Appendix D ## **Alternatives Development and Screening Details** | | | | Alignm | ent with Transporta | tion Goals (Good, Fai | r, Poor) | | | Alignment with Impact Minimization Goals
(Good, Fair, Poor) | | | |---|---|--|--|--|--|---|---|---|--|---|--| | Segment 1 Conceptual Strategies (Route Z to Route K) | Reduce potential
for crashes
(including crashes
involving bike/ped) | Maintain/preserve physical conditions of infrastructure | Improve LOS on mainline and at interchanges | Reduce congestion
on parallel road
system | Improve efficiency
of access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction issues | | Reduce/eliminate conflict points at interchanges | • | • | $lue{lue}$ | 0 | 0 | lacksquare | 0 | • | • | • | 0 | | For Segment 1, this might involve configuration changes (DDI, SPUI, roundabouts), reconfiguring outer roads/service roads at interchanges, or lengthening ramps, and could necessitate small amounts of additional ROW. Most bike/ped incidents occurred at Route K. | Would substantially address a prevalent cause of vehicular crashes because 65% of vehicular crashes in this segment occur at interchanges. Could also address source of bike/ped crashes; however, some configurations are not bike/ped friendly (e.g., high-volume roundabouts). | May address
deteriorating
infrastructure at
interchanges if they are
reconfigured. | Could improve LOS at interchanges. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | No high priority freight
bottlenecks identified in
this segment, but could
indirectly reduce
impediments to freight
movement by alleviating
congestion. | Not likely to improve
accessibility to public
transportation. | Could improve access if bike/ped facilities are improved or added during interchange reconfigurations. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Interchange improvements may have impacts, but they are not likely to require substantial property acquisition/relocations due to ample ROW and relatively sparse development surrounding the interchanges in this segment. | Could result in
substantial traffic or
utility disruption. | | Address weave sections | • | • | \bigcirc | 0 | 0 | lacksquare | 0 | 0 | • | • | lacksquare | | For Segment 1, this would likely involve adding auxiliary lanes, which likely could be done within ROW. | Would substantially address a prevalent cause of vehicular crashes because 44% of vehicular crashes in this segment occur in weave sections. Would not address bike/ped. | May address
deteriorating
infrastructure on
mainline. | Could improve LOS on mainline. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | No high priority freight bottlenecks identified in this segment, but could indirectly reduce impediments to freight movement by alleviating congestion. | Not likely to improve accessibility to public transportation. | Not likely to improve
active transportation
access to major
destinations and local
network. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW and relatively few sensitive natural resources exist adjacent to the interstate. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in moderate traffic or utility disruption. | | Bring facility to standards (address substandard curves, narrow shoulders, etc.) | • | • | 0 | 0 | • | • | 0 | • | • | • | • | | Some bridge heights in this segment are substandard. | If bridges are replaced,
may reduce the potential
for bike crashes related
to poor bike/ped
facilities or poor
pavement conditions at
interstate crossings. | Would address needs for infrastructure repair/ replacement along the corridor. | Not likely to result in a
measurable
improvement in LOS. | Not likely to reduce
congestion on parallel
road system. | May improve efficiency of access to freight hubs by raising low-clearance bridges. | Bringing infrastructure to
standards would reduce
impediments for large
commercial vehicles. | Not likely to improve accessibility to public transportation. | Could offer opportunity
to add/improve
bike/ped facilities if
bridges are replaced. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW and relatively few sensitive natural resources exist adjacent to the bridges. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in moderate
traffic or utility
disruption. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | | | | | Alignm | nent with Transporta | tion Goals (Good, Fai | ir, Poor) | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | |---|--|---|--|---|---|---|---|--|--|---|--| | Segment 1 Conceptual Strategies (Route Z to Route K) | Reduce potential
for crashes
(including crashes
involving bike/ped) | Maintain/preserve
physical conditions
of infrastructure | Improve LOS on
mainline and at
interchanges | Reduce congestion
on parallel road
system | Improve efficiency
of access to freight
hubs | Minimize/
eliminate
impediments to
freight movement
along the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction issues | | Improve operations of interchanges | • | lacksquare | • | 0 | 0 | • | 0 | • | • | O | 0 | | For Segment 1, would likely involve interchange reconfigurations, such as changing standard diamonds to DDI or SPUI – this could likely occur within ROW. | May address factors
related to vehicular
crashes. Not likely to
reduce potential for
bike/ped crashes. | May address
deteriorating
infrastructure at
interchanges through
capacity improvements. | Would improve LOS at
interchanges to meet
MoDOT standards. | Not likely to reduce
congestion on parallel
road
system. | Not likely to improve
efficiency of access to
freight hubs. | No high priority freight bottlenecks identified in this segment, but could indirectly reduce impediments to freight movement by alleviating congestion. | Not likely to improve
accessibility to public
transportation. | Could offer opportunity
to add/improve
bike/ped facilities if
interchanges are
reconfigured. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW surrounding the interchanges in this segment and relatively few sensitive natural resources. | Interchange improvements may have impacts, but they are not likely to require substantial property acquisition/relocations due to ample ROW and relatively sparse development surrounding the interchanges in this segment. | Could result in
substantial traffic and
utility disruption. | | Add mainline capacity
(general purpose lanes or
managed lanes) | • | • | • | • | 0 | • | 0 | 0 | • | 0 | • | | Assumes one additional lane in each direction, with impacts beyond existing ROW. | May address factors related to vehicular crashes. Not likely to reduce potential for bike/ped crashes. | May address deteriorating infrastructure on the mainline through capacity improvements. | Could improve LOS on mainline. | Could reduce congestion on parallel road system if reduced congestion on the interstate draws more trips. | Not likely to improve
efficiency of access to
freight hubs. | No high priority freight bottlenecks identified in this segment, but could indirectly reduce impediments to freight movement by alleviating congestion and improving pavement conditions. | Not likely to improve
accessibility to public
transportation. | Not likely to improve
active transportation
access to major
destinations and local
network. | There are relatively few sensitive natural resources abutting the interstate, but adding travel lanes could result in moderate impacts to wetlands/waters/ floodplains. | Adding additional lanes could require substantial property acquisition with some relocations. | Could result in moderate traffic disruption. | | Implement TSM measures | ← | 0 | \odot | $\overline{\bullet}$ | 0 | • | 0 | 0 | • | • | • | | For Segment 1, this might include signal timing optimization, ramp metering, or signing/striping improvements. | May address factors related to vehicular crashes. Not likely to reduce potential for bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS on
mainline and at
interchanges. | Could improve LOS on parallel road system. | Not likely to improve
efficiency of access to
freight hubs. | No high priority freight bottlenecks identified in this segment, but could indirectly reduce impediments to freight movement by alleviating congestion. | Not likely to improve
accessibility to public
transportation. | Not likely to improve
active transportation
access to major
destinations and local
network. | TSM measures are not likely to result in physical impacts beyond the current paved area and could reduce VMT, which would reduce emissions and non-point source pollutants. | TSM measures are not likely to result in physical impacts beyond the current paved area. | TSM measures could be implemented with minimal disruption to traffic or utilities. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | | | | | Alignm | ent with Transporta | tion Goals (Good, Fai | r, Poor) | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | |--|---|---|--|--|---|---|--|--|---|--|---| | Segment 1 Conceptual
Strategies (Route Z to
Route K) | Reduce potential
for crashes
(including crashes
involving bike/ped) | Maintain/preserve
physical conditions
of infrastructure | Improve LOS on mainline and at interchanges | Reduce congestion
on parallel road
system | Improve efficiency
of access to freight
hubs | Minimize/
eliminate
impediments to
freight movement
along the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction issues | | Upgrade infrastructure to
better accommodate
freight (including
implementation of MoDOT
and Freightway priority
projects) | • | • | 0 | 0 | • | | 0 | • | • | • | • | | Freight needs in this segment consist of pavement rehabilitation and increasing bridge clearance. | If bridges are replaced,
may reduce potential for
bike crashes related to
poor bike/ped facilities
or poor pavement
conditions at interstate
crossings. | May address
deteriorating
infrastructure. | Would not result in a
measurable
improvement in LOS. | Not likely to reduce
congestion on parallel
road system. | Would improve
efficiency of access to
freight hubs. | Would reduce
impediments for large
commercial vehicles. | Not likely to improve accessibility to public transportation. | Could offer opportunity
to add/improve
bike/ped facilities if
bridges are replaced. | Not likely to adversely impact the surrounding natural environment. | Not likely to result in physical impacts to the surrounding built environment. | Could result in moderate
