Data-Driven Safety Training
 Rural Multilane Safety Analysis Part 2 Example

Carlos Sun, Praveen Edara, Yaw Adu-Gyamfi
University of Missouri
Missouri Center for Transportation Innovation

Outline

1 Introduction to RML HSM
2 Input data
3 Centertown US-50 sample exercise
4 Centertown US-50 sample solution

Centertown US-50 Exercise

- Rural multilane divided highway
- Near City of Centertown, Cole County
- Beginning log mile 134.43
- End log mile 136.61
- Length 2.18 mile

Centertown US-50

Data Collection Example

Data for US-50

Description	Site Condition
Year	$2013-2015$
Length	2.18 mi
AADT	$8,016 \mathrm{vpd}$
Lane Width	12 ft
Right Paved Shoulder Width	10 ft
Median Width	60 ft
Lighting	None
Automated Speed Enforcement	None
Calibration	0.74
Observed Crashes	9 over 3 years

US-50 Exercise
Learning recommendation

- Given data collected for Centertown US-50 site, attempt the modeling on your own first
- Review the modeling performed by the instructor
- Compare and note any differences

HSM Spreadsheet

- HSM_CPM_RuralMultilaneRoads_v3.0.xlsx
- Download from
- http://www.highwaysafetymanual.org/Pages/Tools.aspx
- Instructions worksheet provides an overview of the spreadsheet

Color Used
Type of Information Required from User

- e.g. colors indicate info needed

Required input information as identified in the HSM.

Input data required from the user but restricted to options provided in pull-down boxes.

Optional input information that can be used to supplement the analysis if this
information is available. This optional input

HSM Spreadsheet Solution

- Spreadsheet set up to model entire rural segment, including intersections
- Our example focuses on rural multilane divided
- Use worksheet Segment_Divided_1
- Enter General Information

2	Worksheet 1A -- General Information and Input Data for Rural Multilane Roadway Segments			
3	General Information			nation
4		Carlos Sun	Roadway	US 50 W
5		University of Missouri	Roadway Section	MM134.43 to MM136.61
6		01/19/20	Jurisdiction	MoDOT
7			Analysis Year	2015

Enter Site Conditions

- Length = 2.18
- $\mathrm{AADT}=8,016$
- Lane width = 12
- Shoulder width, right = 10
- Shoulder type = paved
- Median width $=60$
- Lighting and Automated Enforcement = not present
- Calibration factor $=0.74$

HSM Spreadsheet Solution

Roadway type (divided / undivided)
Length of segment, L (mi)
AADT (veh/day)
Lane width (ft)
Shoulder width (ft) - right shoulder width for divided [if diffe
Shoulder type - right shoulder type for divided
Median width (ft) - for divided only
Side Slopes - for undivided only
Lighting (present/not present)
Auto speed enforcement (present/not present)
Calibration Factor, Cr

Site Conditions

Divided

2.18
8,016
12
10
Paved
60

Not Applicable
Not Present
Not Present
0.74

CMF Results

- Since many values are the same as default values
(CMF=1)
- Note the 60 ft median had a small reduction, 0.96
- CMFs are multiplicative, so total CMF=0.96
- HSM assumption of CMF independence

Worksheet 1B (a) -- Crash Modification Factors for Rural Multilane Divided Roadway Segments					
(1)	(2)	(3)	(4)	(5)	(6)
CMF for Lane Width	CMF for Right Shoulder Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1rd	CMF 2rd	CMF 3rd	CMF 4rd	CMF 5rd	CMF comb
from Equation 11-16	from Table 11-17	from Table 11-18	from Equation 11-17	from Section 11.7.2	$(1)^{\star}(2)^{\star}(3)^{\star}(4)^{\star}(5)$
1.00	1.00	0.96	1.00	1.00	0.96

Predicted Crashes

- SPF predicts base crashes = 3.267
- Multiply by CMFs and calibration factor,
- total crashes = 2.321 crashes/year
- Fl crashes also predicted

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments

(1)	(2)			(3)	(4)	(5)	(6)	7)
Crash Severity Level	SPF Coefficients			N spf rd	Overdispersion Parameter, k	Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs(d) }}$ $-(3)^{\star}(5)^{\star}(6)$
	from Table 11-5					(6) from Worksheet$1 \mathrm{~B}(\mathrm{a})$		
	a	b	C	frem-Equation 11.9	from Equation 11-10			
Total	-9.025	1.049	1.549	3.267	0.097	0.96	0.74	2.321
Fatal and Injury (FI)	-8.837	0.958	1.687	1.740	0.085	0.96	0.74	1.236
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	-8.505	0.874	1.740	1.140	0.081	0.96	0.74	0.810
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) TOTAL $-(7)_{\text {FI }}$
								1.085

By Collision Type

- Countermeasures could be specific to collision types
- e.g. RML divided, majority SV, probably runoff the road
- e.g. runoff the road, consider edgeline rumble
- e.g. head-on \& angle, consider guard cable

Worksheet		
(1)	(2)	(9)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted }}$ s(d) (PDO) (crashes/year)
	$\begin{gathered} \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	(7)poo from Worksheet 1C (a)
Total	1.000	1.085
		(8)* ${ }^{*}$) ${ }_{\text {PDO }}$
Head-on collision	0.006	0.002
Sideswipe collision	0.043	0.058
Rear-end collision	0.116	0.095
Angle-eollision -	$0 . \overline{0} 4 \overline{3}-$	-----0.044
Single-vehicle collision	0.768	0.859 _-
Other collision ${ }^{-}$-------	0.024	0.026

Empirical Bayes Adjustment

- Expected crashes from observed and predicted
- Here, w=0.816, prediction has high reliability
- From prediction $=2.321$ adjust up to expected $=$ 2.446

Worksheet 3A -- Predicted and Observed Crashes by Severity and Site Type Using the Site-Specific EB Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Site type	Predicted average crash frequency (crashes/year)			Observed crashes, $\mathrm{N}_{\text {observed }}$ (crashes/year)	Overdispersion Parameter, k	Weighted adjustment, w	Expected average crash frequency,
	$\mathrm{N}_{\text {predicted }}$ (TOTAL)	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \end{aligned}$			Equation A-5 from Part C Appendix	Equation A-4 from Part C Appendix
ROADWAY SEGMENTS (DIVIDED)							
Segment_Divided_1	2.321	1.236	1.085	3.000	0.097	0.816	$\ldots 246 \ldots$

Empirical Bayes Adjustment Mechanics

- Overdispersion parameter, k
- $k=\frac{1}{e^{(c+\ln (L))}}, \mathrm{c}=1.549$ for RML divided
- $w=\frac{1}{1+k x \sum_{\text {all study years }} N_{\text {predicted }}}$
- $N_{\text {expected }}=w x N_{\text {predicted }}+(1-w) x N_{\text {observed }}$
- $k=0.097$ and $w=0.816$
- Spreadsheet automates HSM equations

