and Suburban Arterial Project

Crash severity level	N predicted(PROJECT) Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated total number of crashes over 20 years)	N expected (PROJECT) Expected average crash frequency - Average long-term safety performance of the project (anticipated total number of crashes over 20 years)	N potential for improvement (PROJECT) Potential safety performance - Average project performance compared to threshold set by typical other similar projects (anticipated total number of crashes over 20 years)
Fatal and injury crashes (KABC)	677.5	677.5	N/A
Property damage only crashes (PDO)	1248.4	1248.4	N/A
Total crashes (KABCO)	1925.9	1925.9	N/A

<u>Discussion of Results</u>

Given the potential effects of project characteristics on safety performance and assuming a 1.75 % growth in AADT over a 20 year analysis period with 2030 as the base year, results indicate that:

- 1. The project is anticipated, on average, to experience 1925.9 crashes over a 20 year analysis period (677.5 fatal and injury crashes; and 1248.4 property damage only crashes).
- 2. A similar project is anticipated, on average, to experience 1925.9 crashes over a 20 year analysis period (677.5 fatal and injury crashes over 20 years; and 1248.4 property damage only crashes over 20 years).

Build Condition - ISATe & HSM Results (2030 – 2050)

Safety Summary Table – Build Conditions

Facility		Build Condition	1
Facility	F&I	PDO	Total
Intersection 1 crashes: (US-54 & Business Route 5)	158.9	251.5	410.4
Intersection 2 crashes: (US-54 & Jack Crowell Road)	77.9	134.3	212.1
Intersection 3 crashes: (US-54 & Cecil Street)	100.5	192.3	292.8
Intersection 4 crashes: (US-54 & Laker Pride Road)	108.7	209.1	317.8
Arterial segments (1-3) crashes:	67.3	167.7	235.0
Arterial segments (4-5) crashes:	37.8	108.8	146.7
Total Arterial HSM Crashes	551.0	1063.7	1614.7
Freeway segments, crashes:	72.4	245.7	318.1
Ramp segments, crashes:	46.0	84.6	130.6
Crossroad ramp terminals, crashes:	238.6	722.1	960.7
Total ISATe Crashes	356.9	1052.5	1409.4
Total Study Area Crashes	907.9	2116.3	3024.2

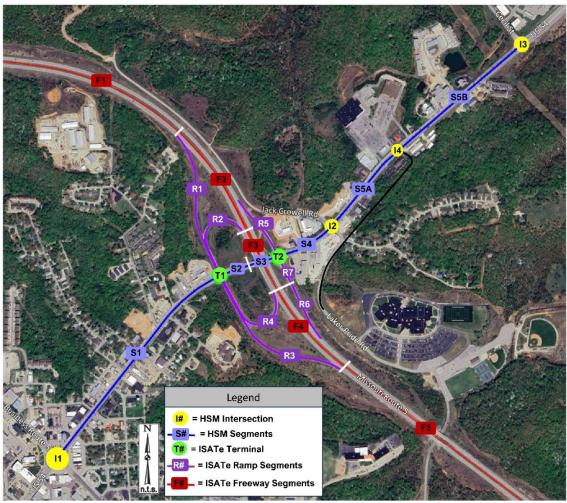


Figure 2: ISATe and HSM Study Area – Build Condition

ISATe Inputs & Output Summary Report (Build)

		Enhan	ced Interc	hange Safety Analysi	s Too			
General Information								
Project description:	US54-MO5	Predictive	Safety Ana	lysis				
Analyst:	CBB		Date:	7/22/2025	Area	type:	Urban	
First year of analysis:	2030							
Last year of analysis:	2050							
Crash Data Descripti	ion							
Freeway segments	No crash o	lata	F					
Ramp segments	No crash o	lata	F					
Ramp terminals	No crash o	lata	Ţ					
						,		
Program Control								
Enter data in the Ma Click Perform Calcu		, ,		ut Ramp Segments, Inp process.	out Ra	mp Termina	ls worksheets.	
Perfo	rm Calculat	ions	Prin	t Results (optional)		Print Site S	ummary (optio	onal)
	results can			otionally, click the Print tput Freeway Segment				

Warning Messages ← See not	e	
Freeway Segments	Ramp Segments	Ramp Terminals
1		

	Inp	ut Worksheet for Freeway Segm							
Clear	Echo Input Values	Check Input Values	Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
	(View results in Column AV)	(View results in Advisory Messages)	Study Period	Study Period	Study Period	Study Period	Study Period	Study Period	Study Period
Basic Roadwa		(View results in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period
Number of thro	•			4	4	4	4	4	
	nent description:								
Segment lengt				1.64	0.29	0.16	0.36	1.4	
Alignment Da									
Horizontal Cu		▼-See note							
	rizontal curve in segment	?:		Both Dir.	Both Dir. 3335	Both Dir. 3269	Both Dir. 3269	Both Dir. 3269	
	rve radius (R ₁), ft:			0.68		0.36			
<u> </u>	ngth of curve (L _{c1}), mi:				0.68		0.36	0.36	
	ngth of curve in segment (0.41	0.27	0.07	0.25	0.04	
	rizontal curve in segment	?:		Both Dir. 3315	No	No	No	Both Dir. 4260	
<u> </u>	rve radius (R ₂), ft:			0.64				0.81	
	ngth of curve (L _{c2}), mi:								
	ngth of curve in segment (0.64				0.39	
	rizontal curve in segment	?:		No				No	
	rve radius (R ₃), ft:								
	ngth of curve (L _{c3}), mi:	// \i							
	ngth of curve in segment ((L _{c3,seg}), mi:							
Cross Section				10	44	10	1 40	40	
Lane width (W	**			12	11	12	12	12	
	der width (W _s), ft:			10	10	7	9.5	8	
Inside shoulde	er width (W _{is}), ft:			5	4.5	5	4	5	
Median width (· · ·			50	50	50	50	50	
	on outside shoulders?:			Yes	Yes	Yes	Yes	Yes	
		increasing milepost direction, mi:		1.64	0.12	0.16	0.12	1.30	
	on inside shoulders?:	decreasing milepost direction, mi:		1.52 Yes	0.24 Yes	0.00 Yes	0.21 Yes	1.19 Yes	
		increasing milepost direction, mi:		1.64	0.29	0.16	0.36	1.35	
		decreasing milepost direction, mi:		1.64	0.29	0.16	0.36	1.35	
	arrier in median:			Some	None	Some	None	Some	
1 Ler	ngth of barrier (L _{ib,1}), mi:			0.07		0.04		0.11	
		way to barrier face (W _{off,in,1}), ft:		5		22		5	
	ngth of barrier (L _{ib,2}), mi:							0.11	
		way to barrier face (W _{off,in,2}), ft:						5	
	ngth of barrier (L _{ib,3}), mi:								
		way to barrier face (W _{off,in,3}), ft:							
	ngth of barrier (L _{ib,4}), mi:								
		way to barrier face (W _{off,in,4}), ft:							
	ngth of barrier (L _{ib,5}), mi:								
		way to barrier face (W _{off,in,5}), ft:							
	width (W _{ib}), ft:								
		way to barrier face (W _{near}), ft:	<u> </u>	<u> </u>			<u> </u>		
Roadside Dat				L 00	40	L 00	1 40	4.1	
Clear zone wid				20	18	20	18	14	
	arrier on roadside:			Some	None	None	None	Some	
	ngth of barrier (L _{ob,1}), mi:			0.05				0.30	
		led way to barrier face (W _{off,o,1}), ft:		10				8	
	ngth of barrier (L _{ob,2}), mi:							0.27	
		led way to barrier face (W _{off,o,2}), ft:						8	
	ngth of barrier (L _{ob,3}), mi:								
Dis	stance from edge of travel	led way to barrier face (W _{off,o,3}), ft:							
4 Ler	ngth of barrier (L _{ob,4}), mi:								
Dis	stance from edge of travel	led way to barrier face (W _{off,o,4}), ft:							
5 Ler	ngth of barrier (L _{ob,5}), mi:								
	- ' ''	led way to barrier face (W _{off.o.5}), ft:					1		
		, increasing milepost (W _{off,inc}), ft:							
	ge of traveled way to barrier face			1					$\overline{}$

Ramp Acc	cess Data								
Travel in I	Increasing Milepost Direction								
	Ramp entrance in segment? (If yes, indicate type.):			No	S-C Lane	No	No	No	
Ramp	Distance from begin milepost to upstream entrance ramp gore (X _{b,ent}), mi:		0.22		999	999	999	
	Length of ramp entrance (L _{en,inc}), mi:				0.14				
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:				0.14				
	Entrance side?:				Right				
Exit	Ramp exit in segment? (If yes, indicate type.):			No 999	No	No 999	S-C Lane	No	
Ramp	Distance from end milepost to downstream exit ramp gore (X _{e,e)}	_t), mi:		999	999	999	0.13	999	
	Length of ramp exit (L _{ex,inc}), mi:						0.13		
	Length of ramp exit in segment (L _{ex,seg,inc}), mi: Exit side?:						Right		
Weave	Type B weave in segment?:		No	No	No	No	No	No	
vvcavc	Length of weaving section (L _{wev,inc}), mi:		140	140	140	140	140	140	
	Length of weaving section in segment (L _{wev,seg,inc}), I	mi·							
Traval in l	Decreasing Milepost Direction								
Entrance	Ramp entrance in segment? (If yes, indicate type.):			No	No	Lane Add	No	S-C Lane	
Ramp	Distance from end milepost to upstream entrance ramp gore (X			999	999	Lanortaa	0.16	C C Lunc	
	Length of ramp entrance (L _{en,dec}), mi:	C,CHO ·						0.15	
	Length of ramp entrance in segment (Lensed, dec), mi	:						0.15	
	Entrance side?:							Right	
Exit	Ramp exit in segment? (If yes, indicate type.):			S-C Lane	No	Lane Drop	No	No	
Ramp	Distance from begin milepost to downstream exit ramp gore (X _b	,ext), mi:			0.16		999	999	
	Length of ramp exit (L _{ex,dec}), mi:			0.12					
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:			0.12					
	Exit side?:			Right					
Weave	Type B weave in segment?:			No	No	No	No	No	
	Length of weaving section (L _{wev,dec}), mi:			1					
	Length of weaving section in segment ($L_{wev,seg,dec}$),								
Traffic Da		Year							
	of AADT during high-volume hours (P _{hv}):								
	Segment Data	2030		18175	16575	15900	12925	19025	
-	aily traffic (AADT _{fs}) by year, veh/d:	2031							
	ta only for those years for which	2032							
it is avail	able, leave other years blank)	2033							
		2034 2035							
		2036							
		2037							
		2038							
		2039							
		2040							
		2041							
		2042							
		2043 2044							
		2045							
		2046							
		2047							
		2048							
		2049							
		2050		23900	21875	21050	17050	25150	
		2051		1					
		2052 2053		1					
Entrance 5	Ramp Data for Travel in Increasing Milepost Dir.	Year							
	aily traffic (AADT _{b ent}) by year, veh/d:	2030		4175	4175				
-	ta only for those years for which	2031							
,	able, leave other years blank)	2032							
	,	2033							
		2034							
		2035							
		2036							
		2037 2038							
		2038							
		2040							
		2041							
		2042							
		2043							
		2044							
		2045							
		2046 2047							
		2047							
		2046							
		2050		5475	5475				
								l	
		2051							
		2051 2052							

Exit Ramp Data for Travel in Increasing Milepost Direction	Year						
Average daily traffic (AADT _{e,ext}) by year, veh/d:	2030		1		5075		
(enter data only for those years for which	2031						
it is available, leave other years blank)	2032						
,	2033						
	2034						
	2035						
	2036						
	2037						
	2038						
	2039						
	2040						
	2041						
	2042						
	2044						
	2045						
	2046						
	2047						
	2048						
	2049						
	2050				6750		
	2051						
	2052						
	2053						
Entrance Ramp Data for Travel in Decreasing Milepost Dir.	Year						
Average daily traffic (AADT _{e,ent}) by year, veh/d:	2030			3500	3500	1025	
(enter data only for those years for which	2031						
it is available, leave other years blank)	2032						
	2033						
	2034						
	2035						
	2036						
	2037						
	2039						
	2040						
	2041						
	2042						
	2043						
	2044						
	2045						
	2046						
	2047						
	2048						
	2049						
	2050			4650	4650	1350	
	2051						
	2052						1
	2052		<u> </u>				
Exit Pamp Data for Travel in Decreasing Milenest Direction	2053 Voar						
Exit Ramp Data for Travel in Decreasing Milepost Direction	Year	4600	2075	2075			
Average daily traffic (AADT _{b,ext}) by year, veh/d:	Year 2030	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d:	Year 2030 2031 2032	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	2030 2031 2032 2033	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	2030 2031 2032 2033 2034	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2031 2032 2033 2034 2035 2036 2037 2038	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049						
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050	1600	2975	2975			
Average daily traffic (AADT _{b,ext}) by year, veh/d: (enter data only for those years for which	Year 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049						

Crash Data	Year		Segment C	rashes>			
Count of Fatal-and-Injury (FI) Crashes by Year	1						
Multiple-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,mv,fi})	2031						
, , , , , , , , , , , , , , , , , , , ,	2032						
	2033						
	2034						
Single-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,sv,fi})	2031						
	2032	1					
	2033	1					
	2034						
Ramp-entrance-related crashes	2030						
$(N_{o,sc,EN,at,fi})$	2031						
	2032						
	2033						
	2034						
Ramp-exit-related crashes	2030	1					
$(N_{o,sc,EX,at,fi})$	2031						
	2032						
	2033						
	2034						
Count of Property-Damage-Only (PDO) Crashes					 		
Multiple-vehicle crashes	2030						
(not ramp related) (N _{o,fs,n,mv,pdo})	2031						
	2032						
	2033						
	2034						
Single-vehicle crashes	2030	4					
(not ramp related) (N _{o,fs,n,sv,pdo})	2031						
	2032	1					
	2033	1					
	2034						
Ramp-entrance-related crashes	2030	4					
$(N_{o,sc,EN,at,pdo})$	2031	1					
	2032	4					
	2033	4					
	2034						
Ramp-exit-related crashes	2030	4					
(N _{o,sc,EX,at,pdo})	2031	1					
	2032	1					
	2033	4					
	2034						

	Input Worksheet for Ramp Segme	ents							
Clear		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8
Clear	Echo Input Values Check Input Values	Study	Study	Study	Study	Study	Study	Study	Study
Pasia Bas	(View results in Column CJ) (View results in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period	Period
	adway Data through lanes (n):	1	1 1	1	1 1	1	1	2	
	ment description:		SB Loop On		<u> </u>			NB Off-Ramp	("2" lanes)
	ength (L), mi:	0.36	0.22	0.39	0.25	0.16	0.16	0.06	
	affic speed on the freeway (V _{frwy}), mi/h:	65	65	65	65	65	65	65	
	ype (ramp or collector-distributor road):	Exit	Entrance	Entrance	Exit	Entrance	Exit	Exit	
Alignmen	ntrol at crossroad ramp terminal:	Yield	None	None	Yield	Signal	Signal	Signal	
ľ	I Curve Data ▼See notes →								
	Horizontal curve?:	In Seg.	In Seg.	In Seg.	In Seg.	In Seg.	In Seg.	No	
	Curve radius (R ₁), ft:	1040	235	810	262	830	1214		
	Length of curve (L _{c1}), mi:	0.14	0.14	0.15	0.15	0.07	0.07		
	Length of curve in segment (L _{c1,seg}), mi:	0.14	0.14	0.15	0.15	0.07	0.07		
	Ramp-mile of beginning of curve in direction of travel (X ₁), mi:	0.00	0.08	0.12	0.00	0.00	0.00		
2	Horizontal curve?:	In Seg.	No	In Seg.	No	In Seg.	No		
	Curve radius (R ₂), ft:	783		1496		862			
	Length of curve (L _{c2}), mi:	0.07		0.08		0.05			
I	Length of curve in segment (L _{c2,seg}), mi:	0.07		0.08		0.05			
	Ramp-mile of beginning of curve in direction of travel (X ₂), mi:	0.18		0.31		0.11			
3	Horizontal curve?:	No		No		No			
	Curve radius (R ₃), ft:								
I	Length of curve (L _{c3}), mi:								
	Length of curve in segment (L _{c3,seg}), mi:								
	Ramp-mile of beginning of curve in direction of travel (X ₃), mi:								
4	Horizontal curve?:								
	Curve radius (R ₄), ft:								
	Length of curve (L _{c4}), mi:								
	Length of curve in segment (L _{c4,seg}), mi:								
	Ramp-mile of beginning of curve in direction of travel (X ₄), mi: Horizontal curve?:								
5									
	Curve radius (R ₅), ft:								
	Length of curve (L _{c5}), mi:								
	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi:								
Cross Sec	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi:								
Cross Sec	Length of curve (L_{c5}) , mi: Length of curve in segment $(L_{c5,seg})$, mi: Ramp-mile of beginning of curve in direction of travel (X_5) , mi:	12	12	12	12	14	14	12	
Lane width	Length of curve (L_{c5}) , mi: Length of curve in segment $(L_{c5,seg})$, mi: Ramp-mile of beginning of curve in direction of travel (X_5) , mi: tion Data (W_i) , ft:	12	12	12	12	14	14	12	
Lane width Right shou	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data (W ₁), ft: Ilder width (W _{rs}), ft:								
Lane width Right shou Left should	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data (W_1), ft: Ider width (W_{rs}), ft: der width (W_{ls}), ft:	5	4	4	5 5	5	5 4	4	
Lane width Right shou Left should	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: ction Data (W ₁), ft: Ilder width (W _{rs}), ft:	5 4	4	4	5	5 4	5	4 3	
Lane width Right shou Left should	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Idea (W_i), ft: Idea width (W_{is}), ft: Idea add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi:	5 4	4	4	5 5	5 4	5 4 Lane Add	4 3	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: der width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on right side of roadway:	5 4	4	4	5 5	5 4	5 4 Lane Add 0.04 Yes	4 3 No Yes	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on right side of roadway: Length of barrier ($L_{rb,1}$), mi:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: der width (W_{ls}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on right side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes	4 3 No Yes	
Lane width Right should Left should Presence of Roadside Presence of	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Left should Presence of Roadside Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Left should Presence of Roadside Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Ider width (W_{l	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W ₁), ft: Ider width (W_{rs}), ft: der width (W_{rs}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on <u>right</u> side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Length of barrier ($L_{rb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Length of barrier ($L_{rb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,3}$), mi:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W_1), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Iden add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,1}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,2}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,2}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,2}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,2}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,2}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,3}$), mi: Iden add or lane drop by taper: Length of barrier ($L_{rb,4}$), mi: Iden by taper in segment ($L_{rb,4}$), mi: Iden by taper in segment ($L_{rb,4}$), mi: Iden by taper in segment ($L_{rb,4}$), mi: Iden by taper in segment ($L_{rb,4}$), mi: Iden by taper in segment ($L_{rb,4}$), mi:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3	Length of curve (L_{c5}) , mi: Length of curve in segment $(L_{c5,seg})$, mi: Ramp-mile of beginning of curve in direction of travel (X_5) , mi: tion Data (W _I), ft: Ider width (W_{rs}) , ft: Ider width (W_{rs}) , ft: Ider width (W_{ls}) , ft: Ider width (W_{ls}) , ft: Ider width (U_{rs}) , mi: Distance from edge of traveled way to barrier face $(W_{off,r,1})$, ft: Ider width (U_{rs}) , mi: Distance from edge of traveled way to barrier face $(W_{off,r,2})$, ft: Length of barrier $(L_{rb,2})$, mi: Distance from edge of traveled way to barrier face $(W_{off,r,3})$, ft: Length of barrier $(L_{rb,4})$, mi: Distance from edge of traveled way to barrier face $(W_{off,r,4})$, ft: Length of barrier $(L_{rb,5})$, mi:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02	4 3 No Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: tion Data (W _I), ft: Ider width (W_{rs}), ft: der width (W_{rs}), ft: of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on <u>right</u> side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Length of barrier ($L_{rb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,4}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,4}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Length of barrier ($L_{rb,5}$), mi:	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 Fresence of Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data In the partial of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Length of barrier ($L_{rb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Length of barrier ($L_{rb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,4}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: of barrier on left side of roadway:	5 4 No	4 4 No	4 4 No	5 5 No	5 4 No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 Fresence of Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), ft: Of lane add or lane drop by taper: Length of taper in segment ($L_{add,seg}$ or $L_{drop,seg}$), mi: Data of barrier on <u>right</u> side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Length of barrier ($L_{rb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Length of barrier ($L_{rb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Length of barrier ($L_{rb,4}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: of barrier on left side of roadway: Length of barrier ($L_{lb,1}$), mi:	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), mi: Ider width (W_{rs}	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	4 3 No No Yes 0.02 5	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Length of barrier (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Length of barrier (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{ls}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft:	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), mi: Distance from edge of	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 4 5 Presence of 1 2 3 4 5 Presence of 1 3	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Length of barrier ($L_{rb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Length of barrier ($L_{rb,5}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: of barrier on left side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: of barrier on left side of roadway: Length of barrier ($L_{rb,1}$), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 4 5 Presence of 1 2 3 4 5 Presence of 1 3	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,l,1}$), ft: Length of barrier ($L_{lb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,1}$), ft: Length of barrier ($L_{lb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,2}$), ft: Length of barrier ($L_{lb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,2}$), ft: Length of barrier ($L_{lb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,3}$), ft: Length of barrier ($L_{lb,3}$), mi:	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 4 4 5 4 4 4	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,3}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,3}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of traveled way to barrier face ($V_{off,r,5}$), ft: Ider width (V_{rs}), mi: Distance from edge of	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	
Lane width Right should Presence of Roadside Presence of 1 2 3 4 5 Presence of 1 2 3 4 4 5 4 4 4	Length of curve (L_{c5}), mi: Length of curve in segment ($L_{c5,seg}$), mi: Ramp-mile of beginning of curve in direction of travel (X_5), mi: Ition Data 1 (W ₁), ft: Ider width (W_{rs}), ft: Ider width (W_{rs}), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,1}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,2}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,4}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,r,5}$), ft: Ider width (W_{ls}), mi: Distance from edge of traveled way to barrier face ($W_{off,l,1}$), ft: Length of barrier ($L_{lb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,1}$), ft: Length of barrier ($L_{lb,2}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,2}$), ft: Length of barrier ($L_{lb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,2}$), ft: Length of barrier ($L_{lb,3}$), mi: Distance from edge of traveled way to barrier face ($W_{off,l,3}$), ft: Length of barrier ($L_{lb,3}$), mi:	5 4 No	4 4 No No	4 4 No No	5 5 No No	5 4 No No	5 4 Lane Add 0.04 Yes 0.02 5	Yes 0.02 5 Yes 0.02	