traffic and utility
disruption. | | High-cost transit
enhancements (commuter
rail, light rail) | 0 | 0 | \bigcirc | 0 | 0 | 0 | $\overline{\bullet}$ | - | lacksquare | 0 | 0 | | Ratings assume this would be a facility parallel to I-70 and would require additional ROW. | Not likely to address the cause of vehicular or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve efficiency of access to freight hubs. | Not likely to eliminate
impediments to freight
movement and may
increase them. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access stations. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | There are relatively few sensitive natural resources abutting the interstate, but adding rail transit could result in moderate impacts to wetlands/waters/ floodplains. | Adding rail transit could require substantial property acquisition with numerous relocations. | Could result in
substantial traffic and
utility disruption. | | Moderate-cost transit
enhancements (BRT, bus
only lanes, larger capacity
buses/trains) | 0 | 0 | • | 0 | 0 | 0 | • | • | • | • | • | | Assumes BRT could be implemented mostly within the existing ROW. | Not likely to address the cause of vehicular or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate
impediments to freight
movement. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access transit. | Could offer opportunity to add/improve bike/ped connections to BRT stations and may offer regional access to some households without access to vehicles. | There are relatively few sensitive natural resources abutting the interstate, but adding BRT or bus-only lanes could result in moderate impacts to wetlands/waters/floodplains. | Transit enhancements may have impacts, but they are not likely to require substantial property acquisition/relocations since they would likely occur entirely or mostly within existing ROW. | Could result in moderate traffic disruption. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | | | | | Alignm | ent with Transportat | tion Goals (Good, Fai | r, Poor) | | | Alignment | with Impact Minimiz
(Good, Fair, Poor) | ation Goals | |--
--|---|--|--|---|--|--|--|---|---|---| | Segment 1 Conceptual Strategies (Route Z to Route K) | Reduce potential
for crashes
(including crashes
involving bike/ped) | Maintain/preserve physical conditions of infrastructure | Improve LOS on mainline and at interchanges | Reduce congestion
on parallel road
system | Improve efficiency
of access to freight
hubs | Minimize/
eliminate
impediments to
freight movement
along the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction issues | | Low-cost transit enhancements (add express routes, increase service frequency, bus priority) | 0 | 0 | • | 0 | 0 | 0 | • | • | | • | | | Expansion of local transit system. | Not likely to address the cause of vehicular or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve efficiency of access to freight hubs. | Not likely to eliminate impediments to freight movement. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access transit. | Could offer opportunity
to add/improve
bike/ped connections to
transit stations and offer
regional access to some
households without
access to vehicles. | Not likely to result in impacts to sensitive natural resources and may have benefits through reduced VMT. | Not likely to impact
adjacent land use and
would increase
accessibility to adjacent
land uses. | Improvements could likely be implemented with minimal disruption to traffic or utilities. | | Add and/or improve bike/ped facilities crossing I-70 and improve bike/ped connections to the larger bike/ped network | | • | 0 | 0 | 0 | 0 | • | | | • | | | In Segment 1, this would likely include improvements at existing crossings. | Would substantially address a prevalent cause of bike/ped crashes. | May address
deteriorating
infrastructure. | Would not result in a
measurable
improvement in LOS. | Not likely to reduce congestion on parallel road system. | Not likely to improve efficiency of access to freight hubs. | Not likely to eliminate
impediments to freight
movement. | Bike/ped enhancements
could improve public
transportation access if
combined with transit
system expansion in this
area. | Would directly improve active transportation connectivity and access. | Not likely to result in impacts to sensitive natural resources and may have benefits through reduced VMT. | Not likely to impact
adjacent land use and
would increase
accessibility to adjacent
land uses. | Improvements could likely be implemented with minimal disruption to traffic or utilities. | | Improve local/parallel road system | $\overline{\bullet}$ | • | $\overline{\bullet}$ | • | lacksquare | 0 | 0 | $lue{lue}$ | lacksquare | $\overline{\bullet}$ | lacksquare | | For Segment 1, this would include improving capacity, improving operations at intersections, and managing access of the outer road system. | Could offer opportunity
to add/improve ped/bike
facilities when roads are
improved. | May address
deteriorating
infrastructure. | Could improve LOS on mainline and interchanges. | Would improve LOS on parallel road system. | Could improve efficiency of access to freight hubs. | Not likely to eliminate
impediments to freight
movement. | Not likely to improve accessibility to public transportation. | Could offer the
opportunity to
add/improve bike/ped
facilities as part of outer
road improvements | Could have impacts, but
they are not likely to be
substantial. | Connecting route improvements may have impacts, but they are not likely to be substantial since there is ample ROW. | Could result in moderate
traffic and utility
disruption. | | | | | | Alignment with Tr | ansportation Goals | s (Good, Fair, Poor) | | | | Alignment v | vith Impact Minimiz
(Good, Fair, Poor) | ation Goals | |--|--|---|--|--|---|---|---|--|--|--|---|--| | Segment 2 Conceptual
Strategies
(Route K to Highway 94) | Reduce potential
for crashes
(including crashes
involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction
issues | | Reduce/eliminate conflict points at interchanges | • | • | • | 0 | • | • | 0 | • | • | • | • | 0 | | For Segment 2, this might involve configuration changes (DDI, SPUI, roundabouts) or lengthening ramps and could necessitate small amounts of additional ROW. Two ped fatalities in this segment, but not at interchanges. | Would substantially address a prevalent cause of vehicular crashes because 74% of vehicular crashes in the segment occur at interchanges. | Would address deteriorating infrastructure at interchanges through improvements to eliminate conflict points. | Could improve LOS at interchanges. | Not likely to reduce
congestion on parallel
road system. | Could improve efficiency of freight movement at interchanges that serve freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve
accessibility to public
transportation. | Could improve access if bike/ped facilities are improved or added during interchange reconfigurations. | Could improve interstate connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements could result in moderate impacts due to number of creek crossings and area of floodplain abutting the interstate in this segment. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW. | Could result in
substantial traffic or
utility disruption. | | Address weave sections | lacksquare | lacksquare | $\overline{\bullet}$ | 0 | 0 | \bigcirc | 0 | 0 | 0 | $lue{lue}$ | • | \bigcirc | | For Segment 2, this would likely involve adding auxiliary lanes, which likely could be done within ROW. | Could address a potential source of vehicular crashes, but none occurred in weave sections between 2012 and 2016. Would not address bike/ped. | May address
deteriorating
infrastructure on
mainline. | Could improve LOS on mainline. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve access to freight hubs. | Could help address source of high priority freight bottlenecks identified in this segment. | Not likely to improve accessibility to public transportation. |
Not likely to improve active transportation access to major destinations and local network. | Not likely to provide interstate connections serving current/future development/ redevelopment areas. | Could require minor widening. Impacts could be moderate due to number of creek crossings and area of floodplain abutting the interstate in this segment. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in
moderate traffic or
utility disruption. | | Bring facility to standards
(address substandard
curves, narrow shoulders,
etc.) | • | • | 0 | 0 | • | • | 0 | • | 0 | • | • | \bigcirc | | Some bridge heights in this segment are substandard. | If bridges are replaced,
may reduce the
potential for bike
crashes related to
poor pavement
conditions or other
issues at interstate
crossings. | May address
deteriorating
infrastructure on
mainline. | Not likely to result in a
measurable
improvement in LOS. | Not likely to reduce
congestion on parallel
road system. | May improve efficiency of access to freight hubs by raising low-clearance bridges on access routes. | Bringing infrastructure
to standards would
meet requirements for
large commercial
vehicles. | Not likely to improve accessibility to public transportation. | Could offer
opportunity to
add/improve bike/ped
facilities if bridges are
replaced. | Not likely to provide interstate connections serving current/future development/ redevelopment areas. | Could require minor widening. Impacts could be moderate due to number of creek crossings and area of floodplain abutting the interstate in this segment. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in
moderate traffic or
utility disruption. | | Goal Rankings | | | |---------------|------|------------| | Good | Fair | O_{Poor} | | | | | | Alignment with Tr | ansportation Goals | (Good, Fair, Poor) | | | | Alignment with Impact Minimization Goals
(Good, Fair, Poor) | | | | |--|--|--|--|---|--|--|---|---|---|--|--|---|--| | Segment 2 Conceptual
Strategies
(Route K to Highway 94) | Reduce potential
for crashes
(including crashes
involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction
issues | | | Improve operations of interchanges | Θ | • | • | 0 | Θ | • | 0 | Θ | • | Θ | Θ | 0 | | | For Segment 2, would likely involve interchange reconfigurations such as changing standard diamonds to DDI or SPUI – this could likely occur within ROW. | May address factors
related to vehicular
crashes. Not likely to
reduce potential for
bike/ped crashes. | May address
deteriorating
infrastructure at
interchanges through
capacity
improvements. | Would improve LOS at interchanges to meet MoDOT standards. | Not likely to reduce
congestion on parallel
road system. | Could improve
efficiency of freight
movement at
interchanges that
serve freight hubs | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve
accessibility to public
transportation. | Could offer opportunity to add/improve bike/ped facilities if interchanges are reconfigured. | Could improve connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements could result in moderate impacts due to number of creek crossings and area of floodplain abutting the interstate in this segment. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW. | Could result in
substantial traffic or
utility disruption. | | | Add mainline capacity (general purpose lanes or managed lanes) | - | • | • | • | 0 | • | 0 | 0 | 0 | 0 | 0 | • | | | Assumes one additional lane in each direction with impacts beyond existing ROW. | May address factors related to vehicular crashes. Not likely to reduce potential for bike/ped crashes. | May address
deteriorating
infrastructure when
other improvements
are implemented. | Would improve LOS on
mainline to meet
MoDOT standards. | Could reduce congestion on parallel road system if reduced congestion on the interstate draws more trips. | Not likely to improve access to freight hubs. | Could address high priority freight bottlenecks identified in this segment. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Adding travel lanes could result in substantial impacts to jurisdictional waters and floodplains. | Adding travel lanes could require substantial property acquisition with some relocations. | Could result in
moderate traffic
disruption. | | | Implement TSM measures | lacksquare | 0 | lacksquare | lacksquare | 0 | • | 0 | 0 | 0 | | • | | | | For Segment 2, this might include signal timing optimization, ramp metering, or signing/striping improvements. | May address factors
related to vehicular
crashes. Not likely to
reduce potential for
bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS on
mainline and
interchanges. | Could reduce
congestion on parallel
road system. | Not likely to improve access to freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve
accessibility to public
transportation. | Not likely to improve
active transportation
access to major
destinations and local
network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | TSM measures are not likely to result in physical impacts beyond the current paved area and could reduce VMT, which would reduce emissions and nonpoint source pollutants. | TSM measures are not
likely to result in
physical impacts
beyond the current
paved area. | TSM measures could
be implemented with
minimal disruption to
traffic or utilities. | | | Goal Rankings | | | |---------------|------------------|-------------------| | Good | $igoplus_{Fair}$ | \bigcirc_{Poor} | | ENVISION | |----------| | I:76 | | | | | | Alignment with Tr | ansportation Goals | (Good, Fair, Poor) | | | | Alignment v | vith Impact Minimiz
(Good, Fair, Poor) | zation Goals | |---|---|---|--|--|---|---|--|---|---|---
---|---| | Segment 2 Conceptual
Strategies
(Route K to Highway 94) | Reduce potential
for crashes
(including crashes
involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction
issues | | Upgrade infrastructure to better accommodate freight (including implementation of MoDOT and Freightway priority projects) | - | | 0 | 0 | | | 0 | - | 0 | • | | • | | Freight needs in this segment consist of pavement rehabilitation and increasing bridge clearance. | If bridges are replaced,
may reduce potential
for bike crashes
related to poor
pavement conditions
or other issues at
interstate crossings. | Would address needs for infrastructure repair/replacement along the corridor. | Would not result in a measurable improvement in LOS. | Not likely to reduce
congestion on parallel
road system. | Would improve
efficiency of access to
freight hubs. | Would improve conditions for commercial vehicles. | Not likely to improve accessibility to public transportation. | Could offer
opportunity to
add/improve bike/ped
facilities if bridges are
replaced. | Not likely to provide interstate connections. | Not likely to adversely impact the surrounding natural environment. | Not likely to result in physical impacts to the surrounding built environment. | Could result in
moderate traffic and
utility disruption. | | High cost transit
enhancements (commuter
rail, light rail) | 0 | 0 | - | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | | Ratings assume this would be a facility parallel to I-70 and would require additional ROW. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate impediments to freight movement and may increase them. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access stations. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | Would not improve interstate access for current/future development/ redevelopment areas. | Adding rail transit could result in substantial impacts to wetlands/waters/floodplains. | Adding rail transit could require substantial property acquisition with numerous relocations. | Could result in
substantial traffic and
utility disruption. | | Moderate cost transit
enhancements (BRT, bus
only lanes, larger capacity
buses/trains) | 0 | 0 | • | 0 | 0 | 0 | • | • | 0 | • | • | • | | Assumes BRT could be implemented mostly within the existing ROW. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate
impediments to freight
movement. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access stations. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | Would not improve interstate access for current/future development/ redevelopment areas. | Adding BRT or bus-
only lanes could result
in moderate impacts
to wetlands/waters/
floodplains. | Adding BRT or bus-
only lanes may have
impacts, but they are
unlikely to require
substantial property
acquisition/
relocations since they
would likely occur
entirely or mostly
within existing ROW. | Minimal disruption to
traffic or utilities
expected. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | | | | | | Alignment with Tr | ansportation Goals | s (Good, Fair, Poor) | | | | Alignment v | vith Impact Minimi
(Good, Fair, Poor) | zation Goals | |--|---|---|--|--|---|---|---|--|--|--|---|--| | Segment 2 Conceptual
Strategies
(Route K to Highway 94) | Reduce potential
for crashes
(including crashes
involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved accessibility to public transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction
issues | | Low cost transit enhancements (add express routes, increase service frequency, bus priority) | 0 | 0 | • | 0 | 0 | 0 | • | • | 0 | • | • | • | | Expansion of local transit system. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate
impediments to freight
movement. | Would improve access to public transportation. Due to low density development in this segment, most residents would need a car to access transit. | Could offer opportunity to add/improve bike/ped connections to transit stations and offer regional access to some households without access to vehicles. | Would not improve interstate access for current/future development/ redevelopment areas. | Would not have physical impacts and may benefit the natural environment through reduced VMT. | Would not have physical impacts and would increase accessibility for adjacent land uses. | No adverse effects to
traffic or utilities
expected. | | Add and/or improve
bike/ped facilities crossing
I-70 and improve bike/ped
connections to the larger
bike/ped network | • | • | 0 | 0 | 0 | 0 | • | • | 0 | • | • | • | | In Segment 2, this would likely include improvements at existing crossings. | Would substantially address a prevalent cause of bike/ped crashes. | May address
deteriorating
infrastructure. | Would not result in a
measurable
improvement in LOS. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to
minimize/eliminate
impediments to freight
movement. | Bike/ped enhancements could improve public transportation access if combined with transit system expansion in this area. | Would directly improve active transportation connectivity and access. | Would not improve interstate access for current/future development/ redevelopment areas. | Not likely to result in impacts to sensitive natural resources and may have benefits through reduced VMT. | Not likely to impact
adjacent land uses and
would increase
accessibility to
adjacent land uses. | Improvements
could
likely be implemented
with minimal
disruption to traffic o
utilities. | | Improve local/parallel road system | $\overline{\bullet}$ | $\overline{}$ | lacksquare | • | lacksquare | $\overline{\bullet}$ | 0 | $\overline{\bullet}$ | $\overline{\bullet}$ | lacksquare | lacksquare | lacksquare | | For Segment 2, this would include improving capacity, improving operations at intersections, and managing access of the outer road system. | Could offer
opportunity to
add/improve ped/bike
facilities when roads
are improved. | May address
deteriorating
infrastructure. | Could improve LOS on
mainline and
interchanges. | Would reduce
congestion on parallel
road system. | Could improve
efficiency of access to
freight hubs. | Could indirectly reduce impediments to freight movement by alleviating congestion. | Not likely to improve
accessibility to public
transportation. | Could offer
opportunity to
add/improve ped/bike
facilities when roads
are improved. | Could provide access
for current/future/
redevelopment areas,
but may not be direct,
and efficiency may be
impacted by
congestion. | Impacts could be moderate due to number of creek crossings and area of floodplain abutting the interstate in this segment. | May have impacts, but they are unlikely to require substantial property acquisition/relocations since they would likely occur entirely or mostly within existing ROW. | Could result in
moderate traffic
disruption. | | ~ ~ ~ ~ ~ ~ | ENVISION | |-------------|-----------------| | | I ·7 | | | | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | | | | | | | |---|---|---|---|---|---|---|--|---|--|---|---|---| | Segment 2 Conceptual
Strategies
(Route K to Highway 94) | Reduce potential
for crashes
(including crashes
involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved
accessibility to
public
transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize impacts
to the natural
environment | Minimize impacts
to the built
environment | Minimize
construction
issues | | Add/improve interstate connections to state/local routes | • | • | • | • | 0 | 0 | 0 | 0 | • | • | • | 0 | | Could involve improvements to Hwy 79, 370, 270, 170. | Could address factors
related to bike/ped
crashes. | May address
deteriorating
infrastructure. | Could improve LOS on
mainline and
interchanges. | Could reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to address
impediments to freight
movement. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Could provide access for current/future/ redevelopment areas, but may not be direct, and efficiency may be impacted by congestion. | Impacts could be moderate due to number of creeks and area of floodplain in this segment. | Connecting route improvements may have impacts, but they are not likely to be substantial due to ample ROW. | Could result in
substantial traffic and
utility disruption. | | | | | | Alignmen | nt with Transportat | tion Goals (Good, F | air, Poor) | | | Alignment v | vith Impact Minimi
(Good, Fair, Poor) | | |--|---|---|--|--|---|--|---|--|--|--|--|---| | Segment 3 Conceptual
Strategies
(Highway 94 to I-270) | Reduce potential
for crashes
(including
crashes involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and at
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved
accessibility to
public
transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | Reduce/eliminate conflict points at interchanges | • | | • | 0 | 0 | - | 0 | ○ | ○ | • | • | lacksquare | | For Segment 3, this might involve configuration changes (DDI, SPUI, roundabouts) or lengthening ramps and probably doesn't require additional ROW. Little or no bike/ped incidents in this segment. | Would substantially address a prevalent cause of vehicular crashes because 60% of vehicular crashes in the segment occur at interchanges. | Would address deteriorating infrastructure at interchanges through improvements to eliminate conflict points. | Could improve LOS at interchanges. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve efficiency of access to freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve accessibility to public transportation. | Could improve access if bike/ped facilities are improved or added during interchange reconfigurations. | Could improve connections to adjacent development/redevel opment areas through improved operations at interchanges. | Interchange
improvements could
impact jurisdictional
waters. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW. | Could result in
moderate traffic or
utility disruption. | | Address weave sections | $\overline{\bullet}$ | igorplus | • | 0 | 0 | - | 0 | 0 | 0 | Θ | lacksquare | 0 | | For Segment 3, this would likely involve adding auxiliary lanes, which likely could be done within the ROW. | Would address one cause of vehicular crashes. 12% of vehicular crashes in this segment occur in weave sections. Would not address bike/ped. | May address
deteriorating
infrastructure on
mainline. | Could improve LOS on mainline. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve efficiency of access to freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Could require minor widening. Impacts could be moderate due to proximity of jurisdictional waters in this segment. | Could require minor widening and may have impacts, but they are unlikely to require substantial property acquisition/relocation s since they would occur mostly within existing ROW. | Could result in substantial traffic or utility disruption. | | Improve operations of interchanges | lacksquare | igorplus | • | 0 | 0 | lacksquare | 0 | lacksquare | lacksquare | 0 | lacksquare | 0 | | For Segment 3, would likely involve
reconfigurations such as changing standard diamonds to DDI or SPUI – this could occur within ROW. | May address factors related to vehicular crashes. Not likely to reduce potential for bike/ped crashes. | May address
deteriorating
infrastructure at
interchanges through
capacity
improvements. | Would improve LOS at interchanges to meet MoDOT standards. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve
accessibility to public
transportation. | Could offer opportunity to add/improve bike/ped facilities if interchanges are reconfigured. | Could improve interstate connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements could have substantial impacts due to proximity of jurisdictional waters. | Interchange improvements may have impacts, but they are unlikely to require substantial property acquisition/relocation s due to ample ROW surrounding the interchanges in this segment. | Could result in
substantial traffic and
utility disruption. | ## **Goal Rankings** | | | | | Alignmer | nt with Transporta | tion Goals (Good, F | air, Poor) | | | Alignment with Impact Minimization Goals
(Good, Fair, Poor) | | | | | |---|--|---|--|---|---|--|--|---|--|--|--|---|--|--| | Segment 3 Conceptual
Strategies
(Highway 94 to I-270) | Reduce potential
for crashes
(including
crashes involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and at
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved
accessibility to
public
transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | | | Add mainline capacity (general purpose lanes or managed lanes) | • | • | • | • | 0 | • | 0 | 0 | 0 | 0 | 0 | | | | | Assumes one additional lane in each direction with impacts beyond existing ROW. | May address factors related to vehicular crashes. Not likely to reduce potential for bike/ped crashes. | May address
deteriorating
infrastructure when
other improvements
are implemented. | Would improve LOS
on mainline to meet
MoDOT standards. | Could reduce congestion on parallel road system if reduced congestion on the interstate draws more trips. | Not likely to improve access to freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Adding travel lanes
could result in
substantial impacts to
jurisdictional waters
and floodplains. | Adding travel lanes could require substantial property acquisition with some relocations. | Could result in
moderate traffic
disruption. | | | | Implement TSM measures | • | 0 | • | • | 0 | - | 0 | 0 | 0 | • | • | | | | | For Segment 3, this might include signal timing optimization, ramp metering, or signing/striping improvements. | May address factors related to vehicular crashes. Not likely to reduce potential bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS on
mainline and at
interchanges. | Could reduce
congestion on parallel
road system. | Not likely to improve access to freight hubs. | Could help address
source of high priority
freight bottlenecks
identified in this
segment. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | TSM measures are not likely to result in physical impacts beyond the current paved area and could reduce VMT, which would reduce emissions and nonpoint source pollutants. | TSM measures are not
likely to result in
physical impacts
beyond the current
paved area. | TSM measures could
be implemented with
minimal disruption to
traffic or utilities. | | | | Upgrade infrastructure to better accommodate freight (including implementation of MoDOT and Freightway priority projects) | 0 | • | 0 | 0 | • | • | 0 | 0 | 0 | • | • | • | | | | Freight needs in this segment consist of pavement rehabilitation. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Would address needs for infrastructure repair/replacement along the corridor. | Would not result in a
measurable
improvement in LOS. | Not likely to reduce congestion on parallel road system. | Would improve
efficiency of access to
freight hubs. | Would reduce impediments for large commercial vehicles. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to provide
transportation
network connections. | Not likely to result in physical impacts to the surrounding natural environment. | Not likely to result in physical impacts to the surrounding built environment. | Could result in
moderate traffic and
utility disruption. | | | | High cost transit enhancements (commuter rail, light rail) | 0 | 0 | • | 0 | 0 | 0 | • | • | 0 | 0 | 0 | 0 | | | | Ratings assume this would be a facility parallel to I-70 and would require additional ROW. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate
impediments to
freight movement and
may increase them. | Would improve access
to public
transportation. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | Adding rail transit would not improve interstate access for current/future development/ redevelopment areas. | Adding rail transit
could result in
substantial impacts to
wetlands/waters/
floodplains. | Adding rail transit could require substantial property acquisition with numerous relocations. | Could result in
substantial traffic and
utility disruption. | | | ## **Goal Rankings** | | | | | Alignmer | nt with Transporta | tion Goals (Good, F | air, Poor) | | | Alignment v | vith Impact Minim
(Good, Fair, Poor) | | |---|---|---|--|--|---|---|---|---|--|--|--
---| | Segment 3 Conceptual
Strategies
(Highway 94 to I-270) | Reduce potential
for crashes
(including
crashes involving
bike/ped) | Maintain/
preserve physical
conditions of
infrastructure | Improve LOS on
mainline and at
interchanges | Reduce
congestion on
parallel road
system | Improve
efficiency of
access to freight
hubs | Minimize/
eliminate
impediments to
freight
movement along
the corridor | Allow improved accessibility to public transportation | Improve active
transportation
access to major
destinations and
local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | Moderate cost transit
enhancements (BRT, bus only
lanes, larger capacity
buses/trains) | 0 | 0 | - | 0 | 0 | 0 | • | • | 0 | • | - | • | | Assumes BRT could be implemented mostly within the existing ROW. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate
impediments to
freight movement. | Would improve access
to public
transportation. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | Would not improve interstate access for current/future development/ redevelopment areas. | Adding BRT or bus-
only lanes could result
in moderate impacts
to wetlands/waters/
floodplains. | Transit enhancements may have impacts, but they are unlikely to require substantial property acquisition/ relocations since they would likely occur entirely or mostly within existing ROW. | Improvements could
likely be implemented
with minimal
disruption to traffic or
utilities. | | Low cost transit enhancements (add express routes, increase service frequency, bus priority) | 0 | 0 | • | 0 | 0 | 0 | • | - | 0 | • | • | • | | Expansion of local transit or Metro
System in this segment. | Not likely to address
the cause of vehicular
or bike/ped crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS by reducing VMT, but would not substantially address congestion. | Not likely to reduce
congestion on parallel
road system. | Not likely to improve efficiency of access to freight hubs. | Not likely to eliminate
impediments to
freight movement. | Would improve access
to public
transportation. | Could offer opportunity to add/improve bike/ped connections to stations and offer regional access to households without access to vehicles. | Would not improve interstate access for current/future development/ redevelopment areas. | Enhancements to existing transit system would not have physical impacts and may benefit the natural environment through reduced VMT. | Transit enhancements would not have physical impacts and would increase accessibility for adjacent land uses. | No adverse effects to
traffic or utilities
expected. | | Add and/or improve bike/ped facilities crossing I-70 | • | lacksquare | 0 | 0 | 0 | 0 | • | • | 0 | lacksquare | • | • | | | Would substantially address a prevalent cause of bike/ped crashes. | May address
deteriorating
infrastructure. | Would not result in a
measurable
improvement in LOS. | Not likely to reduce congestion on parallel road system. | Not likely to improve
efficiency of access to
freight hubs. | Not likely to eliminate impediments to freight movement. | Would directly improve access to public transportation. | Would directly improve active transportation connectivity and access. | Would not improve interstate access for current/future development/ redevelopment areas. | Unlikely to result in impacts to sensitive natural resources and may have benefits through reduced VMT. | Not likely to impact
adjacent land use and
would increase
accessibility for
adjacent land uses. | Improvements could
likely be implemented
with minimal
disruption to traffic or
utilities. | | Improve local/parallel road system | lacksquare | lacksquare | • | • | lacksquare | lacksquare | 0 | lacksquare | • | lacksquare | lacksquare | lacksquare | | For Segment 3, this would include adding or improving outer roads and potentially improving access between outer roads and I-70. Goal Rankings | Could offer opportunity to add/improve ped/bike facilities when roads are improved. | May address
deteriorating
infrastructure. | Could improve LOS on
mainline and
interchanges. | Would reduce
congestion on parallel
road system. | Could improve
efficiency of access to
freight hubs. | Could indirectly reduce impediments to freight movement by alleviating congestion. | Not likely to improve
accessibility to public
transportation. | Could offer
opportunity to
add/improve
ped/bike facilities
when roads are
improved. | Could provide access for current/future/ redevelopment areas, but may not be direct, and efficiency may be impacted by congestion. | Impacts could be
moderate depending
on proximity to river
and floodplain. | May have impacts,
but they are unlikely
to require substantial
property
acquisition/relocation
s since they would
likely occur entirely or
mostly within existing
ROW. | Could result in
moderate traffic
disruption. | **Goal Rankings** O_{Poor} | | | Alignment with Transportation Goals (Good, Fair, Poor) | | | | | | | | | | | Alignment with Impact Minimization Goals
(Good, Fair, Poor) | | | | |--|---|---|---|--|---|--|---|---|--|---|--|---|--|--|--|--| | Segment 4 Conceptual Strategies (I-270 to Florissant Road) | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS on mainline and at interchanges | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Improve access to Lambert Airport for passengers, employees, and freight/cargo | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | | | | Reduce/eliminate conflict points at interchanges | • | • | | \odot | 0 | lacksquare | lacksquare | 0 | lacksquare | lacksquare | lacksquare | lacksquare | lacksquare | | | | | For Segment 4, this might involve configuration changes (DDI, SPUI, roundabouts) or lengthening ramps and probably doesn't require additional ROW. Two pedestrian fatalities at interchanges. | Would substantially address a prevalent cause of vehicular crashes because 58% of vehicular crashes in this segment occur at interchanges. Could also address source of bike/ped crashes. | Would substantially address a prevalent cause of vehicular crashes because 58% of the vehicular crashes in this segment are at interchanges. Could also address source of bike/ped crashes. | Would address deteriorating infrastructure at interchanges through improvements to eliminate conflict points. | Could improve LOS
at interchanges. | Not likely to
improve access to
freight hubs. | Could reduce impediments if substandard bridge heights are addressed through interchange reconfigurations and indirectly by addressing congestion. | Could indirectly improve access to the airport by addressing safety and improving operations at interchanges accessing the airport. | Not likely to improve
accessibility to public transportation. | Could offer opportunity to add/improve bike/ped facilities if interchanges are reconfigured. | Could improve connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW | Could result in
moderate traffic or
utility disruption. | | | | | Consolidate and improve access points at airport and throughout segment | • | • | $lue{lue}$ | $\overline{\bullet}$ | 0 | → | → | 0 | → | • | • | • | $\overline{\bullet}$ | | | | | For Segment 4, some interchanges could be consolidated to minimize access to/from the interstate by the use of collector/distributor lanes (i.e. Florissant/Hanley) | Would substantially address a prevalent cause of vehicular crashes because 58% of vehicular crashes in this segment occur at interchanges. Could also address source of bike/ped crashes. | Would substantially address a prevalent cause of vehicular crashes because 58% of the vehicular crashes in this segment are at interchanges. Could also address source of bike/ped crashes | May address
deteriorating
infrastructure at
interchanges. | Could improve LOS
on mainline and at
interchanges. | Not likely to
improve access to
freight hubs. | Could indirectly reduce impediments to freight by addressing congestion. | Could indirectly improve access to the airport by addressing congestion. | Not likely to
improve
accessibility to
public
transportation. | May provide
opportunities to
improve bike/ped | Could improve connections to adjacent development/ redevelopment areas through improved operations at interchanges. | May have impacts, but they are not likely to be substantial due to ample ROW and relatively few sensitive natural resources surround the interchanges in this segment. | May have impacts,
but they are not
likely to be
substantial due to
ample ROW | Could result in
moderate traffic or
utility disruption. | | | | | Goal Rankings | | | |---------------|------|------------| | Good | Fair | O_{Poor} | I-7 | | | Alignment with Transportation Goals (Good, Fair, Poor) | | | | | | | | | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | | |---|--|--|--|---|---|--|--|---|---|---|--|--|--|--|--|--| | Segment 4 Conceptual
Strategies
(I-270 to Florissant Road) | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS on mainline and at interchanges | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Improve access to Lambert Airport for passengers, employees, and freight/cargo | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | | | | Improve operations of interchanges | ○ | ○ | $\overline{\bullet}$ | • | 0 | $\overline{\bullet}$ | - | 0 | $\overline{\bullet}$ | • | \bigcirc | • | 0 | | | | | For Segment 4, would likely involve reconfigurations such as changing standard diamonds and cloverleafs to DDI or SPUI – this could occur within ROW. | May address factors
related to vehicular
crashes. Could also
address source of
bike/ped crashes. | May address factors
related to vehicular
crashes. Could also
address source of
bike/ped crashes. | May address
deteriorating
infrastructure at
interchanges
through capacity
improvements. | Would improve LOS
at interchanges to
meet MoDOT
standards. | Not likely to improve access to freight hubs. | Could reduce impediments if substandard bridge heights are addressed through interchange reconfigurations and indirectly by addressing congestion. | Could indirectly improve access to the airport by addressing congestion. | Not likely to improve accessibility to public transportation. | Could offer
opportunity to
add/improve
bike/ped facilities if
interchanges are
reconfigured. | Could improve connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements may have impacts, but they are not likely to be substantial due to ample ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Interchange
improvements may
have impacts, but
they are not likely to
be substantial due
to ample ROW. | Could result in
substantial traffic
and utility
disruption. | | | | | Address weave sections | → | • | $\overline{\bullet}$ | - | 0 | - | - | 0 | 0 | 0 | | • | $lue{lue}$ | | | | | For Segment 4, this would likely involve adding auxiliary lanes, which likely could be done within the ROW. | Would substantially address a cause of vehicular crashes because 25% of vehicular crashes in this segment occur in weave sections. Would not address bike/ped. | Would improve high crash locations. | May address
deteriorating
infrastructure on
mainline. | Could improve LOS
on mainline and at
interchanges. | Not likely to improve efficiency of access to freight hubs. | Could indirectly reduce impediments to freight by addressing congestion. | Could indirectly improve access to the airport by addressing congestion. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Could require minor widening. Impacts are likely to be minor since they would occur almost entirely within existing ROW and relatively few sensitive natural resources exist adjacent to the interstate. | Could require minor widening. Impacts are likely to be minor since they would occur almost entirely within existing ROW. | Could result in
moderate traffic or
utility disruption. | | | | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | I-70 | Segment 4 Conceptual
Strategies
(I-270 to Florissant Road) | | | | Alignmen | t with Transporta | tion Goals (Good | , Fair, Poor) | | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | | |---|--|---|--|--|--|---|--|---|--|---|---
---|---|--| | | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/ preserve physical conditions of infrastructure | Improve LOS on
mainline and at
interchanges | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Improve access to Lambert Airport for passengers, employees, and freight/cargo | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | | Bring facility to current
standards (address
substandard curves, narrow
shoulders, etc.) | • | • | • | - | • | • | • | 0 | • | 0 | <u> </u> | • | • | | | Some bridge heights and shoulder widths (mainly inside) are substandard in this segment. | Several substandard curves could be addressed in this section, which could greatly reduce potential crashes. | Several substandard curves could be addressed in this section which could greatly reduce potential crashes. | Would address
needs for
infrastructure
repair/ replacement
along the corridor. | Could improve LOS
on mainline and at
interchanges. | May improve efficiency of access to freight hubs by raising low- clearance bridges on access routes. | Bringing
infrastructure to
standards would
meet requirements
for large commercial
vehicles. | Could indirectly improve access to the airport by addressing congestion. | Not likely to
improve
accessibility to
public
transportation. | Could offer
opportunity to
add/improve
bike/ped facilities if
bridges are
replaced. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Could require widening. Impacts are not likely to be substantial since they would occur mostly within existing ROW and relatively few sensitive natural resources exist adjacent to the interstate. | Could require widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in
moderate traffic or
utility disruption. | | | Add mainline capacity (general purpose lanes or managed lanes) | $\overline{\bullet}$ | • | - | - | 0 | - | • | 0 | 0 | 0 | 0 | 0 | • | | | Assumes one additional lane in each direction with impacts beyond existing ROW. | Would address a cause of vehicular crashes because 17 % of vehicular crashes in this segment are rearend crashes, which are often related to congestion. Would not address bike/ped. | Would improve high crash locations. | May address
deteriorating
infrastructure on
the mainline
through capacity
improvements. | Could improve LOS
at interchanges and
on mainline. | Not likely to
improve efficiency
of access to freight
hubs. | Could address congestion and new lanes would have better pavement conditions, which both address impediments to freight movement. | Could indirectly improve access to the airport by addressing congestion. | Not likely to
improve
accessibility to
public
transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Adding lanes could
have substantial
impacts to natural
resources. | Adding lanes could require substantial property acquisition with some relocations. | Could result in
moderate traffic
disruption. | | | Upgrade infrastructure to better accommodate freight (including implementation of MoDOT and Freightway priority projects) | • | - | • | 0 | • | • | • | 0 | - | 0 | - | - | • | | | Freight needs in this segment consist of pavement rehabilitation and increase bridge clearance | If bridges are replaced, may reduce the potential for bike crashes related to poor pavement conditions or other issues at interstate crossings. | If bridges are replaced, may reduce the potential of bike crashes related to poor pavement conditions or other issues at interstate crossings | Would address
needs for
infrastructure
repair/replacement
along the corridor. | Would not result in a measurable improvement in LOS. | Would improve efficiency of access to freight hubs. | Would reduce
impediments for
large commercial
vehicles. | Would improve access to the airport for freight. | Not likely to
improve
accessibility to
public
transportation. | Could offer
opportunity to
add/improve
bike/ped facilities if
bridges are
replaced. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Could require widening. Impacts are not likely to be substantial since they would occur mostly within existing ROW and relatively few sensitive natural resources exist adjacent to the interstate. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in
moderate traffic
and utility
disruption. | | | Goal Rankings | | | |---------------|------|------------| | Good | Fair | O_{Poor} | | | | | | Alignmen | t with Transporta | tion Goals (Good | , Fair, Poor) | | | | Alignment w | ith Impact Minin
(Good, Fair, Poor | | |---|---|---|---|--|---|--|--|---|---|---|--|--|--| | Segment 4 Conceptual
Strategies
(I-270 to Florissant Road) | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/ preserve physical conditions of infrastructure | Improve LOS on
mainline and at
interchanges | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Improve access to Lambert Airport for passengers, employees, and freight/cargo | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | Improve [freight] access to the airport | $\overline{\bullet}$ | $\overline{\bullet}$ | 0 | \odot | • | • | | 0 | 0 | lacksquare | • | lacksquare | 0 | | Assumes interchange access would also be designed to accommodate freight and large/oversized loads. | May address factors
related to vehicular
crashes. Not likely
to reduce potential
for bike/ped
crashes. | May address factors
related to vehicular
crashes. Not likely
to reduce potential
for bike/ped
crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS at interchanges. | Would improve
efficiency of access
to freight hubs. | Would reduce
impediments for
freight access to the
airport. | Would improve
access to the airport
for freight. | Improved freight access not likely to improve public transportation access. | Improved freight access is not likely to improve active transportation. | Could improve connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Improvements may have impacts, but they are not likely to be substantial due to ample ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Improvements may
have impacts, but
they are not likely to
be substantial due
to ample ROW. | Could result in
substantial traffic or
utility disruption. | | Improve wayfinding at the airport | lacksquare | $\overline{\bullet}$ | 0 | \odot | 0 | 0 | • | 0 | lacksquare | 0 | | • | • | | This may include better signage at consolidated interchanges to direct patrons in and around the airport. | Better signage could reduce the potential for crashes. | Better signage could reduce the potential for crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS
on mainline at the
airport. | Not likely to improve efficiency of access to freight
hubs. | Not likely to reduce impediments to freight movement. | Would improve access to the airport for passengers. | Not likely to improve accessibility to public transportation. | Would not directly improve active transportation, but may encourage use of active transportation. | Not likely to improve interstate connections of current/future development/redevel opment areas. | Not likely to result
in impacts to
sensitive natural
resources. | Not likely to impact adjacent land use. | Improvements could likely be implemented with minimal disruption to traffic or utilities. | | Implement TSM measures | lacksquare | $\overline{\bullet}$ | 0 | lacksquare | 0 | lacksquare | 0 | 0 | 0 | 0 | | | • | | For Segment 4, this might include signal timing optimization, ramp metering, or signing/striping improvements | May address factors
related to vehicular
crashes. Not likely
to reduce potential
for bike/ped
crashes. | May address factors
related to vehicular
crashes. Not likely
to reduce potential
for bike/ped
crashes. | Not likely to address
deteriorating
infrastructure. | Could improve LOS
on mainline and at
interchanges. | Not likely to improve efficiency of access to freight hubs. | Could indirectly reduce impediments to freight by addressing congestion. | Not likely to improve access to the airport. | Not likely to improve accessibility to public transportation. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | TSM measures are not likely to result in physical impacts beyond the current paved area and could reduce VMT, which would reduce emissions and non-point source pollutants. | TSM measures are
not likely to result in
physical impacts
beyond the current
paved area. | TSM measures
could be
implemented with
minimal disruption
to traffic or utilities. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | |
ENVISION | |--------------| | I:70 | | | | | | Alignmen | t with Transporta | tion Goals (Good | , Fair, Poor) | | | | Alignment with Impact Minimization Goa
(Good, Fair, Poor) | | | | |---|--|--|--|--|--|--|--|---|--|---|--|---|---|--| | Segment 4 Conceptual
Strategies
(I-270 to Florissant Road) | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS on
mainline and at
interchanges | Improve
efficiency of
access to freight
hubs | Minimize/ eliminate impediments to freight movement along the corridor | Improve access to Lambert Airport for passengers, employees, and freight/cargo | Allow improved accessibility to public transportation | Improve active transportation access to major destinations and local network | Provide/improve interstate connections serving current/ future development/ redevelopment areas | Minimize
impacts to the
natural
environment | Minimize
impacts to the
built
environment | Minimize
construction
issues | | | Moderate cost transit
enhancements (BRT, bus only
lanes, larger capacity
buses/trains) | 0 | 0 | 0 | • | 0 | 0 | • | • | • | 0 | • | • | • | | | Assumes BRT could be implemented mostly within the existing ROW | Not likely to address
the cause of
vehicular or
bike/ped crashes. | Not likely to address
the cause of
vehicular or
bike/ped crashes | Not likely to address
deteriorating
infrastructure. | Could improve LOS
by reducing VMT,
but would not
substantially
address congestion. | Not likely to
improve efficiency
of access to freight
hubs. | Not likely to reduce
impediments to
freight movement. | Could improve
access to the airport
for passengers and
employees. | Would improve
access to public
transportation. | Could offer opportunity to add/improve bike/ped connections to BRT stations and may offer regional access to some households without access to vehicles. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | May have impacts, but they are not likely to be substantial since there are relatively few sensitive natural resources adjacent to the interstate in this segment. | Transit enhancements may have impacts, but they are unlikely to require substantial property acquisition/ relocations since they would likely occur entirely or mostly within existing ROW. | Unlikely to result in
notable traffic
disruption. | | | Low cost transit
enhancements (add express
routes, increase service
frequency, bus priority) | 0 | 0 | 0 | • | 0 | 0 | • | • | • | 0 | • | • | • | | | Assumes adding express routes, improving bus connections to MetroLink stops at airport, increasing service frequency, bus priority, etc | Not likely to address
the cause of
vehicular or
bike/ped crashes. | Not likely to address
the cause of
vehicular or
bike/ped crashes | Not likely to address
deteriorating
infrastructure. | Could improve LOS
by reducing VMT,
but would not
substantially
address congestion. | Not likely to improve efficiency of access to freight hubs. | Not likely to reduce impediments to freight movement. | Could improve
access to the airport
for passengers and
employees. | Would improve
access to public
transportation. | Would offer regional access to some households without access to vehicles. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Enhancements to the existing transit system would not have physical impacts and may benefit the natural environment through reduced VMT. | Transit enhancements would not have physical impacts and would increase accessibility for adjacent land uses. | No adverse effects
to traffic or utilities
expected. | | | Add and/or improve bike/ped facilities crossing I-70 and improve bike/ped connections to the larger network and airport | • | • | • | 0 | 0 | 0 | • | • | • | 0 | • | | | | | Allow for planned bike/ped improvements across I-70 | Would substantially address a prevalent cause of bike/ped crashes. | Would substantially
address a prevalent
cause of bike/ped
crashes | May address
deteriorating
infrastructure. | Would not result in
a measurable
improvement in
LOS. | Not likely to improve efficiency of access to freight hubs. | Not likely to reduce impediments to freight movement. | Could improve access to the airport for passengers and employees. | Would improve access to public transportation. | Would improve
active
transportation. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Not likely to result
in impacts to
sensitive natural
resources and may
have benefits
through reduced
VMT. | Not likely to impact
adjacent land use
and would increase
accessibility for
adjacent land uses. | Improvements
could likely be
implemented with
minimal disruption
to traffic or utilities. | | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | amps would not be located at major streets: and operations at be improved. interchanges would few sensitive natural resources abutting the interstate in this segment. appropriate access to consolidate interchanges. utility disruption. Wentzville to City of St. Louis public transportation. options. without access to vehicles. if interchanges are reconfigured. | Goal Rankings | | | |---------------|------------------|-------------------| | Good | $igoplus_{Fair}$ | O _{Poor} | crashes in this segment occur at interchanges. Could also address source of bike/ped crashes. this segment occur at interchanges. Could also address source of bike/ped crashes. interchanges. along mainline. lanes. improve access to/from Broadway freight area. **ENVISION** interstate by the use of collector/distributor lanes. points and weave patterns. ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study. | | | | | | Alignment v | vith Transport | ation Goals (Go | od, Fair, Poor) | | | | | Alignment with Impact Minimization Goals
(Good, Fair, Poor) | | | |
---|--|--|--|--|--|--|---|---|--|--|---|--|---|---|--|--| | Segment 5 Conceptual Strategies (Florissant Road to end of Express Lanes) | Reduce
potential for
crashes
(including
crashes
involving
bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS
on mainline
and at
interchanges | *Optimize
the function
of the
existing
express lanes | Improve
efficiency of
access to
freight hubs | Minimize/
eliminate
impediments
to freight
movement
along the
corridor | Allow
improved
accessibility to
public
transportation | Increase
transportation
options for
households
without access
to vehicles | Improve travel times between St Louis City and suburban employment centers for households without access to vehicles | Improve active transportation access to major destinations and local network | Provide/ improve interstate connections serving current/future development/ redevelopment areas | Minimize
impacts to
the natural
environment | Minimize
impacts to
the built
environment | Minimize
construction
issues | | | Address weave sections | $lue{lue}$ | • | $lue{lue}$ | • | 0 | 0 | lacksquare | 0 | 0 | 0 | 0 | 0 | - | $\overline{\bullet}$ | lacksquare | | | For Segment 5, this would likely involve adding auxiliary lanes, which likely could be done within the ROW. | Would substantially address a cause of vehicular crashes because 24% of vehicular crashes in this segment occur in weave sections. Would not address bike/ped. | Would substantially address a cause of vehicular crashes because 24% of vehicular crashes in this segment occur in weave sections. Would not address bike/ped. | May address
deteriorating
infrastructure on
mainline. | Could improve
LOS on mainline
and at
interchanges. | Not likely to optimize function of the express lane areas. | Not likely to improve access to freight hubs. | Could indirectly reduce impediments to freight by addressing congestion. | Not likely to
improve
accessibility to
public
transportation. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW and relatively few sensitive natural resources exist adjacent to the interstate. | Could require minor widening. Impacts are likely to be minor since they would occur mostly within existing ROW. | Could result in
moderate traffic or
utility disruption. | | | Improve operations of interchanges/provide full access interchanges | • | • | • | • | 0 | • | • | 0 | 0 | 0 | • | • | • | • | 0 | | | Assumes improvements would include providing full access where there is currently only one direction. This could involve reconfigurations if deemed viable to accommodate freight vehicles. | Would address
factors related to
vehicular crashes.
Could reduce
potential for
bike/ped crashes. | Would address
factors related to
vehicular crashes.
Could reduce
potential for
bike/ped crashes. | May address
deteriorating
infrastructure at
interchanges
through capacity
improvements. | Would improve LOS at interchanges, but adding full access interchanges could impact LOS on mainline. | Not likely to optimize function of the express lane areas. | Would improve
efficiency of
access to
freight hubs. | Would greatly
improve
conditions at high
priority freight
bottlenecks in this
segment. | Not likely to improve accessibility to public transportation. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Could offer
opportunity to
add/improve
bike/ped facilities
if interchanges are
reconfigured. | Could improve interstate connections to adjacent development/ redevelopment areas through improved operations at interchanges. | Interchange improvements may have impacts, but they are not likely to be substantial due to sufficient ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Interchange improvements may have impacts, but they are not likely to be substantial due to sufficient ROW at interchanges. | Could result in
substantial traffic
and utility
disruption. | | ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study. | | | | | | Alignment v | with Transport | tation Goals (Goo | od, Fair, Poor) | | | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | | |--|---|--|--|---|---|---|---|---|--|--|---|---|--|---|--|--| | Segment 5 Conceptual Strategies (Florissant Road to end of Express Lanes) Bring facility to | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS
on mainline
and at
interchanges | *Optimize
the function
of the
existing
express lanes | Improve
efficiency of
access to
freight hubs | Minimize/
eliminate
impediments
to freight
movement
along the
corridor | Allow
improved
accessibility to
public
transportation | Increase
transportation
options for
households
without access
to vehicles | Improve travel times between St Louis City and suburban employment centers for households without access to vehicles | Improve
active
transportation
access to
major
destinations
and local
network | Provide/ improve interstate connections serving current/future development/ redevelopment areas | Minimize
impacts to
the natural
environment | Minimize
impacts to
the built
environment | Minimize
construction
issues | | | Bring facility to
standards (address
substandard curves,
narrow shoulders,
etc.) | | • | • | • | 0 | • | • | 0 | 0 | 0 | • | 0
| • | 0 | • | | | The majority of the bridge heights and should widths (both inside and outside) are substandard in this segment. Shoulder widening to provide refuge for disabled vehicles and straightening of reverse curve sections would likely necessitate additional ROW. | Several substandard curves could be addressed in this section, which could greatly reduce potential crashes. | Several substandard curves could be addressed in this section, which could greatly reduce potential crashes. | May address
deteriorating
infrastructure on
mainline. | Could improve
LOS on mainline
and at
interchanges. | Not likely to
optimize function
of the express
lane areas. | May improve efficiency of access to freight hubs if low-clearance bridges are raised. | Bringing infrastructure to standards would meet requirements for large commercial vehicles. | Not likely to
improve
accessibility to
public
