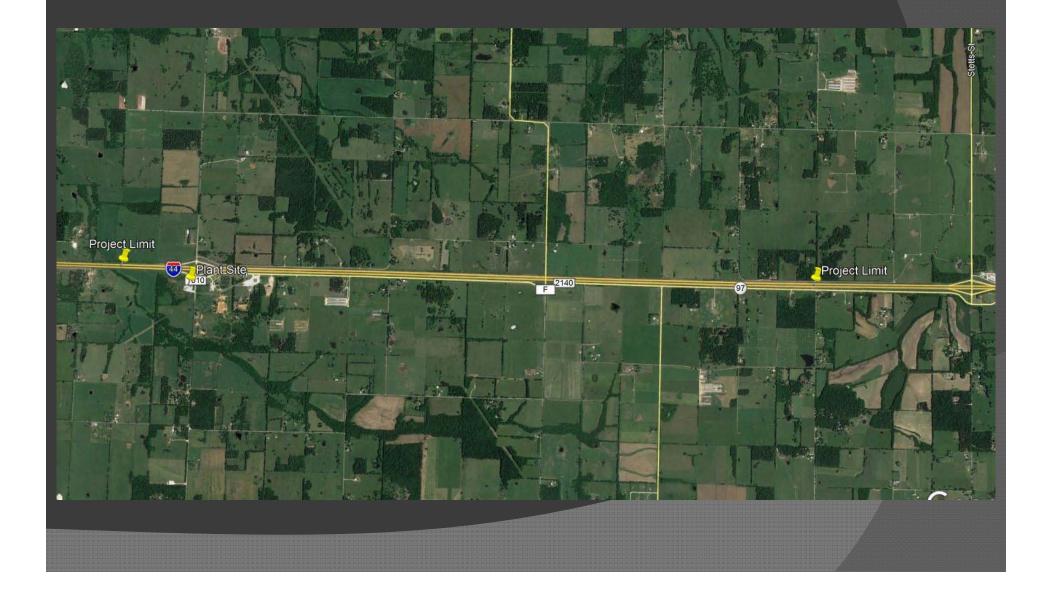


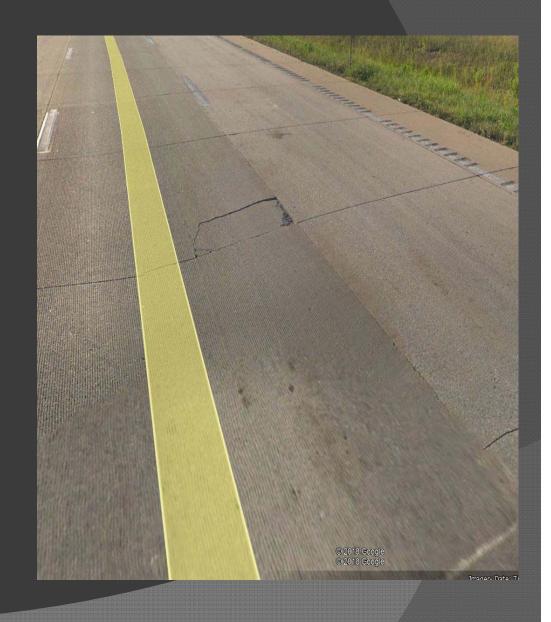
180216-G08 LAWRENCE CO


Project Background

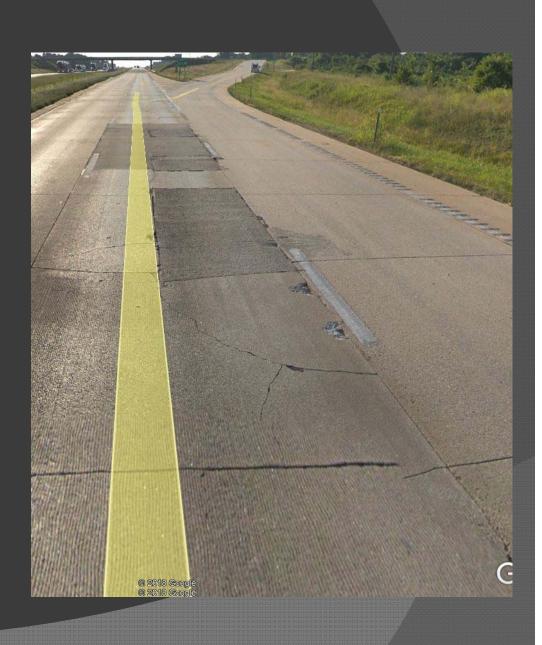
- Unbonded overlay on the driving lanes of I-44
- Remove and replace existing unbonded overlay
- Perform the work as quickly as possible
- Minimize impact to traveling public
- Joplin Project office- Marvin Morris RE

Project Background

Project Background


Why?

