Bituminous Technician 2025 Proficiency Pack

DATE: _____

Name: _____

Employer: _____

MoDOT TM 20 Measurement of Air, Surface, and Asphalt **Mixture Temperature PROFICIENCY CHECKLIST**

Applicant: _____

Employer: _____

	Trial #	1	2
Certificates or Report of Verification of Accuracy (Annual			
calibration) available?			l

AIR	
1. Pick correct thermometer	
2. Location	
- Mercury, Digital, Max-Min thermometers	
- shade, no direct sunlight	
 position 4.5 feet above surface 	
- safe location	
3. Document to nearest 2° F	

SURFACE	
4. Pick correct thermometer	
5. Procedure	
- Spot Check Disc. place on surface until needle stops	
moving.	
- Infrared; follow manufacturer recommendations.	
- Mercury or Max-Min; place under wooden box wait 5	
minutes.	
- Digital ; follow manufacturer recommendations	
6. Document to nearest 2° F	

ASPHALT MIXTURE	
7. Pick correct thermometer	
 8. Procedure <i>Infrared</i>; follow manufacturer recommendations. <i>Armored, BI-Therm Dial, or Digital</i>; place stem into mixture and wait until thermometer reading has stabilized 	
9. Document to nearest 5° F	

PASS PASS

FAIL FAIL

Examiner:_____Date:_____

AASHTO R 66: Sampling Asphalt Materials PROFICIENCY CHECKLIST

Applicant: _____

Employer: _____

|--|

Describe procedure for taking a daily plant asphalt binder sample:	
1. Wear safety clothing, including insulated gloves, long sleeves, bring a marker,	
and tags.	
2. Obtain a clean dry sample container with lid: 1 pint friction top.	
Option: Write the sample information on the can before sampling.	
3. Open valve and discard at least 1 gallon of material.	
4. Shut off valve, place can underneath the spout.	
5. Open valve, fill can to within $\frac{1}{2}$ of top.	
6. Shut off valve, wait until material quits flowing.	
7. Remove can and put on lid.	
8. Immediately wipe can with clean cloth, while hot. (do not use solvent to clean)	
9. Identify the sample on the can itself, include the ID Number, Supplier, Grade	
of the Binder, and Date.	
10. Place the sample in a sealed bag, and a MoDOT shipper if needed, deliver to	
the lab.	

PASS PASS

FAIL FAIL

Examiner:	Date:
-----------	-------

AASHTO R 97 Sampling Asphalt Paving Mixtures PROFICIENCY CHECKLIST

Trial# 1

2

Applicant:

Employer:

Describe procedure for taking a loose mix sample from:

Roadway

1. Obtain proper sample container for the application

2.	Use template or square nose shovel to define sample location	
3.	Using a square nose shovel, obtain sample from defined area, including all fines	
	and not disturbing underlying material	
4.	Place collected material in non-absorbent, insulated container for transportation to	
	lab	

5. Label the container: Material type, ID No., JMF, date, time, and location

Stocknilos

Stockpiles	
1. Remove 4 inches from the surface of the stockpile	
2. Create a step like below with a board and shovel and take the sample as shown	
Board Step Discard Sample	
3. Obtain at least 1 increment from the top, middle, & bottom	
4. Combine to form a field sample	
5. Label the container: Material type, ID No., JMF, date, time, and location	

Streams	
1. Take 3 approximately equal increments with a sample catcher	
(Do not overflow the sample catcher)	
2. Combine to form a field sample	
3. Label the container: Material type, ID No., JMF, date, time, and location	

PASS PASS

FAIL FAIL

Examiner: _____ Date: _____

AASHTO R 47 **Reducing Samples of Asphalt Mixtures to Testing Size PROFICIENCY CHECKLIST**

Name: _____

Company: _____

Me	chanical Splitter Methods Trial #	1	2
Ту	pe A Splitter (Quartermaster)		
1.	Level, clean, lightly coated with release agent?		
2.	Position 4 receptacles to receive the quartered portions, without loss of material?		
3.	Hopper doors closed and secured?		
4.	Poured sample using a continuous or segmented pour from multiple directions around the hopper?		
5.	Released the handle to drop the asphalt mixture through the dividers into the receptacles?		
6.	Removed any material retained on surface into the appropriate receptacle?		
7.	Samples taken from opposing corners for reintroduction into hopper?		
8.	Split as many times as necessary for appropriate test?		