transportation. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Could offer opportunity to add/improve bike/ped facilities if bridges are replaced. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Would impact areas beyond existing ROW. Impacts are not likely substantial due to relatively few sensitive natural resources adjacent to the interstate. | Could require major widening. Impacts are likely to be significant since they would require additional ROW. | Could result in
moderate traffic or
utility disruption. | | | Add mainline capacity
(general purpose
lanes or managed
lanes) | • | • | • | | • | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Assumes one additional lane in each direction with impacts beyond existing ROW. This would also involve the reconfiguration of the express lanes. | Would address a cause of vehicular crashes because 24% of vehicular crashes in this segment are rearend crashes, which are often related to congestion. Would not address bike/ped. | Would improve
high crash
locations. | May address
deteriorating
infrastructure
when other
improvements
are implemented. | Would improve
LOS on mainline
to meet MoDOT
standards. | Would optimize
function of
existing express
lanes. | Not likely to improve access to freight hubs. | Could address congestion and new lanes would have better pavement conditions, which both address impediments to freight movement. | Not likely to
improve
accessibility to
public
transportation. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Adding travel
lanes could result
in substantial
impacts to
jurisdictional
waters and
floodplains. | Adding lanes could require substantial property acquisition with some relocations. | Could result in
substantial traffic
and utility
disruption. | | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study. | | | | | | Alignment v | with Transport | tation Goals (Goo | od, Fair, Poor) | | | | | ~ | ith Impact Mini
(Good, Fair, Poo | | |---|--|--|---|---|--|---|--|---|--|--|--|--|---|--|---| | Segment 5 Conceptual Strategies (Florissant Road to end of Express Lanes) | Reduce potential for crashes (including crashes involving bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS
on mainline
and at
interchanges | *Optimize
the function
of the
existing
express lanes | Improve
efficiency of
access to
freight hubs | Minimize/
eliminate
impediments
to freight
movement
along the
corridor | Allow
improved
accessibility to
public
transportation | Increase
transportation
options for
households
without access
to vehicles | Improve travel times between St Louis City and suburban employment centers for households without access to vehicles | Improve
active
transportation
access to
major
destinations
and local
network | Provide/ improve interstate connections serving current/future development/ redevelopment areas | Minimize
impacts to
the natural
environment | Minimize
impacts to
the built
environment | Minimize
construction
issues | | Upgrade infrastructure to better accommodate freight (including implementation of MoDOT and Freightway priority projects) | • | • | | 0 | 0 | | | 0 | 0 | 0 | • | 0 | • | lacksquare | 0 | | Freight needs in this segment consist of pavement rehabilitation, increased bridge clearances, and interchanges that can accommodate freight vehicles. | If bridges are replaced or interchanges reconfigured, may reduce the potential for bike crashes related to poor pavement conditions or other issues at interstate crossings. | If bridges are replaced or interchanges reconfigured, may reduce the potential for bike crashes related to poor pavement conditions or other issues at interstate crossings. | Would address
needs for
infrastructure
repair/
replacement
along the
corridor. | Would not result
in a measurable
improvement in
LOS. | Not likely to optimize function of the express lane areas. | Would improve efficiency of access to freight hubs. | Would reduce impediments for large commercial vehicles. | Not likely to
improve
accessibility to
public
transportation. | Not likely to increase transportation options. | Not likely to improve travel times for households without access to vehicles. | Could offer opportunity to add/improve bike/ped facilities if bridges are replaced or interchanges reconfigured. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Improvements may have impacts, but they are not likely to be substantial due to sufficient ROW and relatively few sensitive natural resources surrounding the interchanges in this segment. | Improvements
may have
impacts, but they
are not likely to
be substantial
due to sufficient
ROW at
interchanges. | Could result in
substantial traffic
and utility
disruption. | | Improve safety and function of collector/distributor roads | • | • | • | 0 | 0 | 0 | 0 | • | 0 | 0 | - | • | • | • | • | | Support the multiple functions of the collector/distributor road system in Segment 5. Includes traffic calming measures and intersection improvements to safely distribute traffic while preserving neighborhood functions. | Traffic calming
measures may
reduce the
potential for
bike/ped crashes. | Could improve
safety at
intersections. | May address
deteriorating
infrastructure at
intersections and
on collector/
distributor roads. | Would not result
in a measurable
improvement in
LOS. | Not likely to optimize function of the express lane areas. | Not likely to improve access to freight hubs. | Not likely to
reduce
impediments to
freight movement. | Creating a safer environment for bike/ped activity could improve accessibility to existing public transportation stops. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Creating a safer environment for bike/ped activity could improve active transportation access. | Intersection improvements could improve interstate connections serving current/future development/redevelopment areas. | Not likely to
result in impacts
to sensitive
natural
resources. | Not likely to impact adjacent land uses and could increase accessibility to
adjacent land uses. | Improvements could
likely be
implemented with
minimal disruption
to traffic or utilities. | ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study. uses. VMT. | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | \bigcirc_{Poor} | **ENVISION** ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study. | | Alignment with Transportation Goals (Good, Fair, Poor) | | | | | | | | Alignment with Impact Minimization Goals (Good, Fair, Poor) | | | | | | | |--|--|---|--|---|---|---|--|---|--|--|---|---|---|---|---| | Segment 5 Conceptual Strategies (Florissant Road to end of Express Lanes) | Reduce
potential for
crashes
(including
crashes
involving
bike/ped) | Improve
configurations
to address high
crash locations | Maintain/
preserve
physical
conditions of
infrastructure | Improve LOS
on mainline
and at
interchanges | *Optimize
the function
of the
existing
express lanes | Improve
efficiency of
access to
freight hubs | Minimize/
eliminate
impediments
to freight
movement
along the
corridor | Allow
improved
accessibility to
public
transportation | Increase
transportation
options for
households
without access
to vehicles | Improve travel times between St Louis City and suburban employment centers for households without access to vehicles | Improve
active
transportation
access to
major
destinations
and local
network | Provide/ improve interstate connections serving current/future development/ redevelopment areas | Minimize
impacts to
the natural
environment | Minimize
impacts to
the built
environment | Minimize
construction
issues | | Implement TSM measures | • | • | 0 | • | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | • | • | • | | For Segment 5, this might include signal timing optimization, ramp metering, or signing/striping improvements | May address
factors related to
vehicular crashes.
Not likely to
reduce potential
for bike/ped
crashes. | May address
factors related to
vehicular crashes.
Not likely to reduce
potential for
bike/ped crashes. | Not likely to
address
deteriorating
infrastructure. | Could improve
LOS on mainline
and at
interchanges. | Not likely to
optimize function
of the express
lane areas. | Not likely to improve efficiency of access to freight hubs. | Could indirectly reduce impediments to freight by addressing congestion. | Not likely to
improve
accessibility to
public
transportation. | Not likely to
increase
transportation
options. | Not likely to improve travel times for households without access to vehicles. | Not likely to improve active transportation access to major destinations and local network. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | TSM measures are not likely to result in physical impacts beyond the current paved area and could reduce VMT, which would reduce emissions and non-point source pollutants. | TSM measures
are not likely to
result in physical
impacts beyond
the current paved
area. | TSM measures could
be implemented
with minimal
disruption to traffic
or utilities. | | Add and/or improve bike/ped facilities crossing I-70 and improve bike/ped connections to the larger bike/ped network | • | | • | 0 | 0 | 0 | 0 | | • | → | | 0 | | | | | Allow for planned bike/ped improvements across I-70 | Would
substantially
address a
prevalent cause of
bike/ped crashes. | Would
substantially
address a prevalent
cause of bike/ped
crashes. | May address
deteriorating
infrastructure. | Would not result in a measurable improvement in LOS. | Not likely to optimize function of the express lane areas. | Not likely to improve efficiency of access to freight hubs. | Not likely to
reduce
impediments to
freight movement. | Would improve access to public transportation. | Would improve access to public transportation. | Could improve travel times if bike/ped improvements increase access to regional public transportation routes. | Would improve active transportation. | Not likely to improve interstate connections serving current/future development/ redevelopment areas. | Not likely to result in impacts to sensitive natural resources and may have benefits through reduced VMT. | Not likely to impact adjacent land uses and would increase accessibility to adjacent land uses. | Improvements could
likely be
implemented with
minimal disruption
to traffic or utilities. | | Goal Rankings | | | |---------------|------|-------------------| | Good | Fair | O _{Poor} | ENVISION ^{*} Options to optimize or repurpose express lanes will be evaluated in detail in a separate study.