- Driving Lane had previously been ground
- Panels were faulting
- Faulting due to failure of previous bond breaker


Why?

- Driving Lane had previously been ground
- Panels were faulting
- Faulting due to failure of previous bond breaker

Why?

- Driving Lane had previously been ground
- Panels were faulting
- Faulting due to failure of previous bond breaker

What to do

- Remove the existing driving lane and previous bond breaker
- Leave shoulder intact
- Leave passing lane intact
- Install new bond breaker
- Our back driving lane

Sounds simple

- Segin with full depth pavement repair
- Suild crossovers
- Switch traffic head to head
- Begin removals
- Sond breaker
- Orill bars
- Baskets
- Pave

Unknowns

- How much pavement repair would there be in driving and passing lanes?
- Underlying damage to adjacent concrete

- Antigo performed breaking operations
- Existing bond breaker was no problem
- Had spalling due to expansion of broken concrete and existing slab conditions

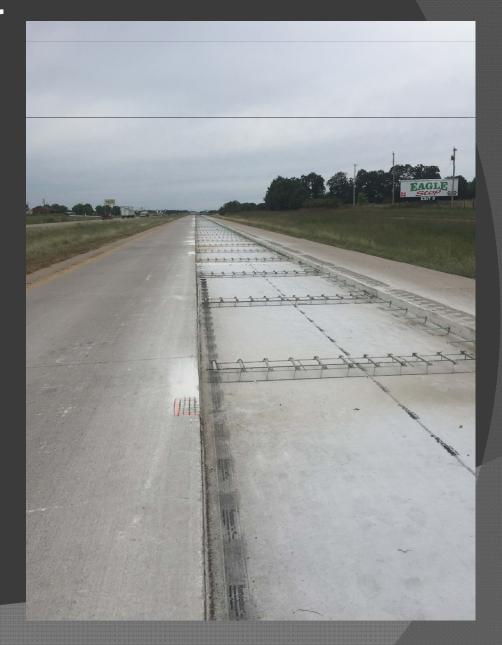
- Antigo performed breaking operations
- Existing bond breaker was no problem
- Had spalling due to expansion of broken concrete and existing slab conditions

- Trackhoe to remove bulk of material
- Skidsteer
 provided
 clean up
- Material hauled back to plant location

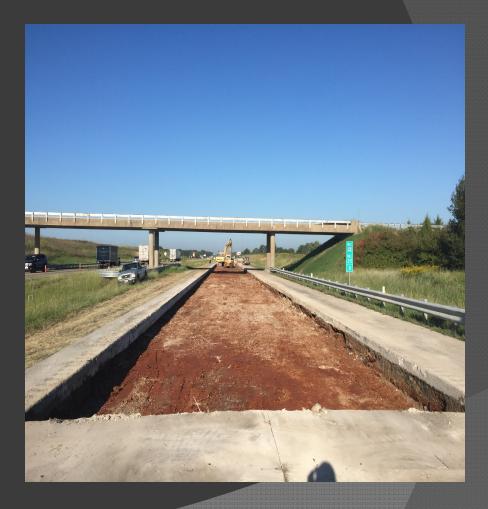
- Had spalling problem on the first half
- Vibratory
 ripper was
 used to try
 and fix
 issues
- Spalling still occurred

- Had spalling problem on the first half
- Vibratory
 ripper was
 used to try
 and fix
 issues
- Spalling still occurred

Drilling


- Shoulder was drilled
- Tie-Bars
 were
 epoxied into
 place

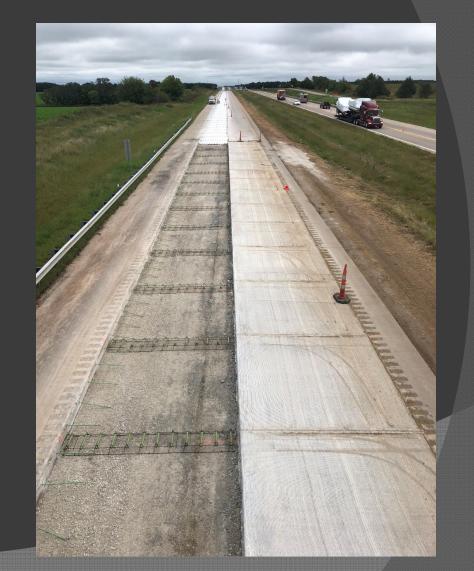
Dual fivegang drillswere used


Bond breaker

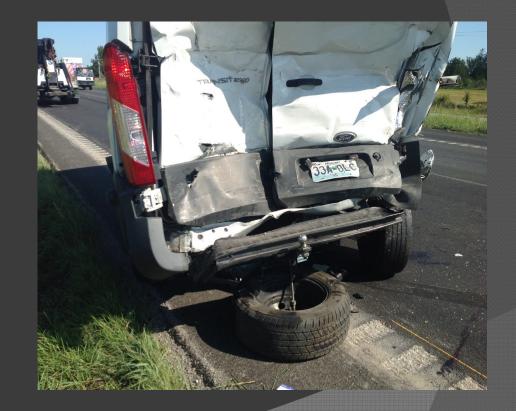
- Geotextile fabric used as bond breaker
- Rolled out very quickly
- Pinned
 baskets
 once down

10.5" Full Depth Replacement

- Under the overpasses MoDOT opted for full depth removal and replace
- Both driving and passing lanes were replaced
- We removed both lanes at once


10.5" Full Depth Replacement

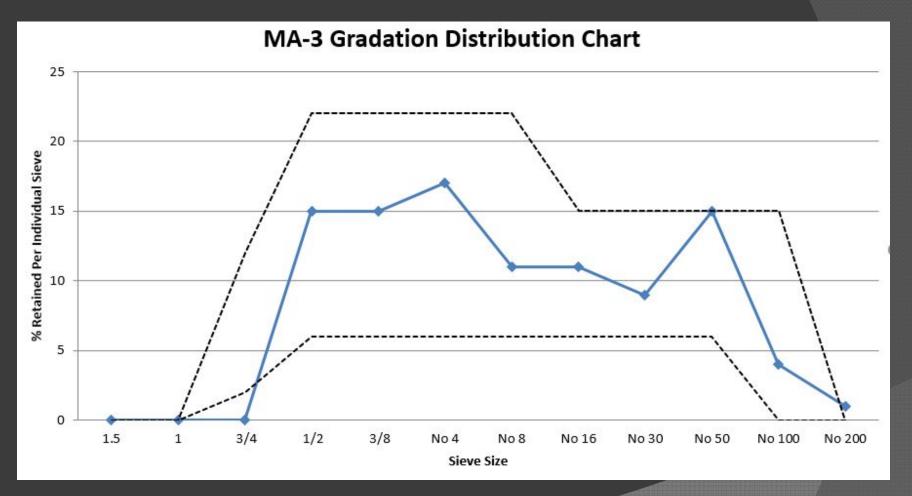
- 12" of rock base was installed
- We paved the passing lane first
- This allowed us to pave through continuously in the driving lane


10.5" Full Depth Replacement

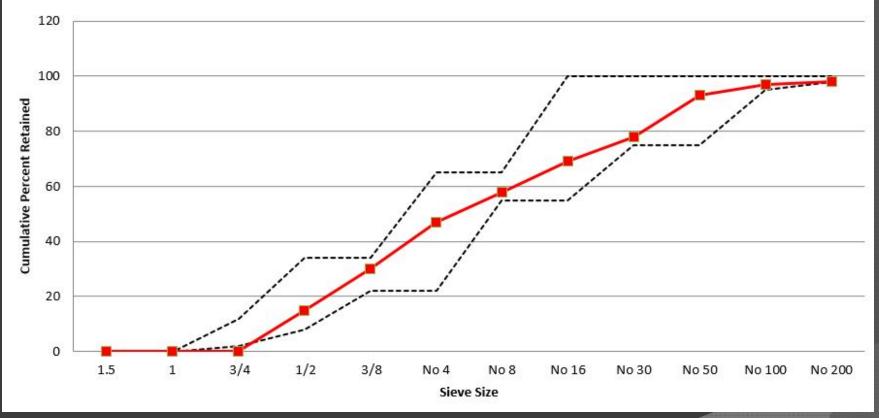
- 12" of rock base was installed
- We paved the passing lane first
- This allowed us to pave through continuously in the driving lane

Constant Time Crunch

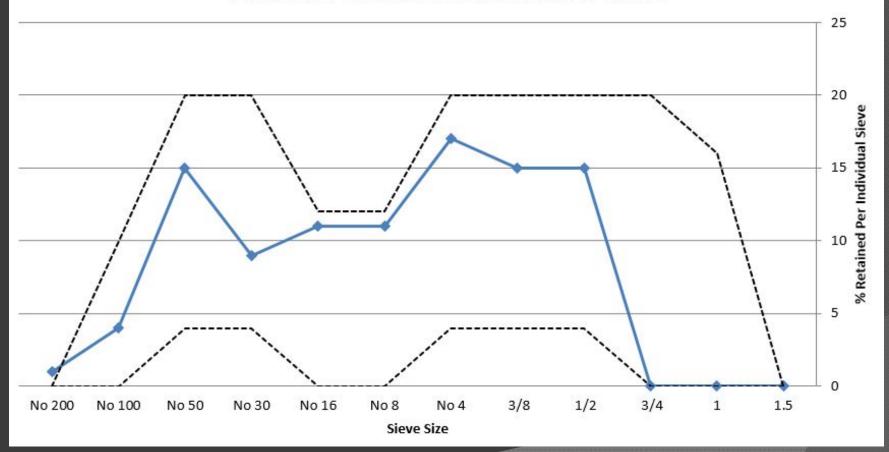
- \$306,000 bonus was possible at \$8,500 a day
- 75 days maximum days head to head
- Completed head to head in 39 days
- Reduce the time head to head made for a safer project

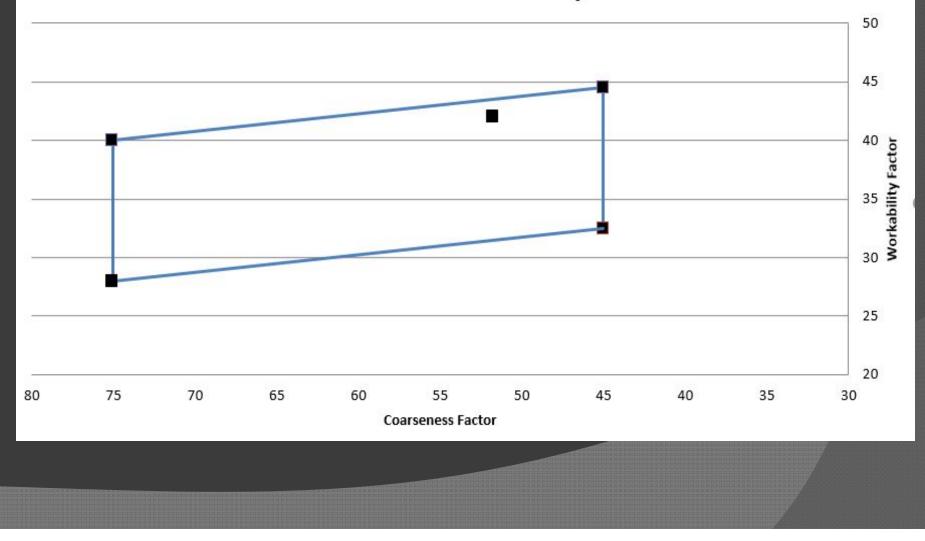


Constant Time Crunch


- Set forth certain criteria when bidding project
- In the work and work the plan
- Be prepared to adjust on the fly
- Learn from one side before moving to the other

- Optimize Mix Design
- 3 aggregate system
- Maximum amount of flyash used
- Minimum cementitious material content
- Aggregate proportions to give best paving mix possible
- Tarantula Curve, Percent Retained, Shilstone all weighed to blend aggs


	Mix Designs		Mix Type		MEP										
									ness Factor	52	WF	CF		A-Specs	
		Туре	Amount	Specific Gravity	Absorptions	100.00%	5	Wo	rkability	42	28	75	3/8"	0	
	Jasper Stone	1" Max	51.00%	2.66	0.60%		ļ		Workability	38	40	75	No. 4	0-10	
Aggregate 2	River Valley	Class A	35.00%	2.62	0.20%			Workabi	lity Difference	4	32.5	45	No. 8	0-27	
Aggregate 3	Mulberry Stone	Chip	14.00%	2.66	0.60%					17 T	44.5	45	No. 16	15-55	
						W/C Ratio	Design CF	Air	Slump				No. 30	40-77	
Ash Grove Chanute Type		Type I/II	75.00%	3.15		0.41	521	6.00%	2				No. 50	70-93	8
Boral Resources Springfield		Class C	25.00%	2.65					-				No.100	90-100	2
Air (Oz/100 wt. Cement)		Polychem SA	1.10	6	.2-2oz. 100 wt	of cementitiou	15						No. 200	98-100	
Water Reducer (oz/100 Wt.)		Polychem 400M	6.00	1	3-5oz.per 100	oz.per 100 wt. of Cementitious									
												Sieve Sizes	CPA-1	CPA-3	CPA-4
	Aggregate 1		Aggregate 3	Aggregate 4			Gradation	Envelope	Gradation	Envelope	Cum %	1"	0-10		0
	1" Max	Class A	Chip	0	Cum. %	% Retained	MA-3		MA	-5		3/4"	14-35	0	0-20
	51.00%	35.00%	14.00%	0.00%	Retained	Per Sieve	Upper	Lower	Upper	Lower	Passing	1/2"		0-35	
Sieve												3/8"	50-75	30-70	
1.5	0	0	0	0	0	0	0	0	0	0	100	No. 4		75-100	
1	0	0	0	0	0	0	0	0	0	0	100				
3/4	0.22	0	0	0	0	0	12	2	12	2	100	No. 8	95-100	95-100	95-100
1/2	28.6	0	0	0	15	15	22	6	34	8	85	No. 30			
3/8	59.26	0	0	0	30	15	22	6	34	22	70				
No 4	90.19	2.62	2.58	0	47	17	22	6	65	22	53				
No 8	91	8.28	65	0	58	11	22	6	65	55	42				
No 16	94.26	21.2	93.45	0	69	11	15	6	100	55	31				
No 30	95.02	47.3	95.31	0	78	9	15	6	100	75	22	S			
No 50	95.94	86.53	96.13	0	93	15	15	6	100	75	7	6			
No 100	96.76	98.44	96.63	0	-	4	15	0	100	95	3				
No 200	97.46	99.6	97.03	0	98	1	0	0	100	98	2				
				Coarse Sand % 8		31	Yes		the second second						
FM		2.6437		Fine Sand % 30-2		29	Yes								
						2.000									
Cementitious Volume			2.	7756	Cu. Ft.		Batch Weig	ghts (LBS)	Moisture	Absorption	Correction	Cu/Yd	Cu/Ft	2.5	1
Water Volume			3.4232		Cu. Ft.		Cement	390.75				390.75		36.2	0.72361
Air Volume			1.62		Cu. Ft.		Flyash	130.25				130.25		12.1	0.2412
Total Volume			7.8189		Cu. Ft.		Coarse Agg		0.82%	0.60%	100.2%			149.9	2.99745
Aggregate Volume Required				1811	Cu. Ft.		Fine Agg	1108.39	3.56%	0.20%	103.4%			106.1	2.12141
Volume of 100lb of Aggregate			0.6057		Cu. Ft.		Int. Agg	443.36		0.60%	100.4%		16.5	41.2	0.82438
Total Aggregate Per Yard			3166.84				Water	213.61		1212120		171.1	6.3	15.8	
				A GOLDAN E.			Water Gal	25.7				20.6		1.9	
							Air	5.731				5.731	6.28	15.7	· · · · · ·
Cost Analysi	s						W/R	31.26				31.26		85.6	
														35.0	1


MA-5 Gradation Distribution Chart

Tarantula Gradation Distribution Chart

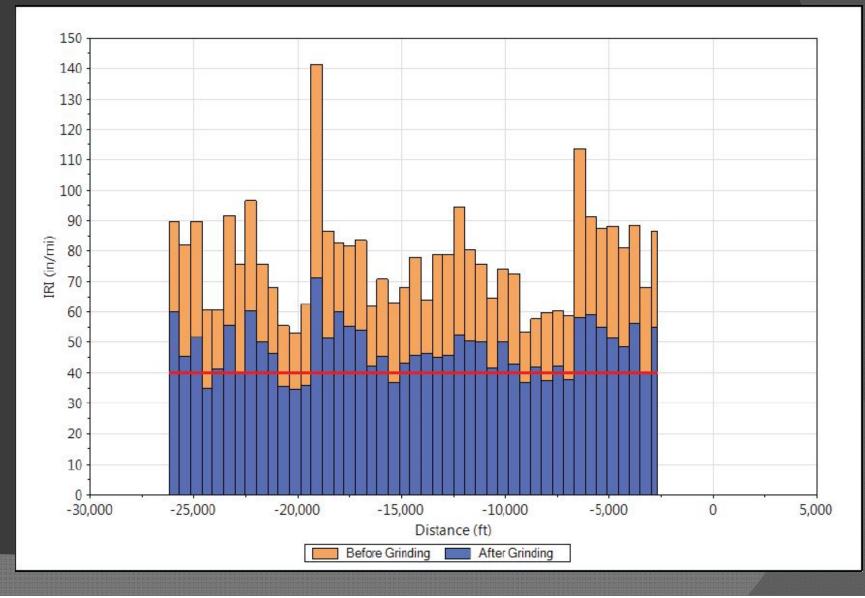
Coarseness and Workability Chart

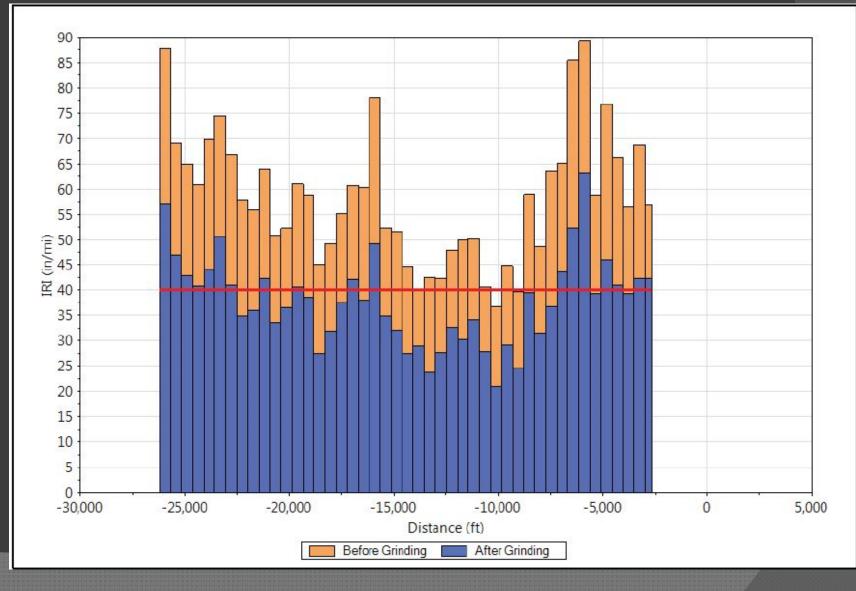
Game Plan

- Started on WB Lanes
- Started on East end of project continuous paving until we reached West end
- Switched crews every 12 hours
- Paver never stopped running

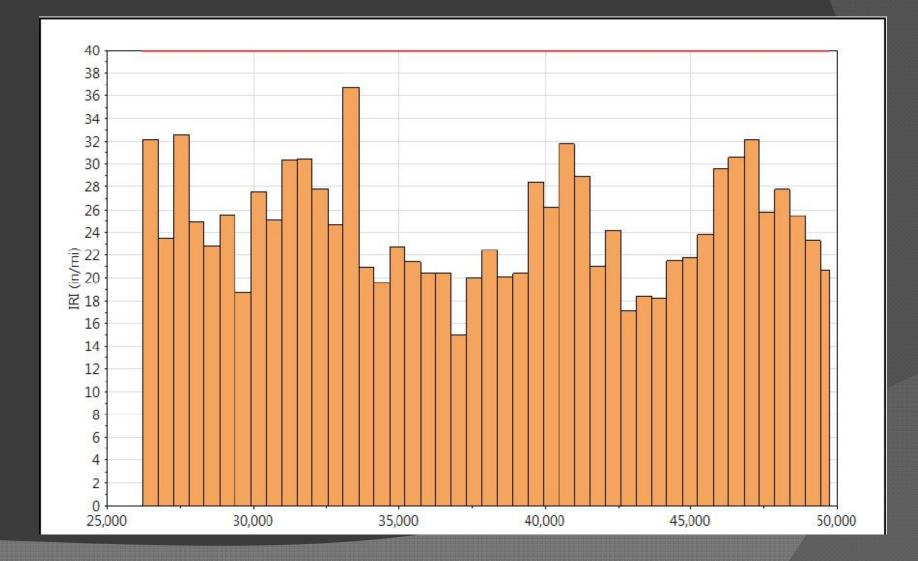
Paving

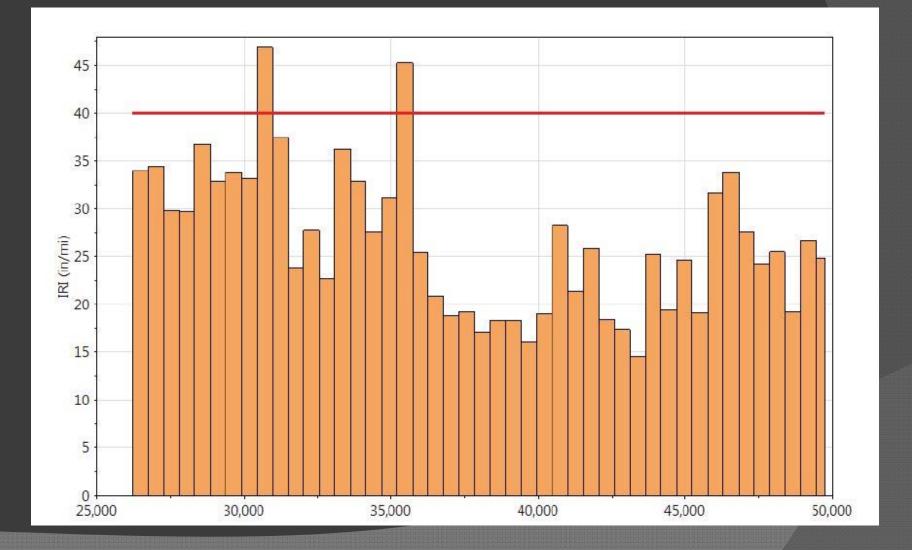
- Averaged roughly 190 yds an hour
- Yds/hr and pace was limited to paver speed
- New RexCon Mobile 12 Self-Erecting Batch Plant


Paving


Smoothness Challenges

- Smoothness testing
- Performed with High Speed Inertial Profilers
- JSP referred back to 610 without the 15 adjoining exception
- Ran profile before construction on shoulder and passing lane
- Gave idea of existing roadway


Left Wheel Path


Right Wheel Path

Post Grind Left

Post Grind Right

WB Overlay Smoothness

- Pre-Grind Numbers
- IRI combined average 67.49
- Oecent ride
- Had ALR's to address

- Post-Grind Numbers
- IRI combined average 25.7
- Very smooth and rides really well

Overlay Smoothness


Post-Grind Numbers
 EB Driving Lane IRI Average 23.6
 WB Driving Lane IRI Average 25.7
 Project smoothness overall success

Results

Strength Average was 6,828PSI
 Standard Deviation was 621PSI
 QL average on strength was 5.21

Going forward

- Stick to the plan and meet the schedule
- Be prepared for unknowns
- Entire contractor team has to be onboard a project like this

Questions?

 Contact Information Kyle Frye P.E.
 Quality Control Manager (816) 262-0170

