

Central Laboratory

- TO: Bret Davidson-ne/cm
- CC/ATT: Jeffrey Niemeyer-ne/do Jennifer Hinson-ne/mt
- FROM: Duncan Noack, G.R.I.T. Intermediate Geotechnical Specialist

Zachary Troesser, P.E. Geotechnical Engineer

- DATE: September 20, 2022
- SUBJECT: Geotechnical Section Slide Investigation Slide No. S2967 Job No. R35G Route U, Warren County

In response to a request from Bret Davidson, the Geotechnical Section has conducted an investigation to determine the cause and corrective measures for two slides that have occurred on Route U in Warren County.

Location and History

The two slides are located just south of Rodgers Drive on Route U in Warren County. Slide 1 is located near Sta 109+48.0, approximately 300 feet south of Rodgers Road. Slide 1 is approximately 90 feet in width and 22 feet in height. Slide 2 is located near Sta 105+00, approximately 700 feet south of Rodgers Drive, and is approximately 110 feet in width and 15 feet in height.

The slides were discovered by the district on May 24, 2022. It is unknown when the slides began moving. Slide 1 does not show signs of movement at the toe of the slope but settled along the center line and within the northbound lane leading to cracks roughly 1 to 2 inches deep developing. Slide 2 shows signs of previous movement with an older slide being visible just off the side of the road. In addition, there is evidence that the pavement has been repaired before by repaving over where the road has settled with the pavement being 2.5 feet thick in places under the roadway. This likely only induces additional movement of the slide as more asphalt is placed on top. The current slide appears to have developed cracks from the center line to the edge of the northbound lane.

Existing Conditions

Our investigation for each slide was completed from the roadway limits due to site constraints. We have extrapolated conditions at the toe of each slide based on materials encountered from our borings in the roadway. Conditions are likely to vary from the assumed stratigraphy and should be verified during the repair of each failed embankment.

The slope height of Slide 1 is approximately 22 feet with the subsurface consisting of roughly 1.5 feet of asphalt and road base underlain by 10 to 15 feet of gravelly lean clay. The gravelly lean clay is divided into a soft to medium stiff saturated layer in the upper 6 to 10 feet. The lower layer is moist and stiff. Beneath the clay layer is a layer of highly weathered dolomite roughly 2.5 to 4 feet thick underlain by a very dry, red, thinly laminated shale.

The slope height of Slide 2 is approximately 15 feet with the subsurface consisting of 1.0 to 2.5 feet of asphalt underlain by 0.8 to 3.7 feet of road base. Beneath the subgrade is 5.5 to 7.5 feet of soft to medium stiff lean and gravely lean clay followed by 1.0 to 5.0 feet of stiff, reddish brown fat clay believed to be completely weathered shale. Underlying the fat clay is a tannish grey dolomite with thin clay seams.

Though there could be additional reasons not discovered by the field investigation, it is believed that Slide 1 likely occurred due to the over saturation of the upper layer of gravelly lean clay resulting in a loss of shear strength. This combined with the very steep nature of the embankment allowed the layer to begin sliding along the surface of the lower clay layer resulting in the settling and cracking in the pavement. Slide 2 is a result of poorly placed fill that became saturated resulting a loss of shear strength.

Site Drainage

On the west side of the roadway, it appears rock is near the surface at both slides. The ditch line appears to be choked in some places with debris consisting of sand, gravel, cobbles, leaves, and tree limbs.

A drainpipe was discovered on the downhill slope between Slide 1 and 2 at roughly Sta. 107+50. The uphill side of the drain could not be found but is believed to daylight somewhere between the slides, in the ditch on the west side of the roadway. Without this drain, drainage is facilitated by the ditch on the west side of the roadway. As stated above the ditch seems to be cluttered with debris and is likely affected by this. We recommend that the drainpipe's uphill side should be found and cleaned out if it is not damaged. In addition, we recommend that the ditch be cleaned and have a ditch liner placed according to Specification Section 609.6 between stations 104+50 and 110+00. It is also encouraged that regular inspection and cleaning of the ditch be conducted for the length of Route U between Rodgers Drive and Lake Ridge Lane after the project's completion.

Recommendations for Slide 1 (Sta 108+50 to 110+00) Reinforced L-Basket Slope Repair (Figure 1)

Global stability modeling was completed for a slope reconstructed to follow a similar geometry to the existing slope prior to failure. Our initial repair model consisted of a rock wedge with an embankment slope of 1.5:1. However, this system has a very low factor of safety (FOS~1.1) and is not recommended. We then modeled a repair consisting of a reinforced rock wedge fill. This system has a suitable factor of safety for global stability and incorporates a slope facing product and horizontal geogrid reinforcement as outlined below.

Beginning at the edge of the western shoulder, make a temporary benched excavation no steeper than 1.5H:1V. The excavation should be embedded a minimum of 4 feet into shale at the toe of the slope or excavator refusal if shallower. We recommend the shale surface at the base of the repair be excavated such that it's slope is no steeper than 10 percent in any direction. We also recommend a representative from the geotechnical section be on site during excavation of the toe of the slope to verify these recommendations are valid based upon actual subsurface conditions.

We recommend an 8oz non-woven geotextile (such as US Fabrics US 205NW or Mirafi 180N) be laid down to separate existing soil from the new rock fill. The fabric should be lapped at the edges a minimum of 18-inches. The embankment should be reconstructed with Select Granular Backfill (SGB) in accordance with Specification Section 1010 with a final embankment slope no steeper than 1.5:1. The SGB should be faced with L-Shaped

S2967 9/20/2022

Welded Wire Frame such as US Fabric's Welded Wire Facing Unit, or equivalent, see Image 1 below. The final slope will have a stepped finish.

