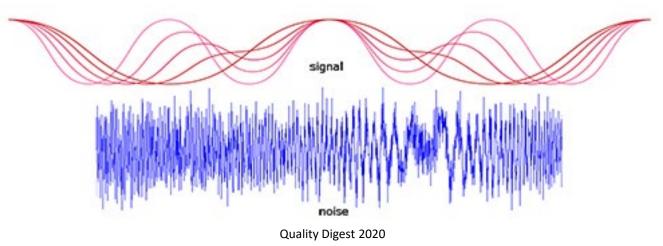
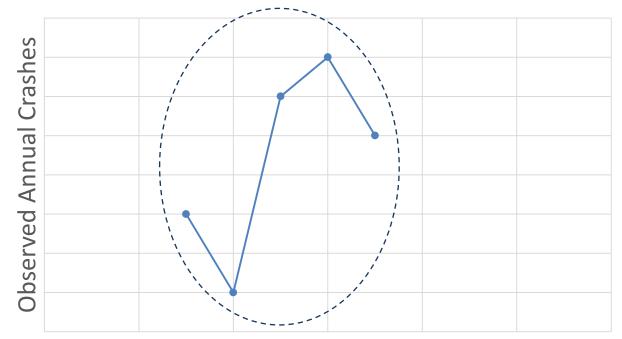


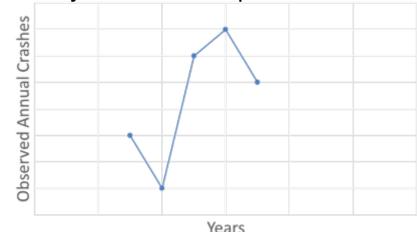
Data-Driven Safety Training Introduction Part III

Carlos Sun, Praveen Edara, Yaw Adu-Gyamfi University of Missouri

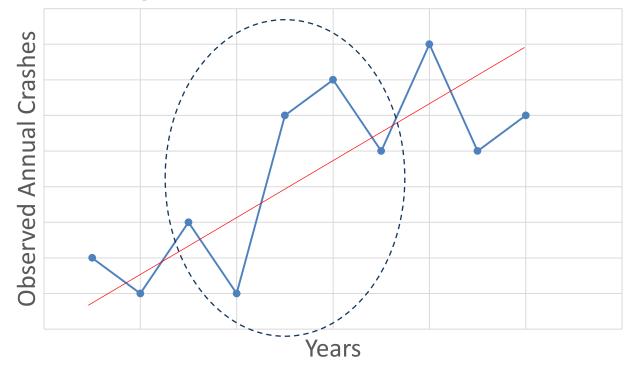

Missouri Center for Transportation Innovation


Outline

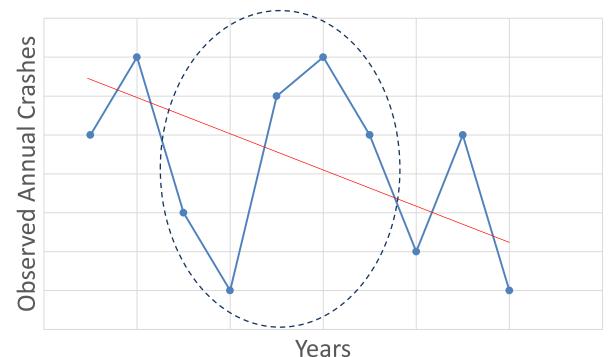
- Background/motivation
- Subjective vs. objective safety
- Complexity of traffic crashes & data
- Regression to the mean bias
- Review of statistics
- Use and application of data-driven safety methods


- Definition
 - making decisions based on limited data (noise) that is not representative of actual underlying trends

• Example - tracking intersection crashes for 5 years



- Example tracking intersection crashes for 5 years
 - Given the increase in crashes for the past 3 years, should we?
 - Look into making intersection safety improvements?
 - Ignore since last 3 years was just a random spike?
 - Wait for more data?



• What if the long term trend was ...

• What if the long term trend instead was ...

- Data-driven safety seeks to discover the underlying trend
- Avoid making decision using small sample sizes
- Example naïve before/after study after implementing a safety countermeasure
 - 3 years before = 9 crashes/year
 - 3 years after = 3 crashes/year
 - was the countermeasure effective?
 - numbers do not lie, or do they?

- How do data-driven safety methods
 - counter small sample size problems?
 - mitigate the RTM bias?
- By using more data, how?
 - take advantage of national crash databases
 - take advantage of national safety research
 - applying Empirical Bayes method: predicted + observed
- Example rural 4-lane interstates
 - use data from multiple states with similar facilities

Empirical Bayes Adjustment

- Observed crash frequency comes directly from the relevant site
 - advantage from the relevant site at issue
 - disadvantage only one site, small sample
- Predicted crash frequency comes from a large national database + Missouri calibration database
 - advantage data from multiple similar sites, larger sample
 - disadvantage uncaptured differences between relevant site and similar sites

Empirical Bayes Adjustment

- Use both observed and predicted
- Compute a reliability weight between 0 and 1
 - to trust observed or predicted more
 - w=1 only rely on predicted
 - w=0 only rely on observed
- overdispersion is a measure of the reliability of the predicted value, used to compute w

- But things are a bit different in Missouri
 - we are not as flat as KS
 - our drivers are more polite than those aggressive East Coast drivers
 - we get snow unlike many cities in the west coast

- But things are a bit different in Missouri
- We calibrate our prediction models to our State's conditions and produce our own severity distributions

- Rural multilane divided highway example
- 2.18 miles of US 50 W in Centertown, Cole County
 - use national data to predict safety as 9.83 total crashes per 3 years
 - apply MO calibration factor of 0.74, then predicted safety is changed to 7.27 crashes/3 years instead
 - combine predicted crash with observed crash number of 9 crashes/3 years using Empirical Bayes
 - 7.81 crashes/ 3 years