

SUPERPAVE QC/QA CERTIFICATION COURSE **ESTIMATED** SCHEDULE

2023 Season

Day/Time	Module	Location	Location Topic					
Day 1								
8:00-8:15	Intro	Class Room	Introduction & Welcome	Huffman				
8:15-9:30	1	Class Room	Mix Design Overview	Huffman				
9:30-10:15	2	Class Room	QC/QA Overview	Huffman				
10:15-10:30			Break					
10:30-11:30	3	Class Room	Plant Operations Overview	Huffman				
11:30-12:00	4	Class Room	Aggregate Testing Overview	Huffman				
12:00-1:00	Lunch on y	our own						
1:00-2:15	5	Class Room	Asphalt Sampling Random Numbers Loose Mix Sampling	Huffman				
			Density Cores					
2:15-2:30			Break					
2:30-3:00	6	Lab	Sample Reduction Methods Specimen Type/Size Reheat/Aging	Huffman				
3:00-3:30	7	Class Room	Gyratory Compactor	Huffman				
3:30-4:00	7	Lab	Gyratory Demo	Huffman				
Day 2								
8:00-8:45	8	Class Room	Max. Specific Gravity (Rice)	Huffman				
8:45-9:15	8	Lab	Rice Sp. Gravity (Demo)	Huffman				
9:15-10:15	9	Class Room	Binder Content: Ignition Oven	Huffman				
10:15-10:30			Break					
10:30-12:00	9	Lab	Ignition Oven demo	Huffman +				
7,8,9			Practice: Gyro, Rice, Ignition					
12:00-1:00	Lunch on y	our own						
1:00-1:30	10	Class Room	Job Mix Sheet	Huffman				
1:30-2:45	11	Class Room	Pay Factors	Huffman				
2:45-3:00			Break					
3:00-3:30	12	Class Room	Quality Level Analysis	Huffman				
3:30-4:00	13	Class Room	Performance Testing	Huffman				

Day/Time	Module	Location	Торіс	Instructor
Day 3				
8:00-9:00	MoDOT	Class Room	Contract Administration	MoDOT
9:00-11:00		Class Room	Written Exam	
11:00-4:00		Lab	Individual Hands-on	
			Proficiency Testing	

SuperPave - Updates

2025 – Updates

- Module 6
 - Added update on Mixture Conditioning Long Term is now AASHTO R121
 - Added a slide R121 Scope
- Module 10
 - Added a new JMF with explanations.

2024 – Updates

- Module 5
 - Added slide on Truck procedure
- Module 8
 - \circ Method up-date on vacuum to be 30 ± 5 mm Hg
 - Note on Glass vessels and Agitation use a rubber or plastic mat.
- Module 9
 - Updated slides for Moisture Content (AASHTO T329) to match BT.
 - Updated ovens slide 19, added image of an infrared Oven.
 - Added a classroom practice problem for T308, along with the key on a slide.

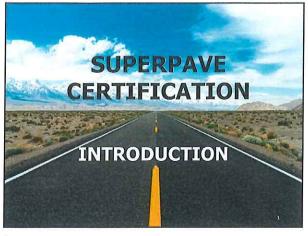
2023 - Updates

- Added updates page
- Added an Introduction to Superpave Module
- Module 5 Asphalt Sampling Loose Mix and Cores updates
 - Resources, added AASHTO R67 Sampling Asphalt Mixtures (Cores)
 - Lots and Sublots, Superlots now has a maximum of 28 sublots per lot.
 - AASHTO R67 steps for coring.
- Module 6 Sample Reduction and Aging updates
 - AASHTO R30 was updated on short-term and long-term conditioning.
- Module 7 Gyratory Compactor AASHTO T312 Updates
 - Thermometers for measuring temperature See Appendix Item #7 for more information on Thermometers.

• Module 8 – Maximum Specific Gravity AASHTO T209 - Updates

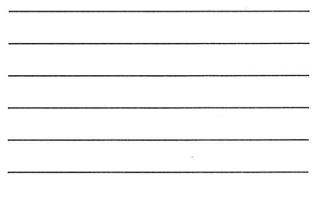
- Thermometers for measuring temperature See Appendix Item #7 for more information on Thermometers.
- Vacuum Measurement Device updated, see Appendix Item #7 for more information on Vacuum Measurement Device. Capable of measuring residual pressure down to 25mm Hg.
- Module 9 Binder Ignition Oven AASHTO T308- Updates
 - Thermometers for measuring temperature See Appendix Item #7 for more information on Thermometers.
 - Ignition furnace updates on temperature control, see Appendix Item #7.
- Appendix added Item #7 Equipment

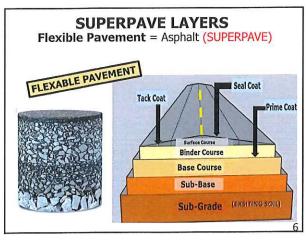
SUPERPAVE


TABLE OF CONTENTS

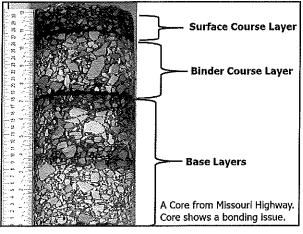

- Intro Introduction Module 1 Mix Design Overview QC/QA Overview Module 2 Module 3 **Plant Operations Overview** Module 4 Aggregate Testing Overview **Asphalt Sampling** Module 5 Sample Reduction AASHTO R47 & Aging AASHTO R30 Module 6 Module 7 AASHTO T312 Gyratory Compactor Operations AASHTO T209 Maximum Specific Gravity Module 8 AASHTO T308 Asphalt Content Testing by Ignition Oven Module 9 Job Mix Formula (JMF) Module 10 Module 11 **Pay Factors** Module 12 Quality Level Analysis (QLA) **Performance Testing** Module 13
- Module 14 Contract Administration
- Appendix Appendix
- Glossary Glossary

Introduction to SuperPave

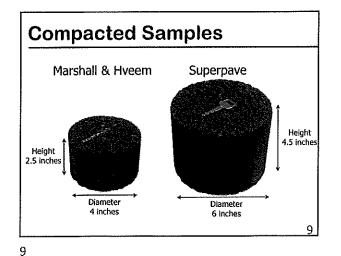


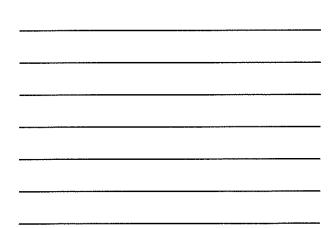

SUPERPAVE

- SUPERPAVE is the acronym for SUperiorPER forming asphalt PAVEments.
- It is the product of the Strategic Highway Research Program of USA.
- It gives highway engineers and contractors the tools they need to design asphalt pavements that will perform better under extremes of temperature and heavy traffic loads.

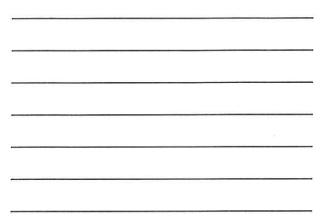

4

4

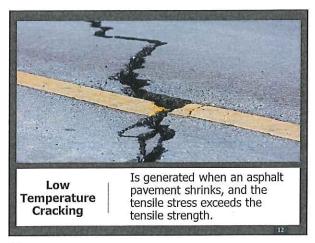


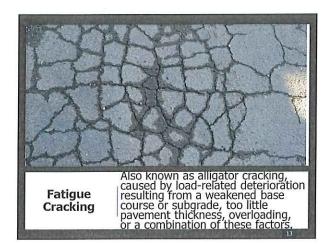


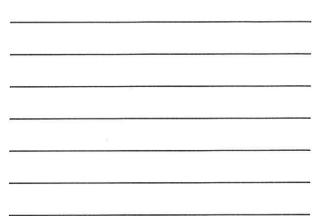
SUPERPAVE


- •Superpave involves an improved mixture design and analysis system based on performance characteristics of the pavement.
- •The Superpave system ties asphalt binder and aggregate selection into the mix design process and considers traffic and climate.
- •The compaction devices from the Hveem and Marshall procedures have been replaced by a gyratory compactor and the compaction effort in mix design is tied to expected traffic.

8









14

First Steps ...

- •Collect maximum/minimum temperatures for both air and pavement, along with the current and anticipated traffic types and loads.
- •Testing and selection criteria for PG binder, combined aggregate requirements, and mixture design are detailed in **AASHTO M323**.

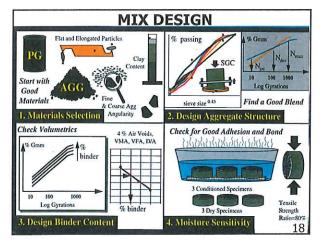
15

OBJECTIVE OF A MIX DESIGN

• Sufficient <u>flexibility</u> to resist fatigue cracking.

- Sufficient strength or <u>stability</u> to resist traffic loading without permanent deformation. (rutting)
- •Good <u>workability</u> to enable proper lay down and compaction.
- •<u>Moisture damage resistance</u>. Did not degrade or strip due to adverse effect of water.
- <u>Durable</u>, to have the original good properties over the service life without unacceptable aging or water induced damages.

16

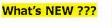

17

• <u>Skid resistance</u>, to have enough surface friction properties. (Safety)

16

SUPERPAVE PROCEDURE

- 1. Aggregate selection
- 2. Asphalt Binder selection
- 3. Sample preparation (Including compaction)
- 4. Performance Tests
- 5. Density and Voids calculations (volumetrics)
- 6. Optimum asphalt binder content selection
- 7. Moisture susceptibility evaluation



Types of Asphalt Mix

Hot Mix Asphalt (HMA) – A combination of aggregates bound together by PG binder. Uses temperatures between 300 – 350°F.

• Warm-Mix Asphalt (WMA) – A combination of aggregates bound together by PG binder along with additives or a foam. Uses lower temperatures around 275°F.

19

NOTE TO THE CLASS . . .

On the following few slides,

• Just a little information on WMA, since MODOT has been increasing the use of this product.

1

20

Warm Mix Asphalt (WMA)

"Warm mix asphalt is a relatively new technology that has taken the asphalt industry by storm in recent years.

Warm mix asphalt is a hybrid of sorts, combining all the qualities of traditional hot mix asphalt but drastically cutting the temperature of the asphalt. On average, warm mix can shave anywhere from 50-100 degrees off production temperatures. This reduction results in less fuel consumption, lower emissions, and a reduced carbon footprint." MAPA

WMA is also used to incorporate higher percentages of reclaimed asphalt pavement (RAP) into the mix. 21

Advantage of WMA

Performance

- Most projects have not seen a

- Some have seen an increase

workability, & compactability

A

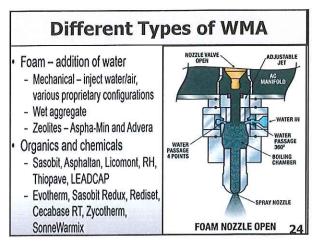
23

decrease in performance

- May need to add coating,

specifications

- Lower production/construction temperatures
 - Up to 30% reduction in energy consumption
 - Up to 50% reduction in emissions
 - Lower odor
 - Increase haul distance
 - Extend paving season
 - Lower oxidation
 - Quicker return to traffic
- Decreased binder viscosity
- Easier compaction
- Higher RAP content


22

WMA, how does it work?

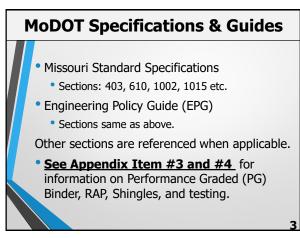
Warm Mix Asphalt technologies reduce the viscosity (the thickness) of the asphalt binder so that asphalt aggregates can be coated at lower temperatures. The key is the addition of additives (water-based, organic, or hybrids) to the asphalt mix.

The additives allow the asphalt binders and asphalt aggregates to be mixed at the lower temperatures. Reducing the viscosity also makes the mixture easier to manipulate and compact at the lower temperature.

23

Module 1

Mix Design Overview



AASHTO Test Methods

- R35 Volumetric Design Practice
- M323 Volumetric Mix Design Specifications
- R30 Mix Conditioning
- T 312 Gyratory Compactor Operation (Gyro)
- T 166 Bulk Specific Gravity of Compacted Specimens (Pucks)
- T 209 Maximum Specific Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity

2

Superpave Language...

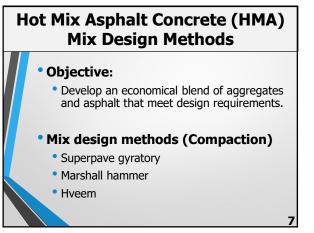
 Asphalt- Is a mixture of fine and coarse aggregates, additives and bitumen.

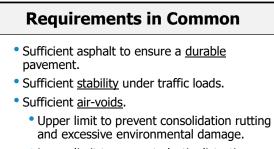
Also called : Asphaltic Concrete or Flexible pavement.

 Bitumen – Used as a binder to hold the asphalt mixture together.

Also called: Asphalt Binder, PG Binder or Binder.

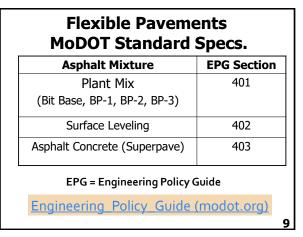
PG Binder System

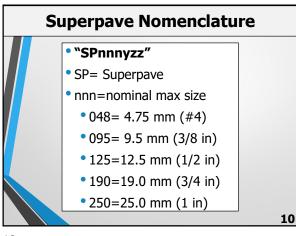

PG = Performance Grade, Example: PG 64-22H See the Appendix Item #3 for more information.

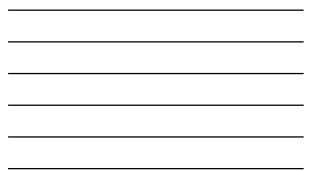

- Tests are directly related to *field performance*.
- Criteria remain constant but tests are run at temperatures that reflect the design climate.
- Tests are conducted at high, intermediate, and low temperatures.
- Both short-term and long-term aging is employed.
- Tests are suitable for modified binders.

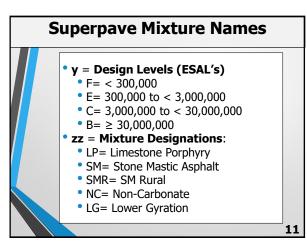
5

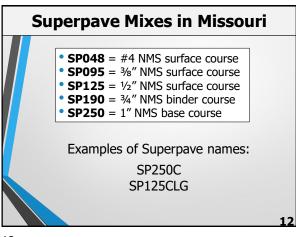
Typical Asphalt Mixture								
COMPONENT	% by wt.							
Aggregate								
(Coarse & fine)	90%							
Dust								
(Dust-of-fracture + mineral filler)	5%							
Asphalt Binder	5%							
Dust = less than -200 sieve								

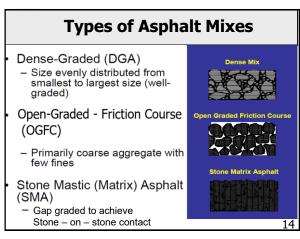


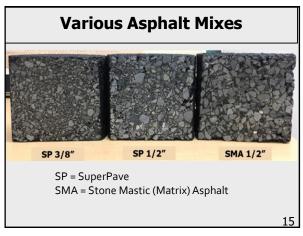




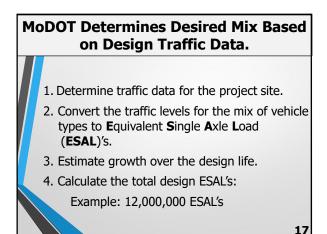

- Lower limit to prevent plastic distortion while allowing room for initial densification due to traffic.
- Sufficient workability.


8

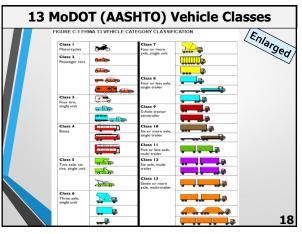




Material Standard Specs.										
Link: Engineering Policy Guide (modot.org)										
	EPG									
Item	Section									
Aggregate for Asphaltic Concrete	1002									
Mineral Filler	1002									
Hydrated Lime	1002									
PG Binder	1015									
Fiber	1071									
Anti-Strip	1071									
RAP Reclaimed Asphalt Pavement	403									
RAS Reclaimed Asphalt Shingles	403									
Asphalt Concrete Pavement	403									


Construction of SMA

• What is Stone Mastic Asphalt?


- Mixture with a gap-graded aggregate skeleton that is filled with mastic.
- Mastic comprised of fine aggregate, mineral filler, fibers and asphalt binder.
- Minimum asphalt content of 6.0%.

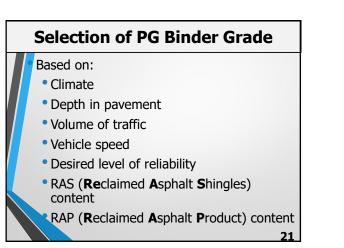
16

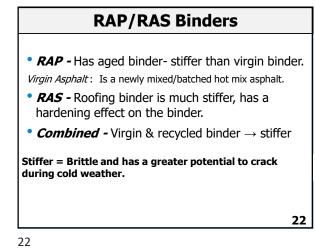
17

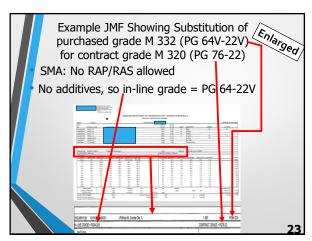
FIGURE C-1 FHWA 13 VEHICLE CATEGORY CLASSIFICATION

Chara I		Class 7	
Class I Motorcycles	2	Class 7 Four or more axle, single unit	
Class 2 Passenger cars			
	.		
	, -	Class 8 Four or less axle,	
		single trailer	
Class 3 Four tire,			
single unit	ollo	Class 9 5-Axle tractor	
		semitrailer	• • • • •
Class 4 Buses		Class 10 Six or more axle,	
		single trailer	
		Class II Five or less axle, multi trailer	
Class 5 Two axle, six	- Ero	Class 12 Six axle, multi-	
tire, single unit	.	trailer	
		Class 13 Seven or more axle, multi-trailer	
Class 6 Three axle, single unit			
			

Trial Mix Design								
Aggregate (+ 4 Material)	Aggregate (- 4 Material)							
Coarse Aggregate Tests: • Gradation • Specific gravity & absorption • Deleterious materials • LA abrasion • Coarse aggregate angularity • Flat & elongated • PI (as required)	Fine Aggregate Tests: • Gradation • Specific gravity • Clay lumps & shale • Lightweight pieces • Sand equivalent • Fine aggregate angularity • PI (as required)							


Trial Mix Design


Blended aggregate must meet Superpave "Consensus" testing criteria:

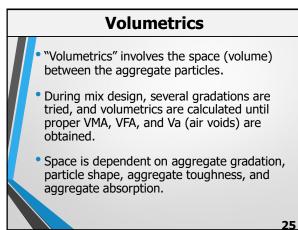

- Fine aggregate angularity (FAA)
- Coarse aggregate (CA) fractured face count
- Coarse aggregate (CA) flat and elongated
- Sand equivalent (SE)

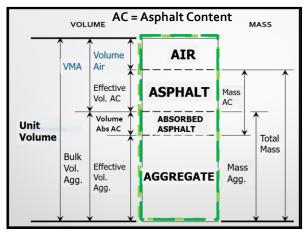
20

What's My Grade?

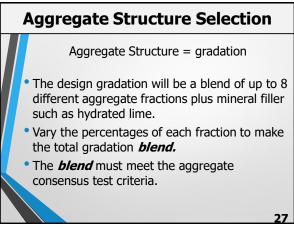
- "*Contract Grade"* = the PG grade in the contract, e.g., PG 70-22.
- "*Purchased Grade*" = what contractor buys from supplier (terminal), e.g.,PG 58-28 (if RAP/RAS will be used).
- "*In-line Grade*" = Purchased grade + *additive* (warm mix, anti-strip, etc.) e.g., PG 58-28.
- "*In-line Grade"* = Purchased grade + *modifier* (rejuvenator) e.g., PG 52-28.

24

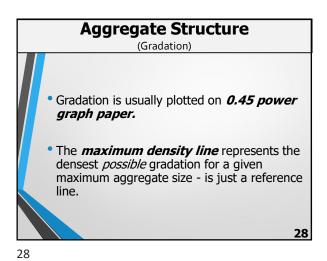

Example JMF Showing Substitution of purchased grade M 332 (PG 64-22V) for contract grade M 320 (PG 76-22)


SMA: No RAP/RAS allowed

No additives, so in-line grade PG 64-22V


IISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS

DATE =	03/24/16					c	ONTRACTOR =							SP 6 1	6-13 (Correcto
DENT		1000						BULK	APPAR						
10	PRODUCT CODE		PRODUCER	CATION				SP. GR.	SP. GR.	%ABS	FORMATION	_	LEDGES	and the second se	IERT
6SLMRH066	100205 LD1							2 625	2718	1.3	Plattin		7-2	0.	1
6SEMA0031	100205 PY2							2.644	2.685	0.6	Porphyry		1		
6SEMA0032	100204 .PY1							2.627	2.682	0.8	Porphyry		1		
6SLMRH058	100204 LD1							2.641	2.717	1.1	St. Louis	0.000	3-9	2	0
6SLMRH059	1002MS.MSLD							2.644	2.712		St. Louis	1.1	3-9		
6SEMA0011	1002MFMF							2,700	2.700		Min. Filler	100		101	
6MF00007	1071APSMCF							1.000	1.000		Cellulose Fibers				
6SLMRH108	1015ACPG .6422	V	Phill 66, Grani	te City, IL				1.035	00405 - 003	PG64-22	/ (to Mold Temp	290-300°F		_	
MATERIAL	= PG64-22V							CONTRACT	GRADE = PG7	6-22					
							_						16SEMA0011		COM
IDENT #	16SLMRH066 1		_	SLMRH058		SEMA0011			6 16SEMA00		the second se				(W)
16013	1/2"	1/2"	3/8"	3/8"	MAN SAND	Min, Filler		10.0	32.0	10.0	25.0	12.0	11.0		GR
1 1/2"	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		10
1*	100.0	100.0	100.0	100.0	100.0	100 0		10.0	32.0	10.0	25.0	12.0	11.0		10
3/4"	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		10
1/2"	100.0	100.0	100.0	100.0	100.0	100.0		10.0	32.0	10.0	25.0	12.0	11.0		10
3/8"	50.0	95.0	97.0	100.0	100.0	100.0		5.0	30.4	9.7	25.0	12.0	11,0		1
#4	3.0	12.0	32.0	56.0	99.0	100.0		0.3	3.8	3.2	14.0	11.9	11.0		
#8	2.0	2.0	6.0	13.0	93.0	100.0		0.2	0.6	0.6	3.3	11.2	11.0		2
#16	2.0	1.0	2.0	5.0	56.0	100.0		0.2	0.3	0.2	1.3	6.7	11.0		
#30	2.0	1.0	1.0	4.0	30.0	100.0		0.2	0.3	0.1	1.0	3.6	11.0		1
#50	2.0	1.0	1.0	3.0	16.0	99.0		0.2	0.3	0.1	0.8	1.9	10.9		1
#100	2.0	1.0	1.0	3.0	6.0	95.0		0.2	0.3	0.1	0.8	0.7	10.5		1
#200	2.0	0.2	0.2	3.0	5.0	75.0		0.2	0.1		0.8	0.6	8.3		
LABOR	ATORY	4 m =	2.419		% VOIDS =	4.0	TS	SR = 86		TSR WL				X COMPOS	NTIC
CHARAC	TERISTICS	mb =	2.323		V.M.A. =	17.5				3630	Ndes	= 100		MIN.	AG 93
AASH	O T312	Gsb =	2.646		% FILLED =	77	Gyro V	Vt. = 4600						A PHALT CON	ITEN 6.
CALIBRATION	NUMBER		16016			MASTE	R GAUGE E	IT = 21	145		A1 =	-4.766624	1	FI	BER 0
MASTER GAUG	E SER. NO. =		2502				SAMPL	-IT = 72	200		A2 =	3 342288	3		
Aggregate & Muxtum	Properties Based on C	iontrad i Mix Desk	in				\bot			_				0.000	
SLMRH108	101540	G .6422V		/ Phil	ips 66, Gran	te City, IL						1	035		PG64-2
LINE GRADE = PG64-22V CONTRACT GRAD)E = PG76-22	-			
MATERIA														Transferration are 100	



max density line

2.36

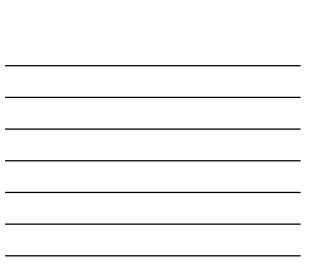
Figure 3.10 Superpave Gradation Limits

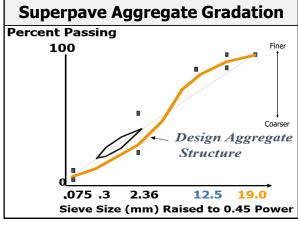
control point

4.75 9.5

Sieve Size, mm (raised to 0.45 power)

nominal


max size


12.5

max

size

19.0

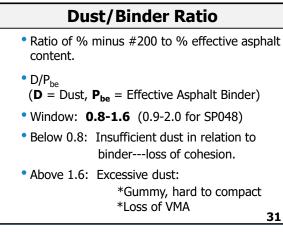
30

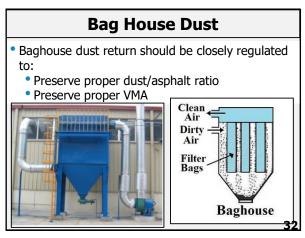
Percent Passing

restricted

zone

.3


100


Finer

Coarse

29

.075

32

VMA

- "Voids in the Mineral Aggregate"
- Space between the aggregate particles
- Contains binder and air voids
- Must have sufficient VMA to accommodate proper binder and air void contents

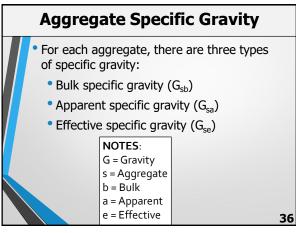
What happens if VMA is low?

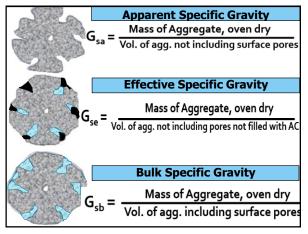
Lower VMA values = Intergranular space available for asphalt binder is reduced. This reduces the amount of effective asphalt binder that can be used in the mix, which in turn, leads to a lower binder film thickness around the aggregate particles, increasing the potential for cracking. 33

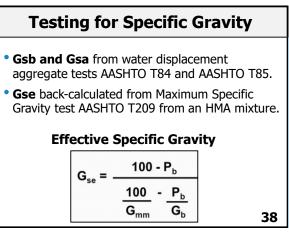
How To Increase VMA

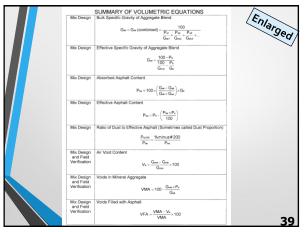
- 1. Use a more angular sand (manufactured sand).
- 2. Increase Crush Count
- 3. Lower the -#200 (dust)
- 4. Change the gradation to a Gap-grade, move away from the maximum density line.
- 5. Evaluate Flat and Elongated

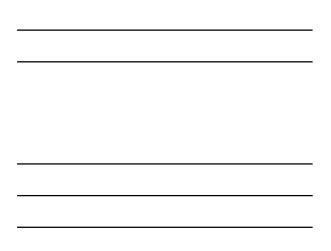
34

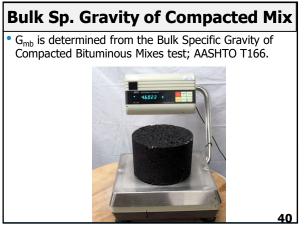

34

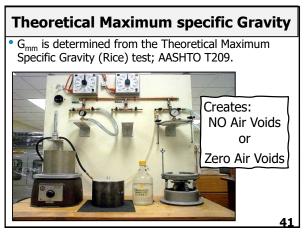

How to Lower Minus #200

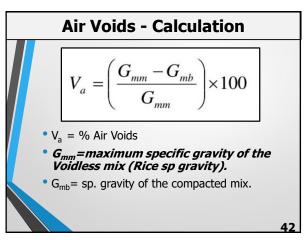

Reduce the % of the material that is the source of fines.

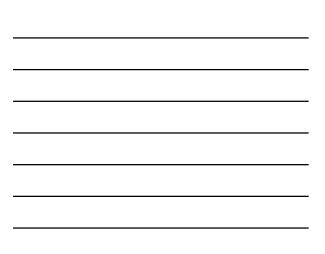

- Replace some dusty screenings with a clean mfg. sand.
- Replace some dusty screenings with a natural sand.
- Replace some graded aggregate with a clean coarse fraction.
- (e.g., replace some 1/2" minus material with a clean 3%" chip).
- Replace some screenings with a less dusty graded fraction.
- Replace some of the source material that is breaking down with a harder aggregate.
- · Wash the source material that is the source of fines.


35








	SUMMARY OF VOLUMETRIC EQUATIONS
Mix Design	Bulk Specific Gravity of Aggregate Blend
	$G_{sb} = G_{sb} \text{ (combined)} = \frac{100}{\frac{P_{s1}}{G_{sb1}} + \frac{P_{s2}}{G_{sb2}} + \frac{P_{s3}}{G_{sb3}} + \dots}$
Mix Design	Effective Specific Gravity of Aggregate Blend
	$G_{se} = \frac{100 - P_{b}}{\frac{100}{G_{mm}} - \frac{P_{b}}{G_{b}}}$
Mix Design	Absorbed Asphalt Content
	$P_{ba} = 100 \times \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}}\right) \times G_{b}$
Mix Design	Effective Asphalt Content
	$\mathbf{P}_{be} = \mathbf{P}_{b} - \left(\frac{\mathbf{P}_{ba} \times \mathbf{P}_{s}}{100}\right)$
Mix Design	Ratio of Dust to Effective Asphalt (Sometimes called Dust Proportion)
	$\frac{P_{0.075}}{P_{be}} = \frac{\% \text{minus} \# 200}{P_{be}}$
Mix Design	Air Void Content
and Field Verification	$V_{a} = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$
Mix Design and Field	Voids in Mineral Aggregate
Verification	$VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$
Mix Design	Voids Filled with Asphalt
and Field Verification	$VFA = \frac{VMA - V_a}{VMA} \times 100$

9 Steps to find Aggregate Structure and Optimum Target Asphalt Content (AC)%

1. Choose 3 or more trial aggregate gradations based on experience.

2. Estimate the required "initial" binder content based on experience or standard procedure.

3. Mix aggregate and binder. Condition for 2 hours at the compaction temperature. This allows binder to be absorbed.

Compact duplicate mixture specimens of each trial gradation at the initial binder content using the gyratory compactor.
 43

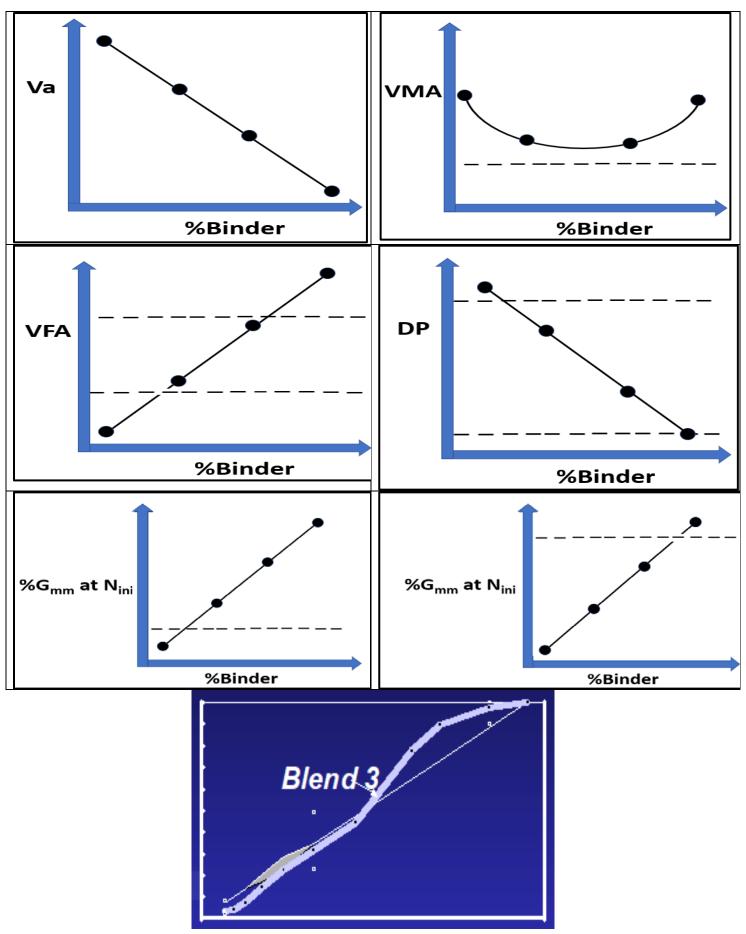
43

- During design, specimens are compacted using the gyratory compactor. The number of gyrations applied is a function of design traffic level.

5. Measure compacted puck specific gravity.

6. Run Rice for maximum specific gravity (Gmm).

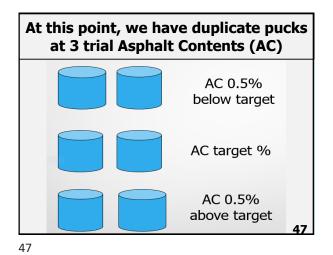
7. Calculate volumetrics (VMA, VFA, air voids) for each trial blend.


8. At N_{des} adjust (calculate) % binder to achieve V_a =4.0%. Calculate what VMA, VFA, and dust/effective asphalt would be.

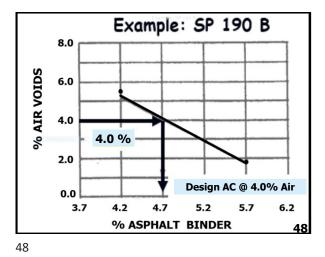
9. Compared to criteria. Choose blend that best meets criteria, economy, and chance of success.

44

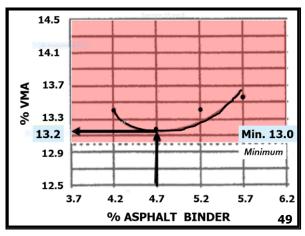
Selection of Design Asphalt Binder Content

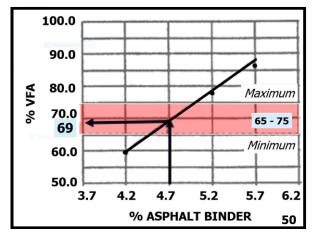


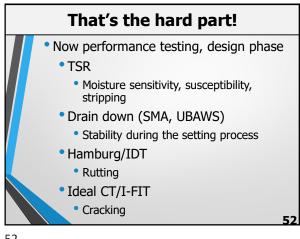
Binder Content Selection Steps


1. Using the winning blend, compact more specimens in duplicate to N_{des} , this time varying binder content.

Example : Use 3 different %'s of binder: -0.5, +0.5, and right on the initial %.

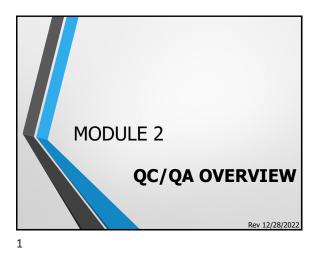

- **2.** Again calculate volumetrics. Plot % binder vs. % air voids. Choose the design % binder that produces 4% air voids.
- 3. Check all other volumetric criteria.
- 4. Check %G_{mm} @ N_{ini}
- **5.** Check dust/effective asphalt ratio, where "dust"= % minus #200 sieve material in the blend: 0.8-1.6
- 6. Compact more pucks at the design binder content to N_{max} ; check criteria. 46

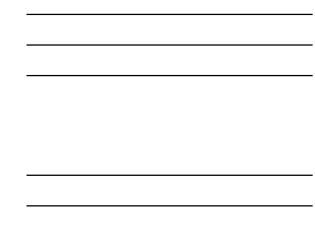


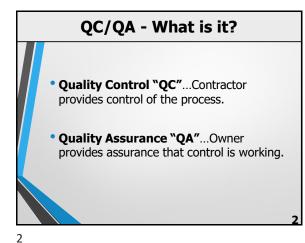


E	1	٦
- C	ι	J

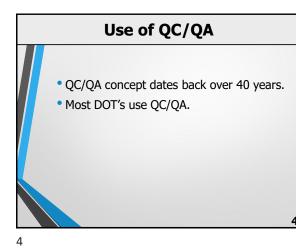
	Factor	Criteria	Reason
Compare to	Air voids,	4.0%	Stability
criteria.	N _{des}		Durability
Choose the	VMA	≥ 12, 13, 14, 15, 16, 17%	Durability
blend that	VFA	70-80 %	Stability
best meets		65-78%	Durability
criteria,		65-75%	
economy,	%G _{mm} @	≤ 91.5%	Tenderness
and chance	N _{ini}	≤ 90.5%	
of success.		≤ 89.0%	
	%G _{mm} @	≤ 98.0%	Stability
	N _{max}		
	Dust/binder	0.8-1.6	Compaction
		0.9-2.0	Handling 51

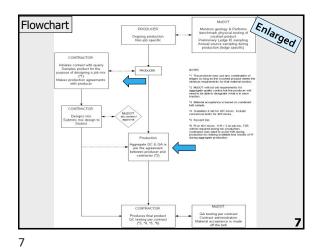





Module 2

QC/QA Overview





Flowchart, cont'd.

- 1. Paving contractor WRITES Bituminous QC plan; submits QC plan to MoDOT.
 - The mix design is often submitted at the same time.
- 2. MoDOT grants final approval of QC plan.
- 3. Paving Contractor contracts with Aggregate Producer.
 - Often aggregate samples for mix design are taken earlier.

Flowchart, cont'd.

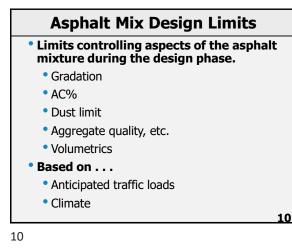
- Paving contractor submits mix design information (Job Mix Formula = JMF) to MoDOT through the district.
- 5. MoDOT Field Office handles JMF approval.
- Aggregate production begins. (actually, Superpave rock is more common now.)

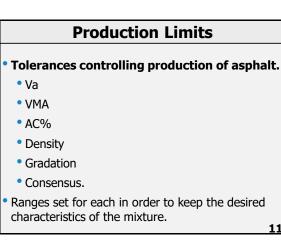
8

9

7. Asphalt production begins.

8


Specification Hierarchy


Asphalt Mix Design Limits

- Limits controlling aspects of the mixture during the design phase.
 - Gradation, AC%, Dust limit, Aggregate quality, etc.
- Production Limits
 - Tolerances controlling production of asphalt.
 Va, VMA, AC%, Density, Gradation, Consensus.
- Comparison Limits
 - Insure validity of QC/QA test results.

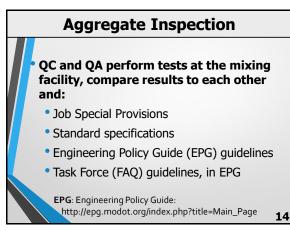
Removal Limits

 Specification limits requiring the removal and replacement of out of spec material.

Comparison Limits

• Insuring validity of test of both QC and QA.

- Tests are generally performed on a split sample with same equipment, separately by QC and QA personnel.
- Limits are based on statistical data showing repeatability of a given test between operators.


Removal Limits

 Generally applied when test results fall outside of production limits.

- Example:
 - Air Voids (Va) specification tolerance is 4.0 \pm 1.0%.
 - Removal limit is 1.5%.
- Hope to stay away from this but it does happen.
- Many things to check before material is removed.

13

13

14

Asphalt Inspection

QC and QA perform tests, compare to each other and to:

- Job Special Provisions
- Standard Specifications
- Engineering Policy Guide

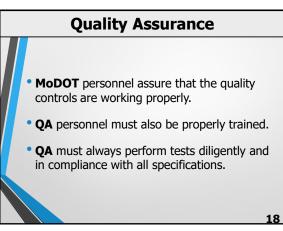
Must use spec. in force on contract date unless QC requests change.

• Pay factors are computed.

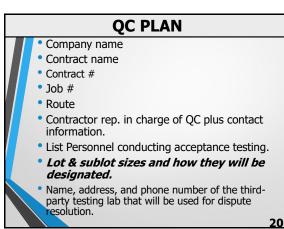
("Best Management Practice" says at the end of each lot).

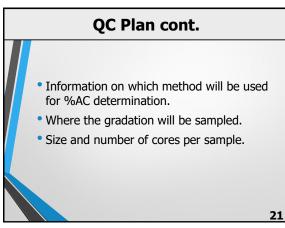
15

Quality Control

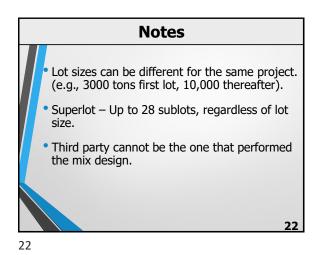

- **QC** is the contractor's responsibility to do the necessary testing during the production of the Asphalt pavement to ensure a durable, well performing product is achieved.
- **QC** involves comparing the contractor's test results to the specifying agency's requirements and specifications; should use QC's equipment for comparisons to work.

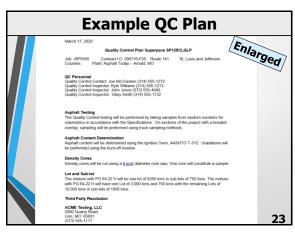
16

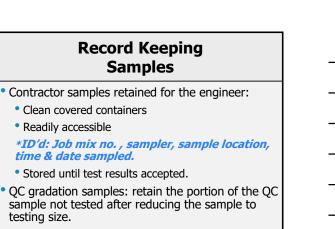

16

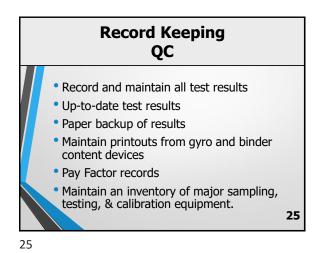


17







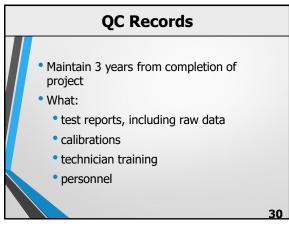


*All samples labeled

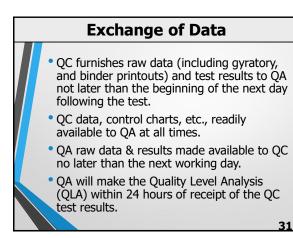
Documents On Hand • Job mix • QC plan • Current copies of all test method procedures

26

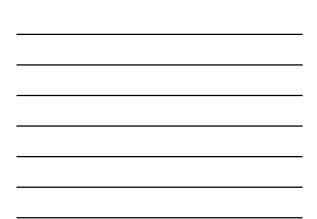
Test Equipment & Plant Calibration/Verification Records


- Results of calibration
- Description of equipment calibrated
- Date of calibration
- Person calibrating
- Calibration procedure ID
- Next calibration due date
- ID of calibration device & trace ability of calibration

27

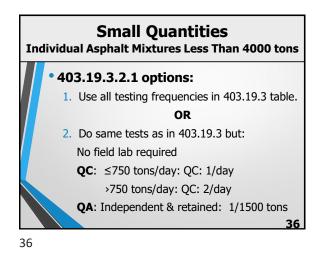

Calibration			
Equipment	Requirement	Interval	
		(month)	
Gyratory Compactor	Calibrate	12	
Gyratory Compactor	Verify	Daily	
Gyratory Compactor molds	Dimensions	12	
Thermometer	Calibrate	12	
Vacuum	Pressure	12	
Pycnometer	Calibrate	Daily	
Ignition oven	Verify	12 or when moved	

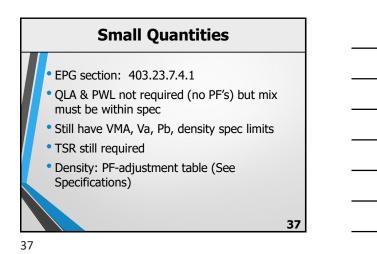
Calibration, Cont'd.			
Equipment	Requirement	Interval (month)	
Nuclear gage	Drift & stability	1	
Shakers	Sieving thoroughness	12	
Sieves	Physical condition	12	
Ovens	Standardize Thermometric Device	12	
Balances	Verify	12 or when moved	
Timers	Accuracy	12	
29			



QC/QA Functions at the Asphalt Plant Engineering Policy Guide (EPG)			
AGGREGATE			
FUNCTION:	LOCATION:	FREQUENCY:	
Aggregate Gradation: 3 sieves: 1 size smaller than NMS _{3/85} : not to exceed 92.0%. #8: Not to exceed 2.0% beyond master spec. #200: within master spec.	Drum: Combined cold feed Batch: Hot bins Optional: T308 Residue	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week	
Consensus Tests: FAA _{ppe} 2% CAA _{ppe} 5% SE _{spec} 5% F&E _{spec} . +2%	Drum: Combined cold feed Batch: Combined cold feed	QC: 1 per 10,000 tons (min. 1 per project per mix type) QA: 1 per project QA: QC retained: 1 per project	
Deleterious:	All plants: cold feed	QC: 1 per 2 sublots QA: 1 per 4 sublots QA: QC retained: 1 per week	
RAP: Gradation (T308 or T164 residue) Deleterious Micro-Deval (if necessary) Binder Binder		QC: 1 per day 1 per 2 sublots 1 per 1500tons 1 per 4 sublots QA: 1 per project QA: C retained: None	
Ground Shingles: Gradation		QC: 1/10,000 tons (Min. 1 per project	

	Asphalt				
FUNCTION:	LOCATION:	FREQUENCY:			
Obtain Sample	Behind paver	QC: 1 per sublot QA: 1 per 4 sublots QA: QC retained, 1 per day; not necessary on days the OA independent sample is taken if favorable comparison			
		of retained splits has been achieved.			
Quarter Sample	QC lab				
Compact 2 gyro pucks at N _{des}	QC lab				
Run pucks specific gravity Calculate average of the two (G _{mb})	QC lab	4			
Run Rice specific gravity (Gmm)	QC lab	ч.			
Calculate % Air Voids (V _a): $V_a=[(G_{mm}\cdot G_{mb}) \div G_{mm}] \times 100$ Compare to spec: 4 ± 1.0%		u			
This is a pay factor	QC lab				
Run asphalt content (P _b), Either nuclear or ignition oven. Compared to spec: P _{b,№} ± 0.3% <u>This is a pay factor</u>	QC lab				
Calculate % aggregate (P _s): P _s =100 - P _b	QC lab	96.			
Calculate VMA: VMA =100 - [(G _{mb} x P _s) ÷ G _{sb}] G _{sb} from JMF Compare to Spec: VMA design minimum [-0.5 to +2.0 %]	QC lab				
This is a pay factor		33			



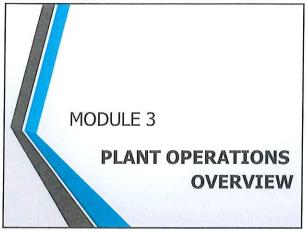

LOCATION:	FREQUENCY:
	QC : 1 per 10,000 T
	QA : 1 per 50,000 T
	Minimum: 1 per mix (combination of projects)
Traveled way pavement	QC: 1 sample per sublot
	QA: 1 sample per 4 sublots
Trailer	QC: 1 sample per sublot
	QA: 1 sample per 4 sublots

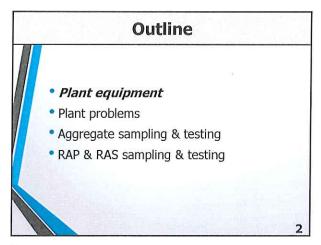
l l	Additional Testing			
FUNCTION:	LOCATION:	FREQUENCY:		
Mix Temperature	Roadway	QC: 1 per sublot		
		QA: 1 per day		
Temperature base & air	RAP/RAS feed	As-needed		
Binder content of RAP/RAS	QC lab	QC: 1 per 4 sublots		
		QA: 1 per project		
Calculate Voids Filled (VFA):	Roadway	QC: 1 per sublot		
VFA=[(VMA-V _a) ÷ VMA] × 100		QA: 1 per 4 sublots		
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot		
	,	QA: 1 sample per 4 sublots		
Drill longitudinal joint and shoulder cores		(See Module 5 Sampling)		
Calculate pavement density:				
Density= (G _{mc +} G _{mm}) x 100		(See Module 5 Sampling)		
Compare to Density Pay Adjustment Table if an unconfined joint core This is a pay adjustment factor				

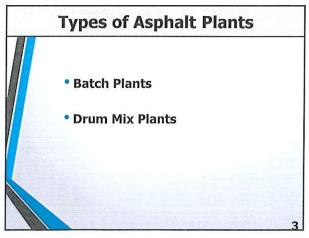
QC/QA Functions at the Hot Mix Plant Engineering Policy Guide (EPG)

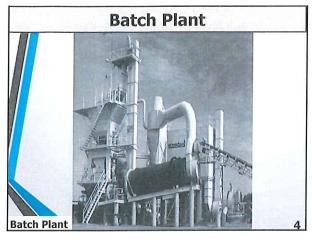
AGGREGATE		
FUNCTION:	LOCATION:	FREQUENCY:
Aggregate Gradation: 3 sieves: 1 size smaller than NMS _{JMF} : Not to exceed 92.0%. #8: Not to exceed 2.0% beyond master spec. #200: Within master spec.	Drum: Combined cold feed Batch: Hot bins Optional: T308 Residue	QC: 1 per 2 sublotsQA: 1 per 4 sublotsQA: QC retained: 1 per week
Consensus Tests: $FAA_{spec} - 2\%$ $CAA_{spec} - 5\%$ $SE_{spec} - 5\%$ $F\&E_{spec} + 2\%$	Drum: Combined cold feed Batch: Combined cold feed	 QC: 1 per 10,000 tons (min. 1 per project per mix type) QA: 1 per project QA: QC retained: 1 per project
Deleterious:	All plants: cold feed	QC: 1 per 2 sublotsQA: 1 per 4 sublotsQA: QC retained: 1 per week
RAP: Gradation (T308 or T164 residue) Deleterious Micro-Deval (if necessary) Binder Binder		 QC: 1 per day per 2 sublots per 1500tons per 4 sublots QA: 1 per project QA: QC retained: None
Ground Shingles: Gradation		QC: 1/10,000 tons (Min. 1 per project) QA: 1 per project

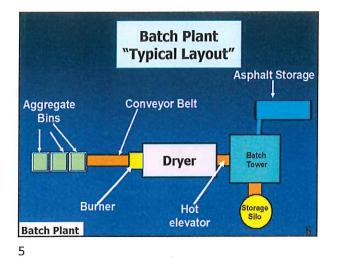
HMA				
LOCATION:	FREQUENCY:			
Behind paver	QC: 1 per sublot QA: 1 per 4 sublots			
	QA: QC retained, 1 per day; not necessary on days the QA independent sample is taken if favorable comparison of retained splits has been achieved.			
QC lab	и			
QC lab	и			
QC lab	ш			
QC lab	и			
QC lab	и			
QC lab	u			
	и			
QC lab				
OC lab	и			
	LOCATION: Behind paver DC lab QC lab			


HMA cont			
FUNCTION:	LOCATION:	FREQUENCY:	
Run TSR Compare to spec <i>This is a pay adjustment factor</i>		QC: 1 per 10,000 T QA: 1 per 50,000 T Minimum: 1 per mix (combination of projects)	
Drill pavement cores	Traveled way pavement	QC : 1 sample per sublot QA : 1 sample per 4 sublots	
Determine pavement core density (G _{mc})	Trailer	QC: 1 sample per sublot QA: 1 sample per 4 sublots	

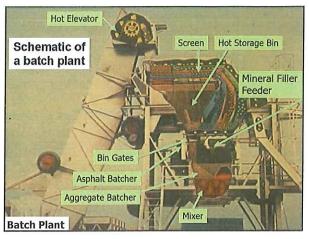

Additional Testing					
FUNCTION:	LOCATION:	FREQUENCY:			
Mix Temperature	Roadway	QC: 1 per sublot			
		QA: 1 per day			
Temperature base & air	RAP/RAS feed	As needed			
Binder content of RAP/RAS	QC lab	QC: 1 per 4 sublots			
		QA: 1 per project			
Calculate Voids Filled (VFA):	Roadway	QC: 1 per sublot			
VFA=[(VMA-V _a) \div VMA] x 100		QA: 1 per 4 sublots			
Drill unconfined joint cores	Roadway	QC: 1 sample per sublot			
		QA: 1 sample per 4 sublots			
Drill longitudinal joint and shoulder cores	Roadway	See Module 5, Sampling			
Calculate pavement density:		See Module 5, Sampling			
$Density=(G_{mc} \div G_{mm}) \ x \ 100$					
Compare to Density Pay Adjustment Table if an unconfined joint core					
This is a pay adjustment factor					


Module 3

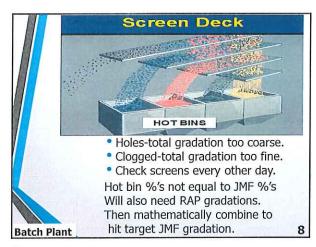

Plant Operations Overview

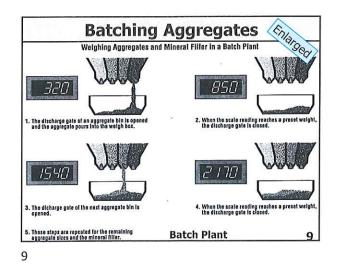


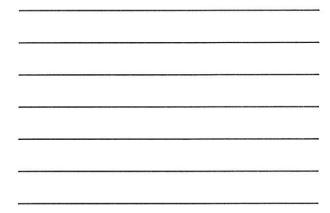


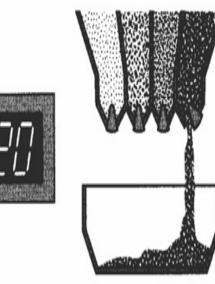

 Batch Plant

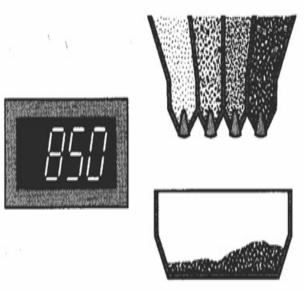
 • Aggregate is heated. Reduces moisture related problems.

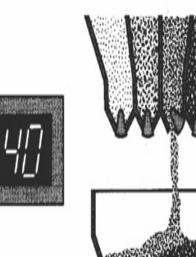

 • Aggregate is rescreened.

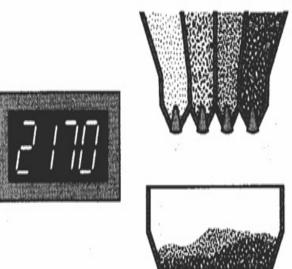

 • Aggregate is batched by weight.


 • Batch plants provide a consistent mixture.





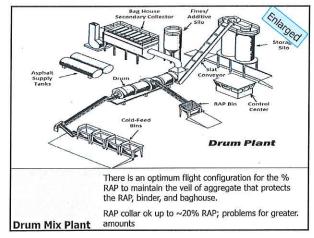

Weighing Aggregates and Mineral Filler in a Batch Plant

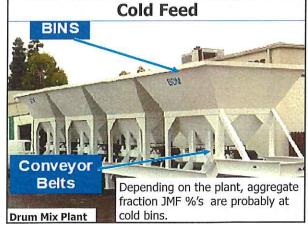

1. The discharge gate of an aggregate bin is opened and the aggregate pours into the weigh box.

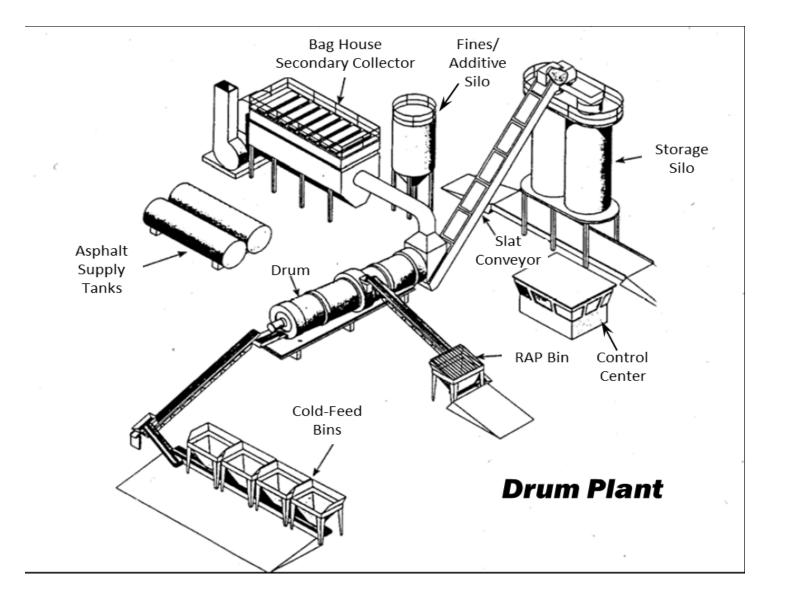
2. When the scale reading reaches a preset weight, the discharge gate is closed.

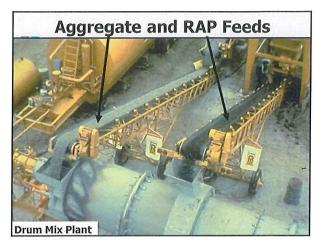
- 3. The dicharge gate of the next aggregate bin is opened.
- 5. These steps are repeated for the remaining aggregate sizes and the mineral filler.

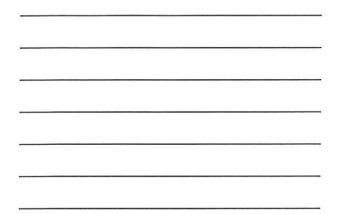
4. When the scale reading reaches a preset weight, the discharge gate is closed.

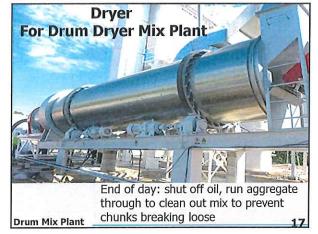

		FILL SCALE		ASPHALT SCALE		
BATCH FORMULA BIN I 100.0	S DRY O	WET 0	REO	ватсн	DIFF 2	
	C1 248.0	BIN 1	200	198	0.5	
		BIN 2	660	662	0.3	
BIN 3 388.0		BIN 3	1436	1437	0.1	
BIN 4 455.0 WET	TIME 24	BIN 4	2346	2342	0.1	
BIN 5 121.0 DRY	TIME B	BIN 5	2588	2588	0.0	
014 9 121.0 DKT	TTHE B	BIN 6	3525	3568	0.0	
	BATCH 2.00	MIN 1	86	189		
BIN 7 0.0 PROI	BINDER	A/C 1	480	480	5.0	
MIN 1 43.0 MIX	= 12	Constant of				
1. CHANGE MIX 2. (SO TO MIX .	1 Artod				





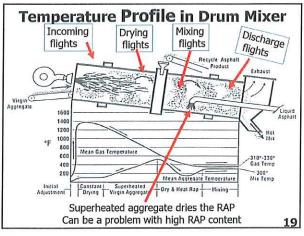




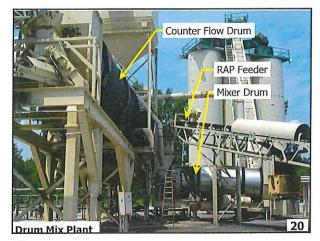


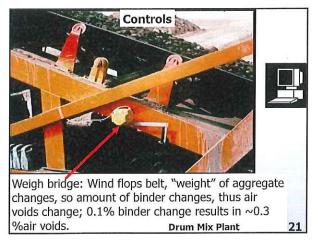

There is an optimum flight configuration for the % RAP to maintain the veil of aggregate that protects the RAP, binder, and baghouse.

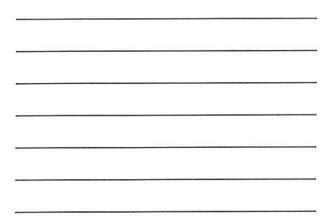
RAP collar ok up to ~20% RAP; problems for greater amounts

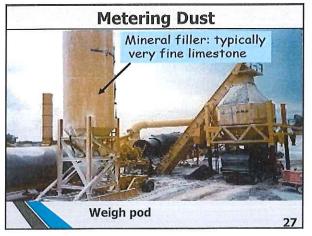


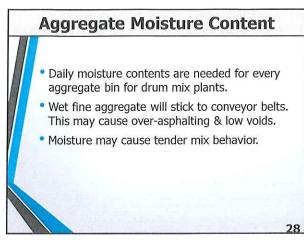


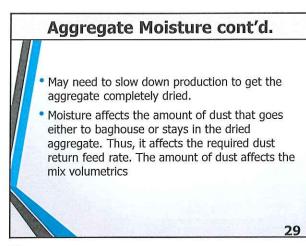


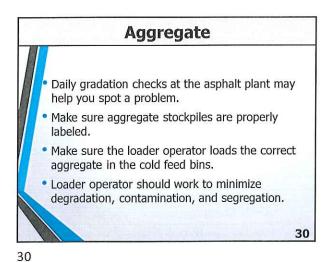


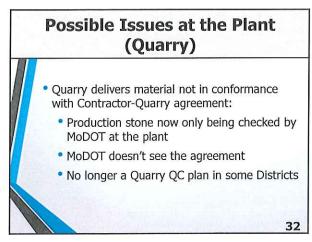


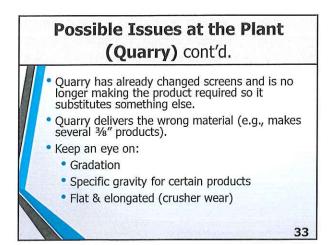