Image 1 - Welded Wire Facing Units, Taken From US Fabrics, <u>www.usfabricsinc.com</u>

This system should incorporate geogrid reinforcement placed horizontally from the back of the new fill to the face of each L-shaped Welded Wire Form. The L-shaped forms should be placed horizontally and be faced with a non-degradable/UV resistant mesh to retain fine materials. For a concept of the design, we anticipate the design will incorporate a polymer mesh facing similar to US Fabric's Startamesh and geogrid reinforcement similar to US Fabrics SGU 80 or SGU 100.

We recommend using an 8oz non-woven geotextile to separate the existing soil from the new rock fill. The fabric also needs to be lapped at the edges a minimum of 18 inches. We also recommend installing a 4-inch perforated pipe bedded in 1-inch clean rock and wrapped with an 8 oz non-woven geotextile, such as US Fabrics US 205NW or equivalent, at the back of the base of the repair. If the base of the repair dips toward the toe, a perforated pipe bedded in in 1-inch clean rock and wrapped with an 8-oz non-woven geotextile should also be placed along the toe of the repair. The perforated drainage pipe(s) should be connected to solid 4-inch drainage pipes spaced every 50 feet along the repair. The solid pipes should be routed to daylight and drain on a rock flume pad.

Recommendations for Slide 2 (Sta 104+50 to 105+80) Rock Wedge Repair (Figure 2)

Global stability modeling was completed for a slope reconstructed to follow a similar geometry to the existing slope prior to failure. Our repair model consisted of a rock wedge with an embankment slope of 2:1. A suitable factor of safety was achieved and recommendations for constructing the slope are provided below.

Beginning at the edge of the western shoulder, make a temporary benched excavation no steeper than 2H:1V. The excavation should be embedded a minimum of 4 ft into weathered dolomite or excavator refusal, whichever comes first. We recommend the dolomite surface at the base of the repair be excavated such that it is no steeper than 10 percent in any direction. We also recommend a representative from the geotechnical section be on site during excavation of the toe of the slope to verify these recommendations are valid based upon actual subsurface conditions.

It is recommended that a slope no steeper than 2H:1V be constructed utilizing large rock fill meeting the following:

- Predominant top size of 12 inches
- Particle top size should be restricted to 24". If boulders larger than 24" are delivered to the site, they can be removed from the fill and placed near the toe of the slope.
- Up to about 20% passing 6 inches is permissible.
- Fines should not exceed 10%.

We recommend using an 8oz non-woven geotextile to separate the existing soil from the new rock fill. The fabric also needs to be lapped at the edges a minimum of 18 inches. We also recommend installing a 4-inch perforated pipe bedded in 1-inch clean rock and wrapped with an 8 oz non-woven geotextile, such as US Fabrics US 205NW or equivalent, at the back of the base of the repair. If the base of the repair dips toward the toe, a perforated pipe bedded in in 1-inch clean rock and wrapped with an 8-oz non-woven geotextile should also be placed along the toe of the repair. The perforated drainage pipe(s) should be connected to solid 4-inch drainage pipes spaced every 50 feet along the repair. The solid pipes should be routed to daylight and drain on a rock flume pad.

DN/zt

Job No.: <u>S2967</u>	County: Warren	Route: U
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Kenneth Tuttle
Station: 109+61.3	Northing: 1047561.7	Date of Work: 07/13/22-07/13/22
Offset: 6.0 L	Easting: <u>612708.4</u>	Depth to Water:
Elevation: 876.4	Requested Northing: 1047559.7	Depth Hole Open:
Requested Station: 109+59.3	Requested Easting: 612712.4	Time Change:
Requested Offset: 4.0 L	Equipment: Mobile B-31,	
Requested Elevation: 876.4	Location Note:	
	Hommor Efficiency	Duilling Methods Continuous Elight Auger

D	Drill No.: <u>G-9402</u> Hammer Efficiency:		Drilling Method: Continuous Flight Auger								
		Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
			0.0-1.4' ASPHALT 1.4-2.2' CRUSHED AGGREGATE BAS 2.2-4.3' Brown, GRAVELLY FAT CLAY moist 4.3-7.2' Tan, GRAVELLY COBBLES 7.2-8.9' Brown, GRAVELLY LEAN CLA cobbles, stiff, moist 8.9-10.6' BOULDERS and cobbles 10.6-15.7' Tan, GRAVELLY LEAN CLA cobbles, medium stiff, moist 15.7-17.7' Bedrock, tan, highly weather likely Dolomite 17.7-18.3' Bedrock, tan, likely Dolomite Bottom of borehole at 18.3 feet.	SE , soft, Y trace	875 877 870 870 8865 8865						
	₆₀ = (I I) = A	Em/60)N ssumed,	Im N ₆₀ - Corrected N value for standard 60% SPT (2) = Actual	efficiency;	; Em - M	leasur	ed hamme	er efficiency in perce	ent; Nm - Observed N	-value	II
ц C	oorc	ainate S		Coordina	ate Zor	1e: _	viissouri		Coordinate Pro	j. Factor:	
ы К С	oord	dinate [Datum: NAD 83 (CONUS)	Coordina	ate Uni	ts: _	U.S. Su	Irvey Feet			
t LETTE	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by iudgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.										