Type B Splitter (Riffle Splitter)	
1. Checked for cleanliness?	
(Optional: Riffle Splitter can be heated, not exceeding 230°F or 110°C)	
2. All surfaces in contact with the asphalt mixture coated with approved release agent?	
3. Properly placed the receptacles under the splitter	
4. Placed the sample uniformly in the hopper from edge to edge?	
(Can use a straight edge pan)	
5. Introduced the sample at a rate that allows free flow into sample containers?	
6. Above steps, repeated until sample size obtained?	

Quartering Method	
1. Placed asphalt mixture on a non-stick, clean, and level surface?	
(Approved asphalt release agent can be used)	
2. Thoroughly mixed the material by turning it over at least 4 times using a flat bottom scoop?	
3. After the last turning, formed conical pile depositing each scoop full on top of the previous one?	
4. Flattened the pile into uniform thickness and diameter by pressing down on the apex?	
(Diameter should be approximately 4 to 8 times the thickness)	
5 Pressed quartering templates completely down to bottom surface dividing the pile into four quarters?	
6. Removed two opposite quarters, including the fines?	
7. Repeated steps 2 through 6 until desired sample size was attained?	

PASS PASS

FAIL FAIL

Proctor/Auditor Signature: ______Date: _____

AASHTO T 329: Moisture Content of Asphalt Mixtures by Oven Method **PROFICIENCY CHECKLIST**

Applicant_____

Employer_____

	Trial#	1	2
Sampling			
Test sample obtained by AASHTO R 97			
Representative sample obtained; 1000 g minimum			

Procedure	
-----------	--

-	

Calculations

1. Calculate the percent change and determine if the sample is at constant mass% Change = $\frac{(A - B)}{A} \times 100$ 2. Continued to dry the sample in 30 minute intervals until reached constant mass, when change in mass was $\leq 0.05\%$ 3. Sample and container cooled to original temperature, then weighed = (M_f)4. Percent Moisture calculated and reported to the nearest 0.01%Moisture Content, $\% = (M_i - M_f) \times 100$
2. Continued to dry the sample in 30 minute intervals until reached constant mass, when change in mass was ≤ 0.05% 2. Sample and container cooled to <u>original temperature</u> , then weighed = (M _f) 3. Sample and container cooled to <u>original temperature</u> , then weighed = (M _f) 2. M _f 4. Percent Moisture calculated and reported to the nearest 0.01% 2. M _f
2. Continued to dry the sample in 30 minute intervals until reached constant mass, when change in mass was ≤ 0.05% 2. Sample and container cooled to <u>original temperature</u> , then weighed = (M _f) 3. Sample and container cooled to <u>original temperature</u> , then weighed = (M _f) 2. M _f 4. Percent Moisture calculated and reported to the nearest 0.01% 2. M _f
change in mass was ≤ 0.05% 3. Sample and container cooled to original temperature, then weighed = (M _f) 4. Percent Moisture calculated and reported to the nearest 0.01%
change in mass was ≤ 0.05% 3. Sample and container cooled to original temperature, then weighed = (M _f) 4. Percent Moisture calculated and reported to the nearest 0.01%
3. Sample and container cooled to original temperature, then weighed = (Mf) 4. Percent Moisture calculated and reported to the nearest 0.01%
4. Percent Moisture calculated and reported to the nearest 0.01%
Moisture Content, % = $(\underline{M_i - M_f})_{\times 100}$
Moisture Content, $\% = (M_i - M_f) \times 100$
× 100
M-
l''f
PASS PASS

Proctor/Auditor: _____ Date: _____

FAIL FAIL

AASHTO T269 Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures PROFICIENCY CHECKLIST

Name: _____

Company: _____

PROCEDURE	1	2
1. For Dense Bituminous Paving Mixtures		
a. Bulk specific Gravity determined by T166 (suspension) or T331 (Vacuum Sealing)?		
b. Theoretical maximum specific gravity determined by T209 (Rice Test) or from the JMF?		
2. Percent air voids calculated in accordance with test method T269?		

