

Data-Driven Safety Training Introduction Part II

Carlos Sun, Praveen Edara, Yaw Adu-Gyamfi University of Missouri

Missouri Center for Transportation Innovation

Outline

- Background/motivation
- Subjective vs. objective safety
- Complexity of traffic crashes & data
- Regression to the mean bias
- Review of statistics
- Use and application of data-driven safety methods

Definitions

- crash
 - set of events

- resulting in injury or property damage
- due to the collision of at least one vehicle with another vehicle, pedestrian, bicyclist, fixed object
- crash frequency
 - # crashes/year for a particular transportation facility
 - e.g. road segment(s), intersection(s)

Why Use Crash Frequency?

- Measurable, data is collected by police
- Quantitative, easy to use
- Standard unit, can compare across different jurisdictions
- Follows a known statistical distribution, so can be modeled
- Can be used to forecast/predict future crash frequency, alternate conditions, or new facility

Review of Data-Driven Safety Theory

- Complexity of traffic crashes and data
- Review of statistics fundamentals
- How to overcome challenges in safety analysis

Complexity of Traffic Crashes & Data How do crashes occur and what determines severity?

- Not a singular cause but convergence of a series of events
 - not before-crash factors only
- Data driven methods examines multiplicity of contributing factors

Complexity of Traffic Crashes & Data

- Examples
 - before vehicle w/worn brakes/tires, driver inattention
 - during air-bag deployed properly to cushion impact
 - after EMS delayed by congestion leading to loss of blood

Complexity of Traffic Crashes & Data Large number of possible factors, examples:

- behavior of multiple drivers interacting –aggressiveness, inattention, impairment
- vehicle char's braking, acceleration, center of gravity
- pavement char's surface friction
- geometric design horizontal and vertical curves, superelevation, median, type of shoulder
- land use –alcohol establishments, ped generation (e.g. bus stops)
- traffic control permitted/yield, right turn on red
- weather snow, ice, rain

Complexity of Traffic Crashes & Data Large number of possible factors, examples:

- Even when the confluence of these different factors creates a perfect storm, a crash still might not result
 - e.g. driver/ped takes evasive maneuvers to prevent crash

Complexity of Traffic Crashes & Data Crashes are random & rare events, statistically

- Crashes are random
 - # of crashes fluctuates over time and are influenced by large # of factors
 - does not mean that the underlying factors are not measurable or identifiable
- Crashes are rare
 - only represent a small fraction of total amount of travel
 - 1.18 fatality per 100 million VMT (2016 NHTSA)

Complexity of Traffic Crashes & Data

- Categorize crashes as rare and random events in a statistical sense to understand data-driven safety methods
- Not to trivialize
 - ~35k fatal crashes (~900 in Missouri)
 - ~6M crashes per year

Complexity of Traffic Crashes & Data Challenges in applying data-driven safety methods

- large # of factors
- some factors no direct measurement, rely on surrogates, e.g. driver aggressiveness
- measurement errors estimate vertical grades using topographic map
- subjective assignment of data, e.g. intersection-related crash even though far away?
- conflicting data, e.g. witnesses conflict
- data entry errors

Complexity of Traffic Crashes & Data

- Given crashes are rare random occurrences, they fluctuate naturally over time
- Use of small samples -> likely only random fluctuations are captured and not underlying trend
 - Example
 - A large number of crashes occurred at a particular intersection
 - Was this due to natural fluctuations?
 - Or was the number of crashes unusually high for such a type of intersection?
 - Problem of "regression to the mean" bias