Job No.: <u>S2967</u>	County: Warren	Route: U
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 109+35.6	Northing: 1047535	Date of Work: 07/05/22-07/05/22
Offset: _ 9.5 R	Easting: <u>612724</u>	Depth to Water:
Elevation: 873.1	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: <u>Acker Soil XLS</u> ,Split-Spoon Sam	npler, Shelby Tube
Requested Elevation:	Location Note:	
	Hommor Efficiency 910/	Drilling Methody Hollow Stom Auger

	io .: _G	-9462 Hammer Eff	ciency	81	%	Di	Tilling Method: _	Hollow Stem Auge	er
O Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		0.0-0.4' ASPHALT 0.4-1.4' CRUSHED AGGREGATE BASE 1.4-4.0' Gray, GRAVELLY LEAN CLAY, medium stiff, moist 4.0-10.0' Brown mottled tan, LEAN CLAY trace gravel, soft, moist 10.0-15.3' Brown, GRAVELLY LEAN CLAY trace cobbles, stiff to very hard, moist to wet 10.0-12.0' shelby tube crumpled due to gravel 15.3-17.9' Cherty Dolomite, light gray and white, highly weathered 17.9-21.5' Shale, red, thinly laminated, moderately weathered to slightly weathered Bottom of borehole at 21.5 feet.			27 45 67 25 27 67 69 100	3-3-2 (7) - 1-1-1 (3) 5-3-7 (14) - 14-29-32 (82) 13-31-37/0.5', 10/0' 9-23-34 (77)		PP = 0.25 tsf Torvane = 0.20 tsf PP = 0.25 tsf PP = 7.50 tsf	$MC = 21.9\%$ $\gamma_{sat} = 128 \text{ pcf}^{(1)}$ $LL = 30$ $PL = 16$ $MC = 20.2\%$ $\gamma_{sat} = 130 \text{ pcf}^{(1)}$ $MC = 25.7\%$ $\gamma_{sat} = 124 \text{ pcf}^{(1)}$ $LL = 34$ $PL = 18$
N ₆₀ = (E (1) = As Coord	Em/60)N ssumed linate s	Im N ₆₀ - Corrected N value for standard 60% SPT efficience , (2) = Actual System: U.S. State Plane 1983 Coordin Datum: NAD 83 (CONUS) Coordin	y; Em - N nate Zo nate Un	/leasur ne: _ nits: _	ed hamm <u>Missour</u> U.S. St	er efficiency in perce i Central urvey Feet	nt; Nm - Observed M Coordinate Pr	 ∿-value oj. Factor:	
* Perso by judg	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.								

Job No.: <u>S2967</u>	County: Warren	Route: <u>U</u>
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 109+58.1	Northing: 1047557.5	Date of Work: 07/05/22-07/05/22
Offset: 8.6 R	Easting: _612724.9	Depth to Water:
Elevation: 876.1	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: _Acker Soil XLS ,Split-Sp	boon Sampler, Shelby Tube
Requested Elevation:	Location Note:	
	11 766 040/	Deilling Mathematical Linkson Otama Assess

			sieney		/0	81	ining meanear _	Tellen etelli / tage	<u> </u>
Depth (ff)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
0									
		— 0 0-0 4' ASPHALT —							
- ·	$P \sim $		875	4					
	1 ANT	- 0.4-1.4 CRUSHED AGGREGATE BASE	1						
	V////	1.4-9.8' Brown mottled gray, GRAVELLY	+ -	-					
L.	X/19///	LEAN CLAY trace cobbles soft to stiff moist		∇		4-1-1			MC = 18.1%
	\#]]Y]	to wot	Γ -	1X	13	(3)			y _{sat} = 133 pcf ⁽¹⁾
	-6/1/17	lo wei	+ -			(0)			-
5									
	V/////		† <u></u>			1			MC = 19.0%
- ·	- 11/1/		870		50			PP = 0.75 tst	γ _{sat} = 132 pcf ⁽¹⁾
	611/H							I orvane = 0.50 tst	LL = 32
	~/ <u>}}</u> //		+ -	\wedge		535			PL = 17
L.	¥]][[]			X	20	(11)			
	<i>\\\\\</i>		Γ -	\sim		(11)			
	-\////		+ -	4					
10	<i>[4]}}/</i>		4						
	P/~ Y	9.8-14.4' Dolomite, light gray and white, highly		\sim	100	17-37-37/0 2' 10/0'			
ĩ⊢ .	$\left(\frac{1}{2} \right)^{2}$	weathered	805	\sim	100	17-57-5770.2, 10/0			
	60								
-	$\frac{1}{2} \alpha \alpha$		t -						
₹Ļ .	6.00		L -		100	27/0.2', 10/0'			
2	57.7								
έr ·	60			\sim	100	17/0.3' 10/0'			
ř.		Bottom of borehole at 14.4 feet.							
ž.									
2									
7									
ר'ן									
2									
õ									
<u> </u>									
ונ									
31									
Ϋ́									
5									
5									
2									
2									
3									
9									
N									
0									
ת י									
5									
5									
N									
5									
2									
21									
<u>ز</u>	1		1	1		1		1	
² N = /	Em/60)	Im N. Corrected Nivelue for standard 60% SDT officianay		logeur	od homm	or officional in porco	nt: Nm Observed N	Lucius	

(1) = Assumed, (2) = Actual

Coordinate System: U.S. State Plane 1983

Coordinate Zone: Missouri Central

Coordinate Datum: NAD 83 (CONUS)

Coordinate Units: U.S. Survey Feet

Coordinate Proj. Factor:

