Data-Driven Safety Training
 Freeway Segment Safety Analysis

 Part 1 Segmentation

 Part 1 Segmentation}

Carlos Sun, Praveen Edara, Yaw Adu-Gyamfi
University of Missouri
Missouri Center for Transportation Innovation

Outline
1 Safety analysis methodology and segmentation
2 Data requirements
3 Laclede I-44 example
4 Laclede I-44 solution

Freeway Segments vs. Interchanges

- HSM scope
- Freeway segments
- rural and urban
- 4 or 6 lanes
- speed change lanes
- uncontrolled terminal between a ramp and a freeway
- ramps
- Freeway interchanges
- Workshop focuses on urban 4-lane segments

Safety Prediction Structure

- crashes (N) = SPF x CMFs x C
- SPF prediction based on level of exposure: traffic and segment length
- CMFs modification based on other facility characteristics, e.g. lane width, median barriers, curve radius
- C calibrates the national model to our Missouri conditions

Types of Crashes

- Types of crashes modeled differently
- Single vehicle (sv) vs. multi-vehicle (mv)
- different mechanism at play, so model differently
- e.g. common sv is run off the road due to inattention
- e.g. common mv is rear end with congestion ahead
- it takes two to tango

Severity of Crashes

- Severity of crashes modeled differently
- Fatal and injury (FI) vs. property damage only (PDO)
- different mechanism at play, so model differently
- more serious crashes have different mechanism than minor crashes

TRANSPORTATION
INNOVATION

Combine Various Types of Crashes

- $\mathrm{N}(\mathrm{tot})=\mathrm{N}(\mathrm{mv}, \mathrm{Fl})+\mathrm{N}(\mathrm{sv}, \mathrm{FI})+\mathrm{N}(\mathrm{mv}, \mathrm{PDO})+\mathrm{N}(\mathrm{sv}, \mathrm{PDO})$
- $\mathrm{N}($ tot $)=$ combined total
- $N(m v, F I)=$ multi-vehicle, fatal + injury
- $\mathrm{N}(\mathrm{sv}, \mathrm{FI})=$ single vehicle, fatal + injury
- $\mathrm{N}(\mathrm{mv}, \mathrm{PDO})=$ multi-vehicle, property damage only
- $N(s v, ~ P D O)=$ single vehicle, property damage only

Freeway Segment SPF

$$
N=L^{*} \times \exp \left(a+b \times \ln \left[c \times A A D T_{f s}\right]\right)
$$

- $L^{*}=$ effective length of freeway segment (mi)
- $A A D T_{f s}=$ AADT volume of freeway segment (veh/day)
- $a, b, c=$ regression coefficients
- This is the base model
- tweak by using CMFs

Freeway Segment SPF

$$
N=L^{*} \times \exp \left(a+b \times \ln \left[c \times A A D T_{f s}\right]\right)
$$

- $L^{*}=$ effective length of freeway segment (mi);
- effective because we adjust the physical length by components such as the speed-change lanes

Segmentation

- Purpose - produce homogenous segments
- with respect to characteristics such as traffic volumes, key geometric design features, and traffic control
- Why homogeneous segments?
- homogeneous segments have similar safety performance,
- if segments change in characteristics, their safety performance also changes

Segmentation Illustrated

PLAN VIEW

Segmentation Illustrated

COMPONENT PARTS

Freeway Segment

Effective segment length, $L^{*}=L_{\text {fs }}-L_{e n} / 2-L_{e x} / 2$
(note: freeway segment length does not include the length of speed-change lanes, if these lanes are adjacent to the segment)

Segmentation Example 1

- Traditional symmetric diamond interchange
- Speed-change lane distance
- on-ramp=gore to taper, off-ramp=taper to gore
- Here ~417 ft of speed change lane for WB on-ramp

Segmentation Example 1

- Assume 1 mile segment, $\mathrm{L}_{\mathrm{fs}}=5280 \mathrm{ft}$, includes interchange
- For an entire interchange with 2 on and off ramps
- WBon=417 ft, WBoff=224 ft, EBon=647ft, Eboff=340ft
- $\mathrm{L}^{*}=\mathrm{L}_{\mathrm{fs}}-417 / 2-224 / 2-657 / 2-340 / 2=4461 \mathrm{ft}$

Segmentation Example 2

- I-44 \& S. Berry Rd. near St. Louis, asymmetric east side ramps
- Speed change: WB off ramp 710.34 ft , EB on ramp 642.02 ft

Segmentation Example 2

- Again, assume 1 mile segment, $\mathrm{L}_{\mathrm{fs}}=5280 \mathrm{ft}$, includes interchange
- Speed change length: WBoff=710.34 ft, EBon=642.02 ft
- $\mathrm{L}^{*}=\mathrm{L}_{\mathrm{fs}}-710.34 / 2-642.02 / 2=4603.82 \mathrm{ft}$

Segmentation Example 3

- MO-370 \& Earth City Expy, partial cloverleaf

Segmentation Example 3

- Assume 4000 ft segment, includes interchange
- Speed change lengths: WBon=626.83 ft, WBoff= 941.96 ft (clover), EBon=800.70 ft, EBoff=776.82 ft
- $L^{*}=4000-626.83 / 2-941.96 / 2-800.7 / 2-776.82 / 2=2426.85 \mathrm{ft}$