Ramp Acc	cess Data	▼ See note	9								
Ramp	Ramp entrance in segment? (If yes, ind			No	No	No	No	No	No	No	
Entrance	Length of entrance s-c lane in segment	(L _{en.sea}), mi:									
Ramp	Ramp exit in segment? (If yes, indicate	type.):		No	No	No	No	No	No	No	
Exit	Length of exit s-c lane in segment (Lex se	Length of exit s-c lane in segment (L _{ex,seg}), mi:									
Weaving	Weave section in collector-distributor ro		?:	No	No	No	No	No	No		
Section	Length of weaving section (L _{wev}), mi:										
000	Length of weaving section in segment (l mi·									
Traffic Da		=wev,seg/; ·····	Year								
	laily traffic (AADT _r or AADT _c) by year, veh	v/d:	2030	1600	3500	1025	2975	4175	5075	5075	
	ta only for those years for which	i/u.	2030	1000	3300	1023	2915	4175	3073	3073	
	lable, leave other years blank)		2031								
it is avail	lable, leave officer years blank)		2033								
			2034								
			2035								
			2036								
			2037								
			2038								
			2039								
			2040								
			2041								
			2042								
			2043 2044								
			2044								
			2045								
			2047								
			2048								
			2049								
			2050	2025	4650	1350	4000	5475	6750	6750	
			2051								
			2052								
			2053								
Crash Da		Year		Segment C	Crashes>						
Count of	Fatal-and-Injury (FI) Crashes by Year	0000			1	ı	1				1
	Multiple-vehicle crashes	2030									
1	$(N_{o,w,n,mv,fi})$	2031		-							
		2032		-							
		2033		 				-	-	-	
1	Single-vehicle crashes	2034 2030		-				-	-	-	-
1	=	2030		-							
i	$(N_{o,w,n,sv,fi})$	2031						-	-	-	-
1		2032									
1		2033									
Count of	Property-Damage-Only (PDO) Crashes										
	Multiple-vehicle crashes	2030		i				1	1	1	
	1 .	2030						1	I	1	
	Multiple-vehicle crashes (N _{o,w,n,mv,pdo})	2031									
	1 .										
	1 .	2031 2032									
	1 .	2031 2032 2033									
	(N _{o,w,n,mv,pdo})	2031 2032 2033 2034									
	(N _{o,w,n,mv,pdo}) Single-vehicle crashes	2031 2032 2033 2034 2030									
	(N _{o,w,n,mv,pdo}) Single-vehicle crashes	2031 2032 2033 2034 2030 2031									

	Input V	Vorksheet for Crossroad Ramp T	erminals					
Class	•		Terminal 1	Terminal 2	Terminal 3	Terminal 4	Terminal 5	Terminal 6
Clear	Echo Input Values	Check Input Values	Study	Study	Study	Study	Study	Study
	(View results in Column T)	(View results in Advisory Messages)	Period	Period	Period	Period	Period	Period
Basic Inte	rsection Data							
	ninal configuration:		D4	D4				
	ninal description:		SB Terminal	NB Terminal				
	ninal traffic control type:		One stop	Signal				
ls a non-ra	mp public street leg present	at the terminal (I _{ps})?:	No	Ño				
Alignmen								
Exit ramp s	skew angle (I _{sk}), degrees:		4	6				
	e next public street intersection on t		0.14	0.15				
Distance to	the adjacent ramp terminal	(L _{rmp}), mi:	0.15	0.15				
Traffic Co.	ntrol							
	Operational Mode							
Crossroad	Inside approach	Protected-only mode (I _{p,lt,in})?:	Yes	No				
	Outside approach	Protected-only mode (I _{p,lt,out})?:	Yes	No				
Right-Turi	n Control Type	1177						
Ramp	Exit ramp approach	Right-turn control type:	Yield	Signal				
Cross Sec	tion Data		•					
Crossroad	median width (W _m), ft:		12	10				
Number o	f Lanes							
Crossroad	Both approaches	Lanes serving through vehicles (n _{th}):	4	4				
	Inside approach	Lanes serving through vehicles (n _{th.in}):	2	2				
	Outside approach	Lanes serving through vehicles (n _{th,out}):	2	2	0	0	0	0
Ramp	Exit ramp approach	All lanes (n _{ex}):	1	3				
Right-Turi	n Channelization	see note:	•	•				
Crossroad	Inside approach	Channelization present (I _{ch,in})?:	Yes	No				
	Outside approach	Channelization present (I _{ch,out})?:	Yes	Yes				
Ramp	Exit ramp approach	Channelization present (I _{ch.ex})?:	Yes	Yes				
•	Lane or Bay	- I (di,ex/						
Crossroad	Inside approach	Lane or bay present (I _{bay,lt,in})?:	No	Yes				
Ciussiuau	Illiside approach	Width of lane or bay (W _{b.in}), ft:	0	12				
			No	No				
	Outside approach	Lane or bay present (I _{bay,lt,out})?:						
		Width of lane or bay (W _{b,out}), ft:	0	0				
Right-Turi	n Lane or Bay							
Crossroad	Inside approach	Lane or bay present (I _{bay,rt,in})?:	Yes	No				
	Outside approach	Lane or bay present (I _{bay,rt,out})?:	No	Yes				
Access Da	ata	<u></u>						
		11 /)						
Number of	driveways on the outside cr	ossroad leg (n _{dw}):	2	2				

Traffic Data	Year				
Inside Crossroad Leg Data	2030	29200	29200		
Average daily traffic (AADT _{in}) by year, veh/d:	2031				
(enter data only for those years for which	2032				
it is available, leave other years blank)	2033				1
it is available, leave exist years blank,	2034				
	2035				
	2036				
	2037				
	2038				
	2039				
	2040				
	2041				
	2042				
	2043				
	2044				
	2045				
	2046				
	2047				
	2048				
	2049				
	2050	38325	38325		
	2051				
	2052				
	2053				
Outside Crossroad Leg Data	2030	25350	34350		
Average daily traffic (AADT _{out}) by year, veh/d:	2031				
(enter data only for those years for which	2032				
it is available, leave other years blank)	2033				
,	2034				
	2035				
	2036				
	2037				
	2038				
	2039				
	2040				
	2041				
	2042				
	2043				
	2044				
	2045				
	2046				
	2047				
	2048				
	2049				
	2050	33050	45250		
	2051				
	2052				
	2053				

Exit Ramp Data		2030	4575	5075				
Average daily traffic (AADT _{ex}) by year, veh/d:		2031						
(enter data only for those years for which		2032						
it is available, leave other years blank)		2033						
		2034						
For a B4 terminal configuration, enter the AADT for th	ne	2035						
diagonal exit ramp (not the loop exit ramp).		2036						
		2037						
		2038						
		2039						
		2040 2041						
		2041						
		2042						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050	6025	6750				
		2051						
		2052 2053						
Entrance Ramp Data		2030	4525	4175				
Average daily traffic (AADT _{en}) by year, veh/d:		2030	4323	4173				
(enter data only for those years for which		2032						
it is available, leave other years blank)		2032						
it is available, leave other years blank)		2034						
For an A4 terminal configuration, enter the AADT for	the	2035						
diagonal entrance ramp (not the loop entrance ramp)		2036						
		2037						
		2038						
		2039						
		2040						
		2041						
		2042 2043						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050	6000	5475				
		2051						
		2052 2053						
Crash Data	Year	2000	Ramp Tor	<u>l</u> minal Crash	<u> </u>		<u> </u>	
Count of Fatal-and-Injury (FI) Crashes by Year	I Cal		Tamp Tell	minai CraSi	03			
(N _{o,w,ac,at,fi)}	2030			1				
(` 'U,w,au,au,ii/	2031	 	1					
	2032							
	2033							
<u> -</u>	2034							
Count of Property-Damage-Only (PDO) Crashes b	y Year					_		
	y Year 2030							
Count of Property-Damage-Only (PDO) Crashes by (N _{o,w,ac,at,pdo})								
	2030 2031 2032							
	2030 2031							

			0	0					
O			Out	put Summa	ary				
General Information	1		0.6.1.1.1	<u> </u>					
Project description:		Predictive	Safety Analy						
Analyst:	CBB	ı	Date:	7/22/2025		Area type:		Jrban	
First year of analysis:	2030	ļ							
Last year of analysis:	2050								
Crash Data Descript									
Freeway segments		rash data a			No		f crash data:		
	Project-lev	el crash dat	ta available?)	No		f crash data:		
Ramp segments	Segment c	rash data a	vailable?		No		f crash data:		
			ta available?	•	No		f crash data:		
Ramp terminals	Segment c	rash data a	vailable?		No	First year o	f crash data:	:	
	ta available?	•	No	Last year o	f crash data:				
Estimated Crash Sta	tistics								
Crashes for Entire F	acility			Total	K	Α	В	С	PDO
Estimated number of crashe	s during Study	Period, crash	es:	1409.4	4.0	16.8	96.0	240.1	1052.5
Estimated average crash fre				67.1	0.2	0.8	4.6	11.4	50.1
Crashes by Facility (Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr			5	318.1	2.2	5.4	27.5	37.3	245.7
Ramp segments, cras			7	130.6	1.2	3.7	18.2	22.8	84.6
Crossroad ramp termi		es.	2	960.7	0.6	7.7	50.3	180.1	722.1
Crashes for Entire F			Year	Total	K 0.0	Α	В	C	PDO
			2030		0.2	0.7	3.9	9.5	41.3
Estimated number of o		iig	2030	55.5	0.2	0.7	3.9	9.5	41.3
the Study Period, cras	Hes.		2031	56.6	0.2	0.7	4.0	9.7	
				57.8					43.0
			2033	58.9	0.2	0.7	4.1	10.0	43.9
			2034	60.0	0.2	0.7	4.1	10.2	44.8
			2035	61.2	0.2	0.7	4.2	10.4	45.6
			2036	62.3	0.2	0.8	4.3	10.6	46.5
			2037	63.5	0.2	0.8	4.4	10.8	47.4
			2038	64.7	0.2	0.8	4.4	11.0	48.3
			2039	65.8	0.2	0.8	4.5	11.2	49.1
			2040	67.0	0.2	0.8	4.6	11.4	50.0
			2041	68.2	0.2	0.8	4.6	11.6	50.9
			2042	69.4	0.2	0.8	4.7	11.8	51.8
			2043	70.6	0.2	0.8	4.8	12.0	52.7
			2044	71.8	0.2	0.8	4.9	12.2	53.6
			2045	73.0	0.2	0.9	4.9	12.4	54.6
			2046	74.2	0.2	0.9	5.0	12.6	55.5
			2047	75.4	0.2	0.9	5.1	12.8	56.4
			2048	76.6	0.2	0.9	5.2	13.1	57.3
			2049	77.9	0.2	0.9	5.2	13.3	58.3
			2050	79.1	0.2	0.9	5.3	13.5	59.2
			2051						
			2052						
			2053						
Distribution of Crast	nes for Enti	re Facility							
Cupak Torre		. T 2 1		Estima	ted Numb	er of Crash	es During t	he Study F	eriod
Crash Type	Crasi	h Type Cat	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on ci	rashes:		9.6	0.0	0.1	0.7	2.4	6.3
	Right-angle			263.8	0.2	2.4	15.5	56.6	189.1
	Rear-end o			583.8	1.0	6.2	38.1	113.2	425.3
	Sideswipe			136.6	0.2	0.7	4.1	9.6	122.0
		iple-vehicle	crashes:	21.8	0.1	0.2	1.2	2.9	17.5
		Itiple-vehicle		1015.7	1.5	9.6	59.7	184.7	760.2
Single vehicle	Crashes w		C GIASHES.				0.1		4.0
Single vehicle		ith fixed obj	oct:	4.3 294.9	0.0 1.8	0.0 5.2		0.2	222.4
		ith other ob					26.0	39.5	
			,	29.3	0.1	0.2	1.2	1.6	26.2
		ith parked v		7.3	0.0	0.1	0.5	0.7	6.0
		e-vehicle ci		57.9	0.6		8.5	13.4	33.7
	l otal sin	gle-vehicle		393.8	2.5		36.3	55.4	292.3
		Total crash	ies:	1409.4	4.0	16.8	96.0	240.1	1052.5

				Evaluat	tion Site Si	ımmarv			
General In	formation					,			
Project des	cription:	US54-MO5	Predictive	Safety Anal	ysis				
Analyst:		CBB			7/22/2025		Area type:	Ur	ban
First year o	of analysis:	2030	Total length	n of freeway		for Study P		3.849	
Last year o		2050		-	Ü	•	` ,		
Site Descr									
Freeway S									
Number	Lanes	Study Period	Study Perio	od Descripti	on				
		Length (mi)	,	•					
1	0	0.000	0						
2	4		0						
3	4	0.290	0						
4	4	0.160	0						
5	4	0.359	0						
6	4	1.400	0						
7	0	0.000	0						
8	0	0.000	0						
9	0	0.000	0						
10	0	0.000	0						
11	0	0.000	0						
12	0	0.000	0						
13	0	0.000	0						
14	0	0.000	0						
15	0	0.000	0						
16	0	0.000	0						
17	0	0.000	0						
18	0	0.000	0						
19	0	0.000	0						
20	0	0.000	0						
Ramp Seg		0.000					1		
Number	Study Peri	od			Number	Study Peri	od		
	Description					Description			
1	SB Off-Ramp				21	0			
2	SB Loop On				22	0			
	SB On-Ramp				23	0			
4	SB Loop Off				24	0			
	NB On-Ramp				25	0			
	NB Off-Ramp				26	0			
7	NB Off-Ramp	("2" lanes)			27	0			
8	0				28	0			
9	0				29	0			
10	0				30	0			
	0				31	0			
	0				32	0			
	0				33	0			
	0				34	0			
15	0				35	0			
	0				36	0			
	0				37	0			
	0				38	0			
	0				39	0			
20	0				40	0			
Crossroad									
Number	Config.	Control	Study Perio	od Descripti	on				
1	D4	One stop	SB Terminal						
2	D4	Signal	NB Terminal						
3	0	0	0						
4	0	0	0						
5	0	0	0						
6	0	0	0						
		•					•		

HSM Inputs & Output Summary Report (Build)

		PROJECT SAFETY PERFORMANCE	ANALYSIS INPUT SHEET	
		General Informa	ation	
Project Name	US54-MO5 MoD	OT On-Call	Contact Email	azarate@cbbtraffic.com
Project Description	2030 Build		Contact Phone	(314) 825 5841
Reference Number	Job# 073-25		Date Performed	07/23/25
Analyst	Alex Zarate		Analysis Year	2030
Agency/Company	СВВ		Multiple Year Analysis?	Yes
of Segments in Analysis	6		This spreadsheet calculates the p	redicted and expected average crash frequency
# of Intersections in Analysis	4		Duration of crash history?	
		LOCATION INFORMATION		INTERSECTIONS ONLY
INDIVIDUAL PROJECT ELEMENTS			JURISDICTION	
	Route	Location Description		Signalized or Unsignalized?
		SEGMENTS		
Segment 1	US 54	Business Rt 5 to South Terminal Mediar	MODOT	-
Segment 2	US 54	South Terminal Median	MODOT	-
Segment 3	US 54	outh Terminal Median to North Termin	MODOT	-
Segment 4	US 54	North Terminal to Jack Crowell Rd	MODOT	-
Segment 5	US 54	ck Crowell Rd to Diverted Laker Pride F	MODOT	-
Segment 6	US 54	Diverted Laker Pride Rd to Cecil Rd	MODOT	-
		INTERSECTIO	NS	
ntersection 1	US 54	US 54 & Business Route 5	MODOT	Signalized
ntersection 2	US 54	US 54 & Jack Crowell Rd	MODOT	Signalized
ntersection 3	US 54	US 54 & Cecil St	MODOT	Signalized
ntersection 4	US 54	US 54 & Diverted Laker Pride Rd	MODOT	Signalized

General Information								
Analyst Ale	ex Zarate		Roadway	US 54				
Agency or Company CB	BB		Roadway Section	Business Rt 5 to South Terminal Media				
Date Performed 07	7/23/25		Jurisdiction	MODOT				
Segment for Analysis Se	gment 1		Analysis Year	2030				
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)				5T				
Length of segment, L (mi)				0.58				
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)		25,350				
Type of on-street parking (none/parallel/angle)				None		None		
Proportion of curb length with on-street parkin	ng			0				
Median width (ft) - for divided only				Not Present		15		
Lighting (present / not present)				Present		Not Present		
Auto speed enforcement (present / not present	t)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				27				
Major industrial / institutional driveways (numl	ber)			0				
Minor industrial / institutional driveways (num	ber)			13				
Major residential driveways (number)				1				
Minor residential driveways (number)				4				
Other driveways (number)				3				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			31		0		
Offset to roadside fixed objects (ft) [If greater t	han 30 or Not Present, input 30]			15		30		
Calibration Factor, Cr				0.84		1.00		
Average Annual Crash History (3 or 5-yr average	ge)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
with the venicle univeway crashes		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-vertice didsiles		PDO	Property Damage Only 0.0					
NOTES: * AADT: It is important to remember th	nat the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information								
Analyst Al	lex Zarate		Roadway	US 54				
Agency or Company CE	ВВ		Roadway Section	South Terminal Median				
Date Performed 07	7/23/25		Jurisdiction	MODOT				
Segment for Analysis Se	egment 2		Analysis Year	2030				
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)	adway type (2U, 3T, 4U, 4D, 5T)			4D				
Length of segment, L (mi)				0.1				
AADT (veh/day) is within range	AADT _{MAX} = 66,000	(veh/day)		29,200				
Type of on-street parking (none/parallel/angle)			None		None		
Proportion of curb length with on-street parking	ng			0				
Median width (ft) - for divided only				10		15		
Lighting (present / not present)				Not Present		Not Present		
Auto speed enforcement (present / not presen	nt)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				0				
Major industrial / institutional driveways (num	nber)			0				
Minor industrial / institutional driveways (num	nber)			0				
Major residential driveways (number)				0				
Minor residential driveways (number)				0				
Other driveways (number)				0				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			0		0		
Offset to roadside fixed objects (ft) [If greater t	than 30 or Not Present, input 30]			30		30		
Calibration Factor, Cr				0.91		1.00		
Average Annual Crash History (3 or 5-yr avera	age)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
wurtpie verlicie unveway crasiles		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
ividitiple verifice nondriveway trasfies		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-verticle crasties		PDO	Property Damage Only	0.0				
NOTES: * AADT: It is important to remember th	hat the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information								
Analyst Ale	ex Zarate		Roadway	US 54				
Agency or Company CB	BB		Roadway Section	South Terminal Median to North Terminal				
Date Performed 07	//23/25		Jurisdiction	MODOT				
Segment for Analysis Segment	gment 3		Analysis Year	2030				
Input Data				Site Conditions		Base Conditions		
Roadway type (2U, 3T, 4U, 4D, 5T)				5T				
Length of segment, L (mi)				0.1				
AADT (veh/day) is within range	AADT _{MAX} = 53,800	(veh/day)		29,200				
Type of on-street parking (none/parallel/angle)				None		None		
Proportion of curb length with on-street parkin	ng			0				
Median width (ft) - for divided only				Not Present		15		
Lighting (present / not present)				Present		Not Present		
Auto speed enforcement (present / not present	t)			Not Present		Not Present		
Major commercial driveways (number)				0				
Minor commercial driveways (number)				0				
Major industrial / institutional driveways (numb	ber)			0				
Minor industrial / institutional driveways (numl	ber)			0				
Major residential driveways (number)				0				
Minor residential driveways (number)				0				
Other driveways (number)				0				
Speed Category			Posted	Speed Greater than 30 mph				
Roadside fixed object density (fixed objects / m	ni)			11		0		
Offset to roadside fixed objects (ft) [If greater the	han 30 or Not Present, input 30]			4		30		
Calibration Factor, Cr				0.84		1.00		
Average Annual Crash History (3 or 5-yr average	ge)							
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0				
widthpie venicle unveway crashes		PDO	Property Damage Only	0.0				
Multiple vehicle nondriveway crashes		KABC	Fatal and Injury Only	0.0				
		PDO	Property Damage Only	0.0				
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0				
Single-verticle cidSiles		PDO	Property Damage Only 0.0					
NOTES: * AADT: It is important to remember th	nat the AADT(major) = AADT(major a	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)				

General Information			Location Information						
Analyst	Alex Zarate		Roadway	·					
Agency or Company C	СВВ		Roadway Section	North Terminal to Jack Crowell Rd					
Date Performed 0	07/23/25		Jurisdiction	MODOT					
Segment for Analysis S	Segment 4		Analysis Year	2030					
Input Data				Site Conditions		Base Conditions			
Roadway type (2U, 3T, 4U, 4D, 5T)				4D					
Length of segment, L (mi)				0.15					
AADT (veh/day) is within range	AADT _{MAX} = 66,000	(veh/day)		34,350					
Type of on-street parking (none/parallel/angle	e)			None		None			
Proportion of curb length with on-street parki	ing			0					
Median width (ft) - for divided only				10		15			
Lighting (present / not present)				Present		Not Present			
Auto speed enforcement (present / not prese	ent)			Not Present		Not Present			
Major commercial driveways (number)				0					
Minor commercial driveways (number)				3					
Major industrial / institutional driveways (nun	mber)			0					
Minor industrial / institutional driveways (nun	mber)			2					
Major residential driveways (number)				0					
Minor residential driveways (number)				0					
Other driveways (number)				0					
Speed Category			Posted	Speed Greater than 30 mph					
Roadside fixed object density (fixed objects /	mi)			6		0			
Offset to roadside fixed objects (ft) [If greater	than 30 or Not Present, input 30]			23		30			
Calibration Factor, Cr				0.91		1.00			
Average Annual Crash History (3 or 5-yr aver	age)								
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0					
Multiple vehicle driveway crashes		PDO	Property Damage Only	0.0					
NA. Ikinia wakisia a madai mwa masaka a		KABC	Fatal and Injury Only	0.0					
Multiple vehicle nondriveway crashes		PDO	Property Damage Only	0.0					
Single vehicle grashes		KABC	Fatal and Injury Only	0.0					
Single-vehicle crashes		PDO	Property Damage Only						
NOTES: * AADT: It is important to remember t	that the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)					

General Information			Location Information			ocation Information						
Analyst	Alex Zarate		Roadway	US 54								
Agency or Company	СВВ		Roadway Section	Jack Crowell Rd to Diverted Laker Pride	e Rd							
Date Performed	07/23/25		Jurisdiction	MODOT								
Segment for Analysis	Segment 5		Analysis Year	2030								
Input Data				Site Conditions		Base Conditions						
Roadway type (2U, 3T, 4U, 4D, 5T)				4D								
Length of segment, L (mi)				0.24								
AADT (veh/day) is within range	AADT _{MAX} = 66,000	(veh/day)		34,250								
Type of on-street parking (none/parallel/ang	gle)			None		None						
Proportion of curb length with on-street par	king			0								
Median width (ft) - for divided only				10		15						
Lighting (present / not present)				Present		Not Present						
Auto speed enforcement (present / not pres	sent)			Not Present		Not Present						
Major commercial driveways (number)				1								
Minor commercial driveways (number)				12								
Major industrial / institutional driveways (n	umber)			0								
Minor industrial / institutional driveways (n	umber)			0								
Major residential driveways (number)				0								
Minor residential driveways (number)				0								
Other driveways (number)				2								
Speed Category			Posted	Speed Greater than 30 mph								
Roadside fixed object density (fixed objects	/ mi)			18		0						
Offset to roadside fixed objects (ft) [If great	er than 30 or Not Present, input 30]			14		30						
Calibration Factor, Cr				0.91		1.00						
Average Annual Crash History (3 or 5-yr av	erage)											
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0								
Multiple vehicle driveway crashes		PDO	Property Damage Only	0.0								
KABC		KABC	Fatal and Injury Only	0.0								
widiciple vehicle nonuriveway crasnes	Multiple vehicle nondriveway crashes PDO		Property Damage Only	0.0								
Single vehicle craches		KABC	Fatal and Injury Only 0.0									
Single-vehicle crashes PDO			Property Damage Only 0.0									

General Information			Location Information			
Analyst Al	lex Zarate		Roadway	US 54		
Agency or Company CE	ВВ		Roadway Section	Diverted Laker Pride Rd to Cecil Rd		
Date Performed 07	7/23/25		Jurisdiction	MODOT		
Segment for Analysis Se	egment 6		Analysis Year	2030		
Input Data				Site Conditions		Base Conditions
Roadway type (2U, 3T, 4U, 4D, 5T)				4D		
Length of segment, L (mi)				0.4		
AADT (veh/day) is within range	AADT _{MAX} = 66,000	(veh/day)		34,250		
Type of on-street parking (none/parallel/angle)			None		None
Proportion of curb length with on-street parking	ng			0		
Median width (ft) - for divided only				10		15
Lighting (present / not present)				Present		Not Present
Auto speed enforcement (present / not presen	nt)			Not Present		Not Present
Major commercial driveways (number)				0		
Minor commercial driveways (number)				6		
Major industrial / institutional driveways (num	ber)			1		
Minor industrial / institutional driveways (num	iber)			10		
Major residential driveways (number)				0		
Minor residential driveways (number)				0		
Other driveways (number)				0		
Speed Category			Posted	Speed Greater than 30 mph		
Roadside fixed object density (fixed objects / m	ni)			31		0
Offset to roadside fixed objects (ft) [If greater t	than 30 or Not Present, input 30]			14		30
Calibration Factor, Cr				0.91		1.00
Average Annual Crash History (3 or 5-yr avera	ige)					
Multiple vehicle driveway crashes		KABC	Fatal and Injury Only	0.0		
Multiple vehicle univeway crashes		PDO	Property Damage Only	0.0		
NA. Ikirala wakirala wana daiwawa wanaka a		KABC	Fatal and Injury Only	0.0		
widitiple vehicle floridiffeway crasiles	Multiple vehicle nondriveway crashes PDO		Property Damage Only	0.0		
Single-vehicle crashes		KABC	Fatal and Injury Only	0.0		
PDO PDO			Property Damage Only	0.0		
NOTES: * AADT: It is important to remember th	hat the AADT(major) = AADT(major	approach1) + AAD	T(minor approach2) (refer to p.12-8	in Part C of the HSM)		

Apalyst Alex Zarate	General Information			Location Info	ormation						
Date Performed 7/23/2025 Durisdiction MoDDT	Analyst	Alex Zarate		Roadway		US 54					
Intersection Int	Agency or Company	CBB		Location Info	ormation	US 54 & Business Route 5					
Signalized Signalized Signalized Ped Volume (after Into Type) Not Known	Date Performed	7/23/2025		Jurisdiction		MODOT					
Imput Data Site Conditions Site Conditions Sase Conditions Sase Conditions Intersection type (357, 35G, 457, 45G)	Intersection	Intersection 1		Analysis Year	r	2030					
MADT	Signalized/Unsignalized	Signalized		Ped Volume	(after Intx Type)	Not Known					
AADT majer veh/day (total entering on major approaches)* AADT MADT	Input Data					Site Cor	ditions	Base Conditions			
ADT miles Vehf day (total entering on minor approaches)* ADT MADT	Intersection type (3ST, 3SG, 4ST,	, 4SG)				45	G				
Intersection lighting (present/not present) Calibration factor, C, Data for unsignatized intersections only: Number of major road approaches with left-turn lanes (0,1,2) Number of major road approaches with left-turn lanes (0,1,2,34) [for 3SG, use maximum value of 3] Number of approaches with right-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] Number of approaches with right-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 4, all other, max 2) Number of approaches with right-turn lanes for 4SG, use maximum value of 3] Number of approaches with right-turn lanes for 4SG, use maximum value of 3] Protected Permissive Type of left-turn signal phasing for Leg #1 Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Protected Summary of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] O O Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] O O Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] O O O Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] O O O O O O O O O O O O O O O O O O O	AADT major (veh/day) (total enter	ring on major approaches)*	AADT _{MAX} =	67,700	(veh/day)	24,7	775				
Calibration factor, C Data for unsignalized intersections only: Number of major-road approaches with left-turn lanes (0,1,2,3) Number of major-road approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 4, all other, max 2) Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] Number of approaches with left-turn signal phasing [for 1eg #1 Protected Permissive Type of left-turn signal phasing for Leg #1 Protected Permissive Type of left-turn signal phasing for Leg #2 Protected Type of left-turn signal phasing for Leg #4 (if applicable) Protected Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] O Not Present Sum of all pedestrian crossing volumes (PedVol) - Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{bness}) Schools within 300 m (1,000 th) of the intersection Present Number of abort solves setablishments within 300 m (1,000 th) of the intersection Property Damage Only Property Damage Only Single-vehicle crashes Single-vehicle crashes Not Present Single-vehicle crashes	AADT minor (veh/day) (total enter	ring on minor approaches)*	AADT _{MAX} =	33,400	(veh/day)	9,9	00				
Data for unsignalized intersections only:	Intersection lighting (present/no	ot present)				Pres	ent	Not Present			
Number of major road approaches with left-turn lanes (0,1,2) Number of approaches with right-turn lanes (0,1,2), and the signal placed intersections only. Number of approaches with left-turn lanes (0,1,2,3,4) [for 35G, use maximum value of 3] Number of approaches with left-turn signal phasing [for 35G, use maximum value of 4, all other, max 2) Number of approaches with left-turn signal phasing [for 35G, use maximum value of 3] Number of approaches with left-turn signal phasing [for 35G, use maximum value of 3] Number of approaches with left-turn signal phasing [for 16 gf 1] Number of approaches with left-turn signal phasing [for 16 gf 1] Number of approaches with left-turn signal phasing [for 16 gf 1] Protected Permissive Protected Permissive Protected Protected Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] Number of approaches with right-turn-on-red prohibited [for 35G, use maximum value of 3] O Intersection red light cameras (present/not present) Not Present	Calibration factor, C					5.2	21	1.00			
Number of major road approaches with right turn lanes (0,1,2) 9	Data for unsignalized intersection	ons only:									
Data for signalized intersections only: Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] 4 0 Number of approaches with right-turn lanes; for 4SG, use maximum value of 4, all other, max 2) 4 0 Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] 4 Type of left-turn signal phasing for Leg #1 Protected Permissive Type of left-turn signal phasing for Leg #2 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #4 Graphical Protection Protected Type of left-turn signal phasing for Leg #4 Graphical Protection Protected Type of left-turn signal phasing for Leg #4 Graphical Protection Protected Type of left-turn signal phasing for Leg #4 Graphical Protection Protected Type of left-turn signal phasing for Leg #4 Protected Type of left-turn signal phasing for Leg #4 Graphical Protected Protected Type of left-turn signal phasing for Leg #4 Graphical Protected Type of left-turn signal phasing for Leg #4 Graphical Protected Protected Protected -	Number of major road ap						•	0			
Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3] Number of approaches with right-turn lanes: for 4SG, use maximum value of 4, all other, max 2) Number of approaches with right-turn signal phasing [for 3SG, use maximum value of 3] Type of left-turn signal phasing for Leg #1 Type of left-turn signal phasing for Leg #2 Protected Protected Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Not Present N	Number of major road approaches with right turn lanes (0,1,2)					€)	θ			
Number of approaches with right-turn lanes: for 4SG, use maximum value of 4, all other, max 2) Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] Type of left-turn signal phasing for Leg #1 Protected Permissive Type of left-turn signal phasing for Leg #2 Protected Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Not Present Sum of all pedestrian crossing volumes (PedVol) — Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{aness}) Not Present	Data for signalized intersections	only:					·				
Number of approaches with left-turn signal phasing [for 3SG, use maximum value of 3] Type of left-turn signal phasing for Leg #1 Type of left-turn signal phasing for Leg #2 Type of left-turn signal phasing for Leg #2 Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #4 Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) — Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{anexx}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection Average Annual Crash History (3 or 5-yr average) KABC Fatal and Injury Only Single-vehicle crashes KABC Fatal and Injury Only Single-vehicle crashes	Number of approaches wi	ith left-turn lanes (0,1,2,3,4) [for 3SG	i, use maximum v	alue of 3]		4		0			
Type of left-turn signal phasing for Leg #1 Type of left-turn signal phasing for Leg #2 Type of left-turn signal phasing for Leg #3 Type of left-turn signal phasing for Leg #3 Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{aness}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection Number of alcohol sales setablishments within 300 m (1,000 ft) of the intersection Number of alcohol sales setablishments within 300 m (1,000 ft) of the intersection Number of alcohol sales setablishments within 300 m (1,000 ft) of the intersection Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Not Present Average Annual Crash History (3 or 5-yr average) KABC PDO Property Damage Only O.0 Single-vehicle crashes KABC Fatal and Injury Only O.0 Single-vehicle crashes	Number of approaches wi	ith right-turn lanes: for 4SG, use max	imum value of 4,	all other, max	2)	4		0			
Type of left-turn signal phasing for Leg #2 Type of left-turn signal phasing for Leg #3 Protected Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{laness}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection Multiple vehicle crashes KABC Fatal and Injury Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0 Single-vehicle crashes	Number of approaches wi	ith left-turn signal phasing [for 3SG, ı	use maximum val	ue of 3]							
Type of left-turn signal phasing for Leg #3 Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{lanesx}) Not Present Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection Not Present	Type of left-turn signal ph	asing for Leg #1				Prote	ected	Permissive			
Type of left-turn signal phasing for Leg #4 (if applicable) Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{lanesx}) Number of bus stops within 300 m (1,000 ft) of the intersection Number of success of the intersection present/not present property of the intersection present property of the intersection present property of the intersection present property of the intersection present property of the intersection present property of the intersection present property of the intersection present property of the intersection present property of the intersection property of the intersection present property of the intersection property of the intersection property of the intersection property of the intersection property of the intersection present property of the intersection property of the	Type of left-turn signal ph	asing for Leg #2				Prote					
Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type of left-turn signal ph	asing for Leg #3				Prote					
Intersection red light cameras (present/not present) Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{lanesx}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection 1 to 8 O Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only PDO Property Damage Only Single-vehicle crashes KABC Fatal and Injury Only O.0 Single-vehicle crashes	Type of left-turn signal ph	asing for Leg #4 (if applicable)				Prote	ected				
Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only Maximum number of lanes crossed by a pedestrian (n _{lanesx}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection 1 to 8 O Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only Property Damage Only Single-vehicle crashes KABC Fatal and Injury Only Single-vehicle crashes	Number of approaches wi	ith right-turn-on-red prohibited [for	3SG, use maximu	m value of 3]		()	0			
Maximum number of lanes crossed by a pedestrian (n _{lanesx}) Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection 1 to 8 O Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only Property Damage Only Single-vehicle crashes KABC Fatal and Injury Only O.0 Single-vehicle crashes	Intersection red light came	eras (present/not present)				Not Pr	resent	Not Present			
Number of bus stops within 300 m (1,000 ft) of the intersection Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection 1 to 8 O Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only Property Damage Only Single-vehicle crashes KABC Fatal and Injury Only Single-vehicle crashes	Sum of all pedestrian cros	sing volumes (PedVol) Signalized i	ntersections only	1		5	0				
Schools within 300 m (1,000 ft) of the intersection (present/not present) Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection 1 to 8 0 Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only Property Damage Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0 Single-vehicle crashes	Maximum number of lane	es crossed by a pedestrian (n _{lanesx})				5	i				
Number of alcohol sales establishments within 300 m (1,000 ft) of the intersection Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only 0.0 Property Damage Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0	Number of bus stops with	in 300 m (1,000 ft) of the intersectio	n			C)	0			
Average Annual Crash History (3 or 5-yr average) Multiple vehicle crashes KABC Fatal and Injury Only 0.0 Property Damage Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0 For perty Damage Only 0.0	Schools within 300 m (1,00	00 ft) of the intersection (present/no	ot present)			Pres	sent	Not Present			
Multiple vehicle crashes KABC Fatal and Injury Only 0.0 PDO Property Damage Only 0.0 KABC Fatal and Injury Only 0.0 KABC Fatal and Injury Only 0.0	Number of alcohol sales e	stablishments within 300 m (1,000 f	t) of the intersect	ion		1 to 8 0					
Multiple vehicle crashes PDO Property Damage Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0	Average Annual Crash History (3 or 5-yr average)					·				
PDO Property Damage Only 0.0 Single-vehicle crashes KABC Fatal and Injury Only 0.0	Multiple vehicle erretes		KABC	Fatal and Inju	ury Only	0.0					
Single-vehicle crashes	iviulupie veriicie crasnes		PDO	Property Dar	mage Only	0.0					
Single-verifice crashes PDO Property Damage Only 0.0	Cinala wakiala araakaa		KABC	Fatal and Inju	ury Only	0.0					
FDO ITOPETTY Datitage Offity 0.0	orngie-venicie crasnes		PDO	Property Dar	mage Only	0.0					

General Information			Location Info	ormation			
Analyst Ale	lex Zarate		Roadway		US 54		
Agency or Company CB	ВВ		Location Info	ormation	US 54 & Jack Crowell Rd		
Date Performed 7/	/23/2025		Jurisdiction		MODOT		
Intersection Int	tersection 2		Analysis Year	f	2030		
Signalized/Unsignalized Sig	gnalized		Ped Volume	(after Intx Type)	Not Known		▼
Input Data					Site Cond	ditions	Base Conditions
Intersection type (3ST, 3SG, 4ST, 4ST, 4ST, 4ST, 4ST, 4ST, 4ST, 4ST	ISG)				350	3	
AADT major (veh/day) (total entering	ng on major approaches)*	AADT _{MAX} =	58,100	(veh/day)	34,3	50	
AADT _{minor} (veh/day) (total entering	ng on minor approaches)*	AADT _{MAX} =	16,400	(veh/day)	2,02	25	
Intersection lighting (present/not p	ersection lighting (present/not present)				Prese	ent	Not Present
Calibration factor, C _i					2.9	5	1.00
Data for unsignalized intersections	s only:						
Number of major road appre	Number of major road approaches with left turn lanes (0,1,2)				0		θ
Number of major road approaches with right turn lanes (0,1,2)					9		θ
Data for signalized intersections or	nly:					•	
Number of approaches with	left-turn lanes (0,1,2,3,4) [for 3SG,	use maximum va	lue of 3]		2		0
Number of approaches with	right-turn lanes: for 4SG, use maxi	mum value of 4, a	all other, max 2	2)	2		0
Number of approaches with	n left-turn signal phasing [for 3SG, u	se maximum valu	e of 3]		2		
Type of left-turn signal phasi	ing for Leg #1				Protec	cted	Permissive
Type of left-turn signal phasi	ing for Leg #2				Protec		
Type of left-turn signal phasi	ing for Leg #3				Not App		
Type of left-turn signal phasi	ing for Leg #4 (if applicable)				Not App		
Number of approaches with	right-turn-on-red prohibited [for 3	SG, use maximun	n value of 3]		0		0
Intersection red light camera	as (present/not present)				Not Pre	esent	Not Present
Sum of all pedestrian crossin	ng volumes (PedVol) Signalized in	ntersections only			50)	
Maximum number of lanes of	crossed by a pedestrian (n _{lanesx})				6		
Number of bus stops within	300 m (1,000 ft) of the intersection	1			0		0
Schools within 300 m (1,000	ft) of the intersection (present/no	t present)			Not Pre	esent	Not Present
Number of alcohol sales esta	ablishments within 300 m (1,000 ft	of the intersection	on		0 0		
Average Annual Crash History (3 o	or 5-yr average)						
Multiple vehicle crashes		KABC	Fatal and Inju	ury Only	0.0		
		PDO	Property Dar	mage Only	0.0		
Single-vehicle crashes		KABC	Fatal and Inju	ury Only	0.0		
Single-verifice crasiles		PDO	Property Dar	mage Only	0.0		
NOTES: * AADT: It is important to	remember that the AADT(major) =	AADT(major appr	oach1) + AAD	T(minor approach2) (refer to p.12-8 in Part C of the HSM)		

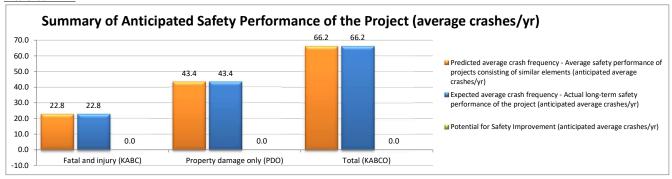
General Information			Location In	formation						
Analyst	Alex Zarate		Roadway		US 54					
Agency or Company	СВВ		Location In	formation	US 54 & Cecil St					
Date Performed	7/23/2025		Jurisdiction	1	MODOT					
Intersection	Intersection 3		Analysis Ye	ar	2030					
Signalized/Unsignalized	Signalized		Ped Volum	e (after Intx Type)	Not Known					
Input Data	•		•		Site Con-	ditions	Base Conditions			
Intersection type (3ST, 3SG	G, 4ST, 4SG)				350	G				
AADT major (veh/day) (total	entering on major approaches)*	AADT _{MAX} =	58,100	(veh/day)	34,2	250				
AADT minor (veh/day) (total	entering on minor approaches)*	AADT _{MAX} =	16,400	(veh/day)	7,25	50				
Intersection lighting (prese	ent/not present)				Preso	ent	Not Present			
Calibration factor, C					2.9	95	1.00			
Data for unsignalized inter	rsections only:					•				
Number of major re	pad approaches with left turn lanes (0,1,2)			0		9				
Number of major re	Number of major road approaches with right turn lanes (0,1,2)						θ			
Data for signalized interse	ctions only:				•	•				
Number of approac	hes with left-turn lanes (0,1,2,3,4) [for 3SG	, use maximum	value of 3]		2	:	0			
Number of approac	hes with right-turn lanes: for 4SG, use max	kimum value of 4	, all other, max	x 2)	2	1	0			
Number of approac	hes with left-turn signal phasing [for 3SG,	use maximum va	lue of 3]		2	:				
Type of left-turn sig	nal phasing for Leg #1				Protei	cted	Permissive			
Type of left-turn sig	nal phasing for Leg #2				Protei					
Type of left-turn sig	nal phasing for Leg #3				Not App	olicable				
Type of left-turn sig	nal phasing for Leg #4 (if applicable)				Not App	olicable				
Number of approac	hes with right-turn-on-red prohibited [for	3SG, use maximu	um value of 3]		0		0			
Intersection red ligh	t cameras (present/not present)				Not Pro	esent	Not Present			
Sum of all pedestria	n crossing volumes (PedVol) Signalized	intersections onl	У		50)				
Maximum number o	of lanes crossed by a pedestrian (n _{lanesx})				4					
Number of bus stop	s within 300 m (1,000 ft) of the intersection	on			0	1	0			
Schools within 300 r	m (1,000 ft) of the intersection (present/no	ot present)			Not Pro	esent	Not Present			
Number of alcohol s	ales establishments within 300 m (1,000 f	t) of the intersec	tion		1 to 8 0					
Average Annual Crash His	story (3 or 5-yr average)				·	•				
Multiple vehicle cra	chos	KABC	Fatal and Ir	njury Only	0.0					
iviuitipie veriicie cra	DITES	PDO	Property D	amage Only	0.0					
Single-vehicle crash	0.5	KABC	Fatal and Ir	njury Only	0.0					
Single-verticle crash	E3	PDO	Property D	amage Only	0.0					

General Information			Location In	formation			
Analyst	Alex Zarate		Roadway		US 54		
Agency or Company	CBB		Location In	formation	US 54 & Diverted Laker Pride Rd		
Date Performed	7/23/2025		Jurisdiction	ı	MODOT		
Intersection	Intersection 4		Analysis Ye	ar	2030		
Signalized/Unsignalized	Signalized		Ped Volum	e (after Intx Type)	Not Known		▼
Input Data	·				Site Cond	ditions	Base Conditions
Intersection type (3ST, 3SG	i, 4ST, 4SG)				350	3	
AADT major (veh/day) (total	entering on major approaches)*	AADT _{MAX} =	58,100	(veh/day)	34,2	50	
AADT _{minor} (veh/day) (total	entering on minor approaches)*	AADT _{MAX} =	16,400	(veh/day)	5,92	25	
Intersection lighting (prese	nt/not present)	-			Prese	ent	Not Present
Calibration factor, C					2.9	5	1.00
Data for unsignalized inters	sections only:						
Number of major road approaches with left turn lanes (0,1,2)					θ		θ
Number of major road approaches with right turn lanes (0,1,2)					0		θ
Data for signalized intersec	ctions only:						
Number of approaches with left-turn lanes (0,1,2,3,4) [for 3SG, use maximum value of 3]					2		0
Number of approach	es with right-turn lanes: for 4SG, use max	kimum value of 4,	all other, max	< 2)	2		0
Number of approach	es with left-turn signal phasing [for 3SG,	use maximum valu	ue of 3]		0		
Type of left-turn sign	al phasing for Leg #1				Protected/F	ermissive	Permissive
Type of left-turn sign	al phasing for Leg #2				Protec		
Type of left-turn sign	al phasing for Leg #3				Not App		
Type of left-turn sign	al phasing for Leg #4 (if applicable)				Not App		
Number of approach	es with right-turn-on-red prohibited [for	3SG, use maximur	m value of 3]		0	0	
Intersection red light	cameras (present/not present)				Not Pre	esent	Not Present
Sum of all pedestriar	crossing volumes (PedVol) Signalized	intersections only			50	1	
Maximum number of	f lanes crossed by a pedestrian (n _{lanesx})				6		
Number of bus stops	within 300 m (1,000 ft) of the intersection	in			0		0
Schools within 300 m	(1,000 ft) of the intersection (present/no	ot present)			Not Pre	esent	Not Present
Number of alcohol sa	ales establishments within 300 m (1,000 f	t) of the intersecti	ion		0		0
Average Annual Crash Hist	tory (3 or 5-yr average)						
Multiple vehicle area	has	KABC	Fatal and Ir	njury Only	0.0		
Multiple vehicle cras	nes	PDO	Property Da	amage Only	0.0		
Cincle webiele		KABC	Fatal and Ir	njury Only	0.0		
Single-vehicle crashe	S	PDO	Property Da	amage Only	0.0		
NOTES: * AADT: It is import	tant to remember that the AADT(major) :	= AADT(major app	roach1) + AA	DT(minor approach2)	(refer to p.12-8 in Part C of the HSM)		

PROJECT SAFETY PERFORMANCE SUMMARY REPORT

General Information

Project Name US54-MO5 MoDOT On-Call


Project Description 2030 Build Reference Number Job# 073-25 Analyst Alex Zarate

Agency/Company CBB

Contact Email azarate@cbbtraffic.com
Contact Phone (314) 825 5841
Date Completed 05/12/11

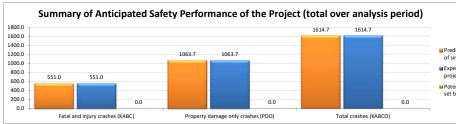
Years of crash data incorporated into the analysis: 0

PROJECT SUMMARY

		Total Crashes/yr (KABCO)		Fata	l and Injury Crasho (KABC)	es/yr	Property Damage Only Crashes/yr (PDO)			
Project Element	Predicted average crash frequency N _{predicted (KABCO)}	Expected average crash frequency N _{expected (KABCO)}	Potential for Improvement	Predicted average crash frequency N _{predicted (KABC)}	Expected average crash frequency N _{expected (KABC)}	Potential for Improvement	Predicted average crash frequency N _{predicted (O)}	Expected average crash frequency N _{expected (O)}	Potential for Improvement	
INDIVIDUAL SEGMENTS										
Segment 1	8.1	8.1	0.0	2.3	2.3	0.0	5.8	5.8	0.0	
Segment 2	0.6	0.6	0.0	0.2	0.2	0.0	0.4	0.4	0.0	
Segment 3	1.0	1.0	0.0	0.3	0.3	0.0	0.7	0.7	0.0	
Segment 4	1.0	1.0	0.0	0.3	0.3	0.0	0.7	0.7	0.0	
Segment 5	1.9	1.9	0.0	0.5	0.5	0.0	1.4	1.4	0.0	
Segment 6	2.9	2.9	0.0	0.8	0.8	0.0	2.1	2.1	0.0	
INDIVIDUAL INTERSECTIONS										
Intersection 1	16.9	16.9	0.0	6.6	6.6	0.0	10.4	10.4	0.0	
Intersection 2	8.6	8.6	0.0	3.2	3.2	0.0	5.4	5.4	0.0	
Intersection 3	12.1	12.1	0.0	4.1	4.1	0.0	8.0	8.0	0.0	
Intersection 4	13.0	13.0	0.0	4.5	4.5	0.0	8.5	8.5	0.0	
COMBINED (sum of column)	66.2	66.2	0.0	22.8	22.8	0.0	43.4	43.4	0.0	

PROJECT SUMMARY -- Site-Specific EB Method Summary Results for Urban and Suburban Arterial Project

Crash severity level	N predicted(PROJECT) Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated average crashes/yr)	N expected (PROJECT) Expected average crash frequency - Actual long-term safety performance of the project (anticipated average crashes/yr)	N potential for improvement (PROJECT) Potential for Safety Improvement (anticipated average crashes/yr)
Fatal and injury (KABC)	22.8	22.8	0.0
Property damage only (PDO)	43.4	43.4	0.0
Total (KABCO)	66.2	66.2	0.0


HSM1 Extended Spreadsheet for Part C Chapter 12 v.9

Discussion of Results

Given the potential effects of project characteristics on safety performance, results indicate that:

- 1. It is anticipated that the project will, on average, experience 66.2 crashes per year (22.8 fatal and injury crashes per year; and 43.4 property damage only crashes per year).
- 2. A similar project is anticipated, on average, to experience 66.2 crashes per year (22.8 fatal and injury crashes per year; and 43.4 property damage only crashes per year).
- 3. It is anticipated the project has, on average, a potential for safety improvement of 0 crashes per year (0 fatal and injury crashes per year; and 0 property damage only crashes per year).

MULTIPLE YEAR PROJECT SAFETY PERFORMANCE SUMMARY REPORT FOR URBAN AND SUBURBAN ARTERIAL General Information US54-MO5 MoDOT On-Call Project Description 2030 Build Reference Number Job# 073-25 Analyst Alex Zarate Agency/Company Contact Email Contact Phone azarate@cbbtraffic.com (314) 825 5841 Date Completed Base Year Analysis Period (Years) Linear Traffic Growth Rate (annual %) PROJECT SUMMARY

■ Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated total number of crashes over 10 years)

■ Expected average crash frequency - Average long-term safety performance of the project (anticipated total number of crashes over 10 years)

■ Potential safety performance - Average project performance compared to threshold set by typical other similar projects (anticipated total number of crashes over 10 years)

	20-Year Analysis Summary Report											
Analysis Year	Pre	dicted Average Crash Freque (Npredicted)	ency	Expec	ted Average Crash Free (Nexpected)	quency	Potential for Safety Improvement (crashes/yr)					
	KABC	PDO	Total (KABCO)	KABC	PDO	Total (KABCO)	KABC	PDO	Total (KABCO)			
2030	22.8	43.4	66.2	22.8	43.4	66.2	N/A	N/A	N/A			
2031	23.3	44.4	67.7	23.3	44.4	67.7	0.0	0.0	N/A			
2032	23.8	45.4	69.2	23.8	45.4	69.2	N/A	N/A	0.0			
2033	24.3	46.4	70.7	24.3	46.4	70.7	N/A	N/A	N/A			
2034	24.8	47.4	72.2	24.8	47.4	72.2	N/A	0.0	N/A			
2035	25.3	48.4	73.7	25.3	48.4	73.7	N/A	N/A	N/A			
2036	25.8	49.5	75.2	25.8	49.5	75.2	N/A	N/A	N/A			
2037	26.3	50.5	76.8	26.3	50.5	76.8	N/A	N/A	N/A			
2038	26.8	51.5	78.3	26.8	51.5	78.3	N/A	0.0	0.0			
2039	27.3	52.6	79.8	27.3	52.6	79.8	N/A	N/A	N/A			
2040	27.8	53.6	81.4	27.8	53.6	81.4	N/A	N/A	N/A			
2041	28.3	54.7	83.0	28.3	54.7	83.0	N/A	0.0	0.0			
2042	28.8	55.7	84.5	28.8	55.7	84.5	N/A	N/A	N/A			
2043	29.3	56.8	86.1	29.3	56.8	86.1	N/A	N/A	N/A			
2044	29.8	57.9	87.7	29.8	57.9	87.7	N/A	N/A	N/A			
2045	30.3	58.9	89.3	30.3	58.9	89.3	N/A	N/A	N/A			
2046	30.8	60.0	90.8	30.8	60.0	90.8	N/A	N/A	N/A			
2047	31.3	61.1	92.4	31.3	61.1	92.4	N/A	N/A	N/A			
2048	31.9	62.2	94.0	31.9	62.2	94.0	N/A	N/A	N/A			
2049	32.4	63.3	95.7	32.4	63.3	95.7	N/A	0.0	N/A			
Total	551.0	1063.7	1614.7	551.0	1063.7	1614.7	N/A	N/A	N/A			

PROJECT SUMMARY -- Site-Specific EB Method Summary Results for Urban and Suburban Arterial Project

Crash severity level	N predicted(PRODICT) Predicted average crash frequency - Average safety performance of projects consisting of similar elements (anticipated total number of crashes over 20 years)	N expected average crash frequency - Average long-term safety performance of the project (anticipated total number of crashes over 20 years)	N potential for improvement (PROLICT) Potential safety performance - Average project performance compared to threshold set by typical other similar projects (anticipated total number of crashes over 20 years)	
Fatal and injury crashes (KABC)	551.0	551.0	N/A	
Property damage only crashes (PDO)	1063.7	1063.7	N/A	
Total crashes (KABCO)	1614.7	1614.7	N/A	

<u>Discussion of Results</u>

Given the potential effects of project characteristics on safety performance and assuming a 1.75 % growth in AADT over a 20 year analysis period with 2030 as the base year, results indicate that:

- 1. The project is anticipated, on average, to experience 1614.7 crashes over a 20 year analysis period (551 fatal and injury crashes; and 1063.7 property damage only crashes).
- 2. A similar project is anticipated, on average, to experience 1614.7 crashes over a 20 year analysis period (551 fatal and injury crashes over 20 years; and 1063.7 property damage only crashes over 20 years).

No-Build AADT (2024, 2030, 2050)

AADT			
Road Segment*	2024	2030	2050
MO 5 – Freeway Segment 1	16425	18175	23900
MO 5 – Freeway Segment 2	15025	16575	21875
MO 5 – Freeway Segment 3	14475	15900	21050
MO 5 – Freeway Segment 4	11725	12925	17050
MO 5 – Freeway Segment 5	17275	19025	25150
SB Off-Ramp (Ramp 1)	1400	1600	2025
SB Loop On-Ramp (Ramp 2)	3200	3500	4650
SB On-Ramp (Ramp 3)	925	1025	1350
SB Loop Off-Ramp (Ramp 4)	2750	2975	4000
NB On-Ramp (Ramp 5)	3750	4175	5475
NB Off-Ramp (Ramp 6 & 7)	4625	5075	6750
US 54 – Business Rt 5 to SB Terminal	22800	25350	33050
US 54 – SB Terminal to NB Terminal	26425	29200	38325
US 54 – NB Terminal to Jack Crowell Rd	31100	34350	45250
US 54 – Jack Crowell Rd to Cecil St	31000	34250	45125
Business Rt 5	9500	9900	10775
Jack Crowell Rd/Laker Pride Rd	5675	6125	8100
Cecil St	6550	7250	9525

^{*}Segment and ramp numbers are shown on figure diagrams

Change in Predicted Crashes in Study Area Over 20-Years (ISATe & HSM)

	No-E	Build Cond	ition	Ві	ild Condit	ion		Changes	in Crashe	5
Facility	F&I	PDO	Total	F&I	PDO	Total	F&I	PDO	Total	% Change in Total
Intersection 1 crashes: (US-54 & Business Route 5)	158.9	251.5	410.4	158.9	251.5	410.4	0.0	0.0	0.0	0.0%
Intersection 2 crashes: (No-Build: US-54 & Jack Crowell Road/Laker Pride Road) (Build: US-54 & Jack Crowell Road)	253.6	390.5	644.1	77.9	134.3	212.1	-175.8	-256.2	-432.0	-67.1%
Intersection 3 crashes: (US-54 & Cecil Street)	100.5	192.3	292.8	100.5	192.3	292.8	0.0	0.0	0.0	0.0%
Intersection 4 crashes: (Build: US-54 & Laker Pride Road)				108.7	209.1	317.8	108.7	209.1	317.8	
Arterial segments (1-3) crashes:	67.3	167.7	235.0	67.3	167.7	235.0	0.0	0.0	0.0	0.0%
Arterial segments (4-5) crashes:	97.2	246.4	343.6	37.8	108.8	146.7	-59.4	-137.6	-197.0	-57.3%
Total Arterial HSM Crashes	677.5	1248.4	1925.9	551.0	1063.7	1614.7	-126.5	-184.7	-311.2	-16.2%
Freeway segments, crashes:	72.4	245.7	318.1	72.4	245.7	318.1	0.0	0.0	0.0	0.0%
Ramp segments, crashes:	46.0	84.6	130.6	46.0	84.6	130.6	0.0	0.0	0.0	0.0%
Crossroad ramp terminals, crashes:	261.4	737.9	999.3	238.6	722.1	960.7	-22.8	-15.8	-38.6	-4.0%
Total ISATe Crashes	379.8	1068.3	1448.0	356.9	1052.5	1409.4	-22.8	-15.8	-38.6	-2.7%
Total Study Area Crashes	1057.3	2316.7	3373.9	907.9	2116.3	3024.2	-149.3	-200.4	-349.8	-10.4%

CBB Job No. 073-2024