BORING NO. A3 Page 1 of 1

Job No.: <u>S2967</u>	County: <u>Warren</u>	Route: <u>U</u>
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Kenneth Tuttle
Station: 108+97.4	Northing: <u>1047498</u>	Date of Work: 07/13/22-07/13/22
Offset: _ 5.4 L	Easting: <u>612705.9</u>	Depth to Water:
Elevation: 868.9	Requested Northing: 1047498	Depth Hole Open:
Requested Station: 108+97.4	Requested Easting: 612707.4	Time Change:
Requested Offset: <u>3.9 L</u>	Equipment: Mobile B-31 ,	
Requested Elevation: 868.9	Location Note:	
	Herene Tfficience	Drilling Methods Continuous Elight August

	Drill No.: <u>G-9402</u> Hammer Efficiency: Drilling Method: <u>Continuous Flig</u>						Auger		
Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
0		0 0-1 3' ASPHALT							
		0.0-1.3' ASPHALT 1.3-2.2' CRUSHED AGGREGATE BASE 2.2-4.0' Brown, GRAVELLY LEAN CLAY, soft, moist 4.0-6.5' BOULDERS and cobbles 6.5-9.0' Tan, GRAVELLY LEAN CLAY scattered cobbles, medium stiff, moist 9.0-12.0' BOULDERS and cobbles 12.0-14.2' Tan, GRAVELLY LEAN CLAY scattered cobbles, medium stiff, moist 14.2-18.0' Red, LEAN CLAY, stiff, moist 18.0-20.2' Bedrock, red, likely Shale Bottom of borehole at 20.2 feet.	865 860 860 855 855						
	(Em/60)I Assumed rdinate rdinate	Nm N ₆₀ - Corrected N value for standard 60% SPT efficiency J, (2) = Actual System: U.S. State Plane 1983 Coordir Datum: NAD 83 (CONUS) Coordir Ig this information are cautioned that the materials shown are If the materials Shown are	/; Em - M nate Zon nate Un	leasur ne: its: ed by	ed hamm Missouri U.S. Su the equip	er efficiency in perce i Central irvey Feet ment noted and acc	ent; Nm - Observed N Coordinate Pro	I-value Dj. Factor:	ereby and

Job No.: <u>S2967</u>	County: Warren	Route: U
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 109+5.7	Northing: 1047505.3	Date of Work: 07/06/22-07/06/22
Offset: 9.1 R	Easting: 612721.1	Depth to Water:
Elevation: 869.4	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: _Acker Soil XLS ,Split-S	poon Sampler, Shelby Tube
Requested Elevation:	Location Note:	
Drill No : C 0462	Hammor Efficiency: 81%	Drilling Mothod: Hollow Stom Augor

	<u></u>		ciency.	01	/0		ining metriou.	TOTOW Stern Auge	<u> </u>
0 Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		0.0-0.4' ASPHALT 0.4-1.4' CRUSHED AGGREGATE BASE 1.4-11.1' Reddish brown, GRAVELLY LEAN CLAY, medium stiff, moist 6.1' shelby tube refusal 11.1-14.7' Brown, GRAVELLY LEAN CLAY, very stiff, moist to wet 11.1' shelby tube refusal 14.7-21.2' Shale, red, thinly laminated, wiith layers of tan, highly weathered sandstone Bottom of borehole at 21.2 feet.	865 860 860 880 850 850		27 100 40 100 7 100 100	3-3-1 (5) 4-3-2 (7) 12-10-5 (20) 9-13-18 (42) 9-12-15 (36) 9-23-37/0.2', 10/0'		PP = 0.50 tsf Torvane = 0.30 tsf PP = 0.00 tsf PP = 0.25 tsf Torvane = 0.35 tsf PP = 8.00 tsf PP = 8.00 tsf PP = 7.50 tsf	MC = 9.0% $\gamma_{sat} = 147 \text{ pcf}^{(1)}$ MC = 17.8% $\gamma_{sat} = 133 \text{ pcf}^{(1)}$ LL = 47 PL = 21 MC = 20.9% $\gamma_{sat} = 129 \text{ pcf}^{(1)}$ MC = 18.0% $\gamma_{sat} = 133 \text{ pcf}^{(1)}$ MC = 17.4% $\gamma_{sat} = 134 \text{ pcf}^{(1)}$ LL = 24 PL = 15 LL = 27 PL = 15
$\frac{2}{N_{eo}} = ($	Em/60)N	Im N _{co} - Corrected N value for standard 60% SPT efficiency		/leasur	ed hamm	er efficiency in perce	nt [.] Nm - Observed N	l-value	

(1) = Àssumed, (2) = Actual

Coordinate System: U.S. State Plane 1983

Coordinate Zone: Missouri Central

Coordinate Datum: NAD 83 (CONUS)

Coordinate Units: U.S. Survey Feet

Coordinate Proj. Factor:

Missouri Department of Transportation

BORING NO. A4

ent:	Logged B Northing: Easting: Requested Equipmen Location I Hammer E	Northing: 1047150.8 Easting: 612667.8 Requested Northing: 1047152.2 Requested Easting: 612674.1 Equipment: Mobile B-31, Location Note:					Operator. refinent rutile Date of Work: 07/13/22-07/13/22 Depth to Water:		
E Descriptio	n	Elevation (ft)	Sample Typ	REC % (RQD %)	Blow Coun (N ₆₀)	Shear Dat	Field Test	Index Test	
5 4.2-5.4' BOULDERS Bottom of borehol	e at 5.4 feet.	825							
= (Em/60)Nm N ₆₀ - Corrected N value for star = Assumed, (2) = Actual ordinate System: <u>U.S. State Plane 19</u> ordinate Datum: <u>NAD 83 (CONUS)</u>	ndard 60% SPT efficie 83 Coor Coor	ency; Em - M dinate Zou dinate Un	1easure ne: _ <u>N</u> its:!	d hammer <u>/lissouri (</u> U.S. Sur	⁻ efficiency in p Central vey Feet	ercent; Nm - Observed f Coordinate Pr	N-value oj. Factor:		

Job No.: <u>S2967</u>	County: Warren	Route: <u>U</u>			
Design: S Slide	Skew:	Location:			
Bent:	Logged By: Duncan Noack	Operator: Kenneth Tuttle			
Station: 105+46.0	Northing: <u>1047145.8</u>	Date of Work: 07/13/22-07/13/22			
Offset: 14.8 L	Easting: <u>612668.8</u>	Depth to Water:			
Elevation: 826.7	Requested Northing: 1047152.2	Depth Hole Open:			
Requested Station: 105+50.0	Requested Easting: 612674.1	Time Change:			
Requested Offset: 8.8 L	Equipment: Mobile B-31 ,				
Requested Elevation: 826.7	Location Note:				
Drill No: C 0402	Hammor Efficiency:	Drilling Mothod: Continuous Elight Augor			

Drill No.: <u>G-9402</u> Han			er Efficiency	/:		D	Drilling Method: Continuous Flight Auger		
Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		0.0-5.1' Brown, LEAN CLAY, soft, moist 5.1-5.3' COBBLES 5.3-6.8' Brown, LEAN CLAY scattered gr soft, moist 16.8-6.9' COBBLES 6.9-13.6' Brown, GRAVELLY LEAN CLA' trace cobbles, soft, moist 13.6-14.3' Bedrock, highly weathered, like Dolomite 14.3-14.7' Bedrock, likely Dolomite Bottom of borehole at 14.7 feet.	825 avel, 820 						
다 N ₆₀ = (끸 (1) = A	Em/60)N Assumed	m N_{60} - Corrected N value for standard 60% SPT et (2) = Actual	fficiency; Em -	Measu	red hamm	er efficiency in perce	ent; Nm - Observed N	-value	
	dinate \$	System: U.S. State Plane 1983 C	oordinate Z	one: _	Missouri	Central	Coordinate Pro	j. Factor:	
Coor	dinate I	Datum: <u>NAD 83 (CONUS)</u> C	oordinate U	nits:	U.S. Sı	rvey Feet			
≝ * Perse ≝ by judg	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.								

Job No.: <u>S2967</u>	County: Warren	Route: U
Design: N Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 109+21.6	Northing: 1047521.8	Date of Work: 07/06/22-07/06/22
Offset: 0.2 L	Easting: <u>612713.2</u>	Depth to Water:
Elevation: 871.5	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: Acker Soil XLS ,Split-Spoo	on Sampler, Shelby Tube
Requested Elevation:	_ Location Note:	
	Hommor Efficiency 010/	Drilling Methody Hollow Stop Augor

Drill r	vo.: _ C	-9462 Hammer Ef	riciency	: 81	%	D	rilling Method: _	Hollow Stem Auge	
Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		 0.0-0.3' ASPHALT 0.3-1.7' CRUSHED AGGREGATE BASE 1.7-2.4' BOULDERS 2.4-8.4' Reddish brown, GRAVELLY LEAN CLAY trace cobbles, medium stiff to stiff, moist 8.4-12.6' Dolomite, light gray and white, highly weathered, with clay 8.4' shelby tube refusal 12.6-13.9' Shale, red, thinly laminated, wiith layers of tan, highly weathered sandstone Bottom of borehole at 13.9 feet. 			33 33 44 33 67 93	2-5-4 (12) 1-2-2 (5) 8-8-5 (18) 3-11-19 (41) 18-32-37/0.4', 10/0'		PP = 0.50 tsf PP = 0.50 tsf Torvane = 0.30 tsf PP = 3.00 tsf	$MC = 22.1\%$ $\gamma_{sat} = 128 \text{ pcf}^{(1)}$ $MC = 22.1\%$ $\gamma_{sat} = 128 \text{ pcf}^{(1)}$ $MC = 12.2\%$ $\gamma_{sat} = 141 \text{ pcf}^{(1)}$ $LL = 34$ $PL = 18$ $MC = 6.9\%$ $\gamma_{sat} = 151 \text{ pcf}^{(1)}$
$N_{60} = (1)$ $(1) = A$ $Coorc$	Em/60)N ssumed dinate dinate	Nm N ₆₀ - Corrected N value for standard 60% SPT efficien I, (2) = Actual System: U.S. State Plane 1983 Coord Datum: NAD 83 (CONUS) Coord	cy; Em - M inate Zo inate Ur	Measur one: _ nits: _	red hamm <u>Missour</u> U.S. St	er efficiency in perce i Central urvey Feet	nt; Nm - Observed f	N-value oj. Factor:	
* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.									

BORING NO. A5 Page 1 of 1

Job No.:	County: Warren	Route: U		
Design: S Slide	Skew:	Location:		
Bent:	Logged By: Duncan Noack	Operator: Kenneth Tuttle		
Station: 105+16.6	Northing: 1047119	Date of Work: 07/13/22-07/13/22		
Offset: 14.9 L	Easting: _612665.3	Depth to Water:		
Elevation: 822.7	Requested Northing: 1047119	Depth Hole Open:		
Requested Station: 105+16.6	Requested Easting: 612669.8	Time Change:		
Requested Offset: 10.4 L	Equipment: Mobile B-31 ,			
Requested Elevation: 822.7	Location Note:			

Drill	Drill No.: <u>G-9402</u> Hamm			ency:			D	Drilling Method: Continuous Flight Auger		
Depth (ft)	Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
0		0.0-1.3' ASPHALT								
F		1 3-2 6' CRUSHED AGGREGATE BA	SE							
F	- O			820						
		2.6-6.8 Brown, LEAN CLAY, SOIL, MOR	si –	_						
5			+	_						
			÷	-						
-	-			015						
+	-041	trace cobbles, moist		615						
+			t	-						
2 10		10.0-10.6' COBBLES		-						
5-	-////	10.6-14.5' Light brown, FAT CLAY, mo	bist							
			Ļ	810						
			+	_						
AKK		14.5-14.9' Bedrock, likely Dolomite		_						
Ш		Bottom of borehole at 14.9 feet	t.							
0001 20150728.GD1 - 9/20/22 16:20 - 2:\SG\GIN1\PKOJECI FILES\K\$95-U_										
≝ N ₆₀ =	(Em/60)N	Im N ₆₀ - Corrected N value for standard 60% SP	T efficiency; I	Em - M	easur	ed hamme	er efficiency in perce	nt; Nm - Observed N	I-value	
(1) = 1	Assumed	, (z) = Actual System: IIIS State Plane 1983	Coordina	te Zor	<u>ہ ، م</u>	Missouri	Central	Coordinate Pro	ni Factor:	
	dinate l	Datum: NAD 83 (CONUS)	Coordina	te Lini	ts [.] _!					
х Т	anale I		Joonund			<u></u>		e.,	.	
⊑ ^ Pers ≝ by jud	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.									

Job No.: <u>S2967</u>	County: Warren	Route: _U
Design: S Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 105+22.5	Northing: 1047123.8	Date of Work: 07/06/22-07/06/22
Offset: 2.9 R	Easting: 612683.5	Depth to Water:
Elevation: 823.2	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: _Acker Soil XLS ,Split-Sp	poon Sampler, Shelby Tube
Requested Elevation:	Location Note:	
Drill No : G-9462	Hammer Efficiency: 81%	Drilling Method: Hollow Stem Auger

	<u> </u>		Jeney.		/0			Tollow Otern Auge	<u> </u>
0 Depth (ff)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
		0.0-2.5' ASPHALT							
		0.0-2.5' ASPHALT 2.5-4.0' CRUSHED AGGREGATE BASE 4.0-5.5' Brown, GRAVELLY LEAN CLAY trace cobbles, moist 5.5-9.7' Reddish gray mottled, FAT CLAY, moist, trace organics (roots) 9.7-13.2' Brownish gray, LEAN CLAY trace gravel, very stiff, moist 11.5' shelby tube refusal 13.2-17.4' Dolomite, and, highly weathered to moderately weathered 13.2-17.4' rock bitted Bottom of borehole at 17.4 feet.	820 820 820 815 815		50 80 100	8-7-8 (20)	Qu Test Results UCS = 3.74 ksf MC = 25% y _{moist} = 123.8 pcf Direct Shear Results	PP = 0.50 tsf Torvane = 0.40 tsf PP = 1.50 tsf Torvane = 0.70 tsf PP = 1.75 tsf	MC = 20.4% $\gamma_{sat} = 130 \text{ pcf}^{(1)}$ LL = 44 PL = 22 MC = 29.4% $\gamma_{sat} = 121 \text{ pcf}^{(1)}$ LL = 51 PL = 23 MC = 22.3% $\gamma_{sat} = 128 \text{ pcf}^{(1)}$ LL = 56 PL = 24

rd 60% SPT efficiency; Em - Measured hammer efficiency in percent; Nm - Observed N-value d N value for stand

(1) = Assumed, (2) = Actual

LETTER BOREHOLE

Coordinate System: U.S. State Plane 1983

Coordinate Zone: Missouri Central Coordinate Proj. Factor:

Coordinate Datum: NAD 83 (CONUS)

Coordinate Units: U.S. Survey Feet

Missouri Department of Transportation ^____ uction and Matorials

BORING NO. A6 Page 1 of 1

Station: 104+78.2 Offset: 14.4 W Elevation: 818.2 Requested Station: 104+78.2 Requested Offset: 10.4 L Requested Elevation: 818.2 Drill No.: G-9402		Northing: _1 Easting: _61 Requested N Requested E Equipment: Location No Hammer Effi	047080 2662.6 Iorthing Easting: Mobile te: ciency:).8 g: _1(_612 ⇒ B-3 ⁻¹	047080.8 2666.6 1 ,		Date of Work: 07/13/22-07/13/22 Depth to Water:			
Graphic Graphic	Description		Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests	
	3.7-6.2' Tan, GRAVELLY LE moist 6.2-12.4' Reddish brown, FA moist 12.4-12.7' Bedrock, highly w Dolomite 12.7-12.8' Bedrock, likely Do Bottom of borehole a	AN CLAY, soft, T CLAY, soft, T CLAY, soft, T CLAY, soft, T CLAY, soft, T CLAY, soft,								
₀ = (Em/60) = Assume oordinate	Nm N _{e0} - Corrected N value for standa cd, (2) = Actual System: <u>U.S. State Plane 1983</u> Datum: <u>NAD 83 (CONUS)</u>	rd 60% SPT efficiency Coordin	y; Em - M nate Zon nate Un	1easur ne: _ its: _	ed hamme Missouri U.S. Su	er efficiency in p Central rvey Feet	ercent; Nm - Observed N Coordinate Pro	I-value Dj. Factor:		

Job No.: <u>S2967</u>	County: Warren	Route: U
Design: S Slide	Skew:	Location:
Bent:	Logged By: Duncan Noack	Operator: Gary Degraffenreid
Station: 104+82.5	Northing: 1047084.1	Date of Work: 07/06/22-07/06/22
Offset: 1.5 R	Easting: 612678.9	Depth to Water:
Elevation: 818.4	Requested Northing:	Depth Hole Open:
Requested Station:	Requested Easting:	Time Change:
Requested Offset:	Equipment: _Acker Soil XLS ,Split-Sp	boon Sampler, Shelby Tube
Requested Elevation:	Location Note:	
Drill No : C 0462	Hommor Efficiency 91%	Drilling Mathedy Hollow Stom Augor