CALCULATONS: Theoretical Maximum Specific Gravity (Gmm)		
<u>meoretical Maximum Specific Gravity</u> (Gillin)		
The Gmm can be found on the Job Mix Formula. OR from testing T209 (Rice	e Test)	
$Gmm = \frac{A}{(A+D-E)}$		
(A + D - E)		
• A=Dry Sample Mass in Air		
 D=Container & Water E=Container, Water & Sample 		
Report <i>Gmm</i> to nearest 0.001		
<u>Bulk Specific Gravity</u> (Gmb)		
Weight in Air (A)		
Gmb = Weight Surface Dry (B) - Weight in Water (C)		
Report Gmb to the nearest 0.001		
Percent Air Voids (Va)		
Air voids (Va) = 100 * $\begin{pmatrix} G_{mm} - G_{mb} \\ G_{mm} \end{pmatrix}$		
Or		
Air voids (Va) = 100 * $\left(\begin{array}{c} 1 & - & \frac{Gmb}{Gmm} \\ \end{array} \right)$		
Report Air Voids to the nearest 0.1%		
	PASS	PASS

FAIL FAIL

Proctor/Auditor Signature: _____ Date: _____

MoDOT - TCP - IAS

08/20/2024

AASHTO T 166 Bulk Specific Gravity of Compacted Asphalt Mixtures Using Saturated Surface Dry Specimens PROFICIENCY CHECKLIST

Name: _____

Company: _____

SAMPLE PREPARATION Trial	1	2
1. Core samples taken from asphalt pavements.		
Note: Cores are to be oven dried overnight at $125 \pm 5^{\circ}F$ ($52\pm 3^{\circ}C$) and at successive 2 hr.		
intervals to constant mass or vacuum dried R79 to constant mass.		
1. Laboratory-compacted specimens.		
Note: Recently compacted samples not exposed to moisture do not require drying.		

PR	OCEDURE METHOD A - Suspension	
1.	Specimens dry and at room temperature?	
2.	Tared the scale to zero with immersed basket attached?	
3.	Mass of dry sample in air determined?	
	a. Reported weight to 0.1g	
4.	Immersed mass of sample determined?	
	a. Immersed 4 ±1 min.?	
	b. Water is at 77 \pm 2°F? (25 \pm 1°C)	
	c. Reported weight to 0.1g	
5.	Saturated surface dry mass determined?	
	a. Removed specimen from water?	
	b. Quickly blotted specimen with a damp towel within 15 seconds?	
	Note: Damp is when no water can be wrung from wet towel.	
	c. Reported weight to 0.1g?	

CALCULATONS AND REPORTING:	
Calculate Bulk Specific Gravity (Gmb) and report the result to the nearest 0.001g	
Weight in Air (A)	
Weight Surface Dry (B) - Weight in Water (C)	
Calculate Percent of Water Absorbed by Volume and report to nearest 0.01%.	
Test not valid if over 2.0%	
Weight Suface Dry – Weight in Air	
$\frac{Weight Suface Dry - Weight in Air}{Weight Surface Dry - Weight in Water} x100$	

PASS PASS

FAIL FAIL

Date:

MoDOT - TCP - IAS

08/20/2024

MoDOT TM 54 (T287) Determining the Asphalt Content of an Asphalt Mixture

PROFICIENCY CHECKLIST

Name: _____

Company: _____

	Trial#	1	2
Preparation Note: AC = Asphalt Content			
1. Current 20 count – 1 minute stability test report, 3 months or less?			
2. Ran a 16-minute background daily or when conditions change?			
3. Background count within ±1 % of previous background test?			
- If not, more tests ran until two consecutive readings are w/n 1%?			

Procedure	
1. Obtained an asphalt mixture sample by R97, reduced by R47	
2. Tared a sample pan on the scale?	
3. Placed the sample in the pan in two lifts?	
4. Placed the sample on tared scale, check weight? (See JMF)	
5. Adjusted weight by adding or subtracting material from the pan to reach \pm 5g of	
JMF sample weight? (do not segregate while adjusting)	
7. Compacted the sample in the pan using a leveling plate?	
8. Pressed down on the leveling plate to compact the sample level with top of the pan?	
If the sample is not fitting, reheat the mix, try again.	
9. Rechecked the weight? Within ± 5g of JMF?	
10. Placed the sample pan in the nuclear machine and pressed the start/enter button	
(16 min count test)	
11. Get the results from a printed report or computer?	

Reporting	
1. Subtracted the moisture (T329), from the AC and report actual AC to the nearest	
0.1%	
2. Recorded the gauge readings for: Background count, Test count, and %AC on daily	
plant inspectors report or diary.	

PASS PASS

FAIL FAIL

Proctor/Auditor's Signature:	Date	2: