

Data-Driven Safety Training Application Areas Part 1 Design Exceptions

Carlos Sun, Praveen Edara, Yaw Adu-Gyamfi University of Missouri Missouri Center for Transportation Innovation

Outline

1 Design Exception

Circumstances for application Nominal vs. substantive safety

Documentation and analysis

- 2 Traffic Impact Study
- 3 Design Build

4 Safety Programming

- Circumstances
 - Inability to meet design criteria
 - technically impossible to reasonably meet
 - Potential for additional value and practicality
- See MoDOT EPG 131.1 Design Exception Process

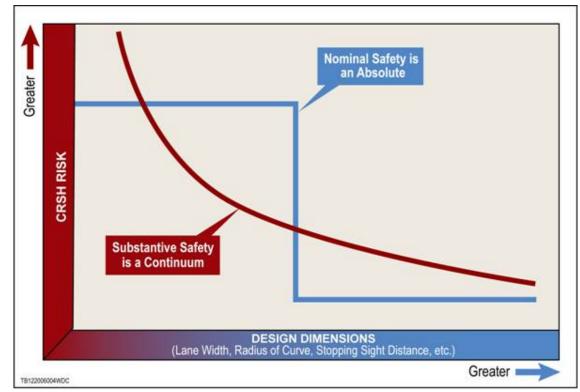
Design Exceptions FHWA 10 controlling criteria - NHS with design speed > 50 mph

Examples of criteria related to HSM safety analysis

- design speed
- lane width
- shoulder width
- horizontal curve radius
- superelevation rate
- stopping sight distance

- Approval process depends if on NHS or not
- Projects of Divisional Interest (PODI) FHWA approval
- MoDOT approval only

- Not a breach of policy
- Alternate design approach with potential
 - add practicality or value
 - improve safety



- Actual/substantive vs. nominal safety
- Design codes reduce safety analysis to just meeting codes
 - Codes are rigid, often do on reflect site-specific conditions
- Alternative is to perform a specific safety analysis
- Specific safety analysis is a more accurate assessment of safety
 - It takes into account site-specific conditions

Substantive vs. Nominal Safety

Substantive safety is a continuum Nominal safety is an absolute, inflexible

FHWA Safety 2020

- Nominal vs. actual/substantive safety
- Nominal
 - compliance with applicable standards, guidelines, procedures, etc.
 - e.g. AASHTO Green Book, MUTCD
 - guidelines typically address only one element of design without taking into account full array of factors that affect safety
 - binary

- Nominal vs. actual/substantive safety
- Substantive
 - not binary, but a continuum
 - safety can be improved even over a nominal design

- Analysis and documentation
 - justification for design exception
 - exercise of reasonable care in selecting design
 - comparison of safety and operational performance

- HSM safety analysis
 - expected change in crashes from existing to standard design
 - expected change in crashes from existing to design exception
- i.e. HSM modeling
 - existing/no change
 - standard design
 - design exception