		<u>0</u>	-9402 Halliller	Enicienc	yc	0170)			Tollow Stern Auge	<u> </u>
Depth	(it)	Graphic	Description	Elevation (ft)	Sample Type	sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
	<u> </u>		0.0-2.5' ASPHALT	-	-						
0T 20150728.GDT - 9/8/22 08:23 - Z:\SG\GINT\PROJECT FILES\R35G-U_SLIDE_WARRENCOUNTY.GPJ			0.0-2.5' ASPHALT 2.5-3.5' CRUSHED AGGREGATE BASE 3.5-9.8' Reddish brown mottled gray, GRAVELLY LEAN CLAY trace cobbles, medium stiff, moist 4.7-5.5' boulder 9.8-13.2' Reddish brown mottled gray, FAT CLAY trace fine gravel, hard, moist, trace organics (roots) 13.2-16.2' Dolomite, tannish gray and, high weathered to moderately weathered, with t clay seams 13.2-16.2' rock bitted Bottom of borehole at 16.2 feet.	815 - - - - - - - - - - - - - - - - - - -			40	1-3-2 (7) 3-9-20/0.3', 10/0'	Qu Test Results UCS = 2.56 ksf MC = 28.4% Y moist = 118.9 pcf Direct Shear Results	PP = 0.50 tsf PP = 1.25 tsf Torvane = 0.70 tsf PP = 1.50 tsf	MC = 24.8% γ_{sat} = 125 pcf ¹) MC = 27.6% γ_{sat} = 122 pcf ¹) LL = 51 PL = 25 MC = 24.7% γ_{sat} = 125 pcf ¹)
Ñ N	= /	-m/60\N	M N - Corrected N value for standard 60% SDT offic	ciency: Em	Mea	sure	d hamm	er efficiency in perco	nt: Nm - Observed N	l-value	
· N ₆ 끸 (1)	₅₀ = (E) = As	ssumed	$N_{11} = N_{60}$ - Corrected in value for standard 60% SPT efficiency, (2) = Actual	Siency; Em -	weas	sure	u namme	er eniciency in perce	nt, NITI - ODSERVED N	i-value	
Contraction Contraction	oord	linate	System: U.S. State Plane 1983 Coo	ordinate Z	one:	M	lissouri	Central	Coordinate Pro	oj. Factor:	
D BOR	oord	linate	Datum: NAD 83 (CONUS) Cod	ordinate U	nits:	: ī	J.S. Su	Irvev Feet			
E *F	Perso	ons usin	g this information are cautioned that the materials shown	n are determ	ined	by th	he equip	ment noted and accu	racy of the "log of m	aterials" is limited the	ereby and
끸 by	i judg	ement o	of the operator. THIS INFORMATION IS FOR DESIGN F	PURPOSES	ONL	Υ.					

Job No.:	County: Warren	Route: U					
Design: S Slide	Skew:	Location:					
Bent:	Logged By: Duncan Noack	Operator: _Gary Degraffenreid					
Station: 105+50.5	Northing: <u>1047151.7</u>	Date of Work: 07/06/22-07/06/22					
Offset: _3.4 R	Easting: <u>612686.9</u>	Depth to Water:					
Elevation: 826.4	Requested Northing:	Depth Hole Open:					
Requested Station:	Requested Easting:	Time Change:					
Requested Offset:	Equipment: _Acker Soil XLS ,Split-Spoon Sampler, Shelby Tube						
Requested Elevation:	Location Note:						
Drill No.: <u>G-9462</u>	Hammer Efficiency: <u>81%</u>	Drilling Method: Hollow Stem Auger					

	Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
DOT 20150728.GDT - 9/8/22 08:23 - Z:\SG\GINT\PROJECT FILES\R35G-U_SLIDE_WARRENCOUNTY.GPJ			0.0-1.7' ASPHALT 1.7-2.5' CRUSHED AGGREGATE BASE 2.5-10.8' Reddish brown mottled gray, LEAI CLAY scattered fine gravel, trace cobbles, soft to stiff, moist 4.7-5.0' cobbles 10.8-11.9' Gray and reddish brown, FAT CLAY trace gravel, hard, moist, trace organ (roots) 11.5' shelby tube refusal 11.9-13.9' Dolomite, tannish gray and, highl weathered to moderately weathered, with the clay seams 11.9-13.9' rock bitted Bottom of borehole at 13.9 feet.	825 N 820 815 iccs		40 33 80 100	0-1-1 (3) 2-5-6 (15) 20/0.4', 10/0'	Qu Test Results UCS = 4.66 ksf MC = 23% y _{moist} = 126.9 pcf	PP = 1.00 tsf PP = 3.00 tsf PP = 1.50 tsf Torvane = 0.90 tsf PP = 2.50 tsf	MC = 24.0% $\gamma_{sat} = 126 \text{ pcf}^{(1)}$ MC = 20.2% $\gamma_{sat} = 130 \text{ pcf}^{(1)}$ MC = 31.4% $\gamma_{sat} = 119 \text{ pcf}^{(1)}$ LL = 74 PL = 36 LL = 53 PL = 25
SEHOLE - MOI	N ₆₀ = (E (1) = A Coorc	Em/60)N ssumed linate \$	Im N ₈₀ - Corrected N value for standard 60% SPT effici , (2) = Actual System: <u>U.S. State Plane 1983</u> Coo	ency; Em - rdinate Zo	Measu	red hamm Missouri	er efficiency in perce Central	nt; Nm - Observed N Coordinate Pro	l-value)j. Factor:	
R BOR	Coord	linate	Datum: NAD 83 (CONUS) Coo	rdinate U	nits: _	U.S. Sı	Irvey Feet			
LETTEI	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.									

Job No.: <u>S2967</u>	County: Warren	Route: _U			
Design: S Slide	Skew:	Location:			
Bent:	Logged By: Duncan Noack	Operator: <u>Gary Degraffenreid</u>			
Station: 105+3.1	Northing: <u>1047105.5</u>	Date of Work: 07/06/22-07/06/22			
Offset: _9.4 L	Easting: 612669.7	Depth to Water:			
Elevation: 821.2	Requested Northing:	Depth Hole Open:			
Requested Station:	Requested Easting:	Time Change:			
Requested Offset:	Equipment: _Acker Soil XLS ,Split-Sp	boon Sampler			
Requested Elevation:	Location Note:				
Drill No : C 0462	Hammor Efficiency: 81%	Drilling Method: Hollow Stom Auger			

	<u></u>		cicitoy	. 01	70			Tellew etern / tage	<u></u>
Depth (ft)	Graphic	Description	Elevation (ft)	Sample Type	REC % (RQD %)	Blow Counts (N ₆₀)	Shear Data	Field Tests	Index Tests
Ŭ		0.0-1.0' ASPHALT							
		1.0-4.7' CRUSHED AGGREGATE BASE, very dry and dusty	- <u>820</u> 	-					
5		4.7-5.0' COBBLES	- 1	\leftarrow		6-2-4	-		MC = 32.0%
-	-\////	5.0-8.0' Reddish gray, LEAN CLAY with fine	815	\downarrow	67	(8)		PP = 1.50 tsf	$\gamma_{sat} = 119 \text{ pcf}^{(1)}$
-	-\////	gravel, medium stiff to stiff, moist	+ -	\sim	87	6-4-5		PP = 1.50 tsf	PL = 22
-	<i>\////</i>	9.0' baring terminated due to machanical	-	\vdash		(12)	-		MC = 16.4% $\Psi_{out} = 135 \text{ pcf}^{(1)}$
		issues							
		Bottom of borehole at 8.0 feet.							
2									
2.									
NN									
NC									
RR									
MA									
비									
SL									
R35									
ES									
린									
Q ^R									
Ĕ									
GI									
OS/:									
3-Z									
08:2									
122									
8/6 -									
La									
28.0									
1507									
20									
6									
<u>В</u> м –	N _{ex} = (Em/60)Nm N _{ex} - Corrected N value for standard 60% SPT efficiency: Em - Measured hammer efficiency in percent: Nm - Observed N-value								
$1_{100} = (1) = Assumed, (2) = Actual$									
Cool	rdinate	System: U.S. State Plane 1983 Coordin	nate Zo	ne:	Missouri	Central	Coordinate Pro	oj. Factor:	
200 0 00 0 000	Coordinate Datum: NAD 83 (CONUS)			its [.]	US SI	Irvev Feet			
ш Ш									
⊢ * Pers	* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgement of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.								

KEY TO SYMBOLS

Missouri Dept of Transportation

		_ PROJECT NAME _S	lide Analysis			
PROJECT NUMBER S2967			PROJECT LOCATION			
LITHOLOGIC (Unified Soil C Market Soil C Mar	INUMBER 52907 IOLOGIC SYMBOLS ified Soil Classification System) Asphalt Boulders and cobbles USCS High Plasticity Clay USCS High Plasticity Gravelly Clay USCS Low Plasticity Clay USCS Low Plasticity Gravelly Clay		SAMPLER SYMBOLS Split-Spoon Sampler Shelby Tube			
Dolomite USCS Po Highly W Shale	oorly-graded Gravel eathered Dolomite	WELL CO	NSTRUCTION SYMBOLS			
LL - LIQUID LI PI - PLASTIC I W - MOISTUR DD - DRY DENS NP - NON PLAS -200 - PERCENT PP - POCKET F Qu - UNCONFIL	ABBR MIT (%) NDEX (%) E CONTENT (%) STIC PASSING NO. 200 SIEVE PENETROMETER (TSF) NED COMPRESSIVE STRENGTH (PSF	EVIATIONS	TV - TORVANE PID - PHOTOIONIZATION DETECTOR UC - UNCONFINED COMPRESSION ppm - PARTS PER MILLION ♀ Water Level at Time of Drilling ♥ Water Level at End of Drilling ♥ Water Level at End of Drilling			

R35G

Slide 1 (North) Rte U, South of Rodgers Dr Warren County Legend

100 ft

Auger BoringSample Boring

A1 0-22-28 (B2)

O-22-27 (B1)

O-22-30 (B4)

A3 U C-22-29 (B3)

Google Earth

R35G

Slide 2 (South) Rte U, South of Rodgers Dr Warren County Legend

4

3

100 ft

Auger Boring Sample Boring

C-22-33 (B7)

O-22-31 (B5)

O-22-34 (B8)

6

U

U

O-22-32 (B6)

Google Earth

Warren County - Rte U R35G - Station 109+48 Slide 1 (North Slide)

Figure 1

MODOT/den

Slide 1 - Reinforced L-Shaped Welded Wire Facing

Warren County - Rte U S2967 - Station 104+98 Slide 2 (South Slide)

Figure 2

MODOT/den

Slide 2 - Large rock Fill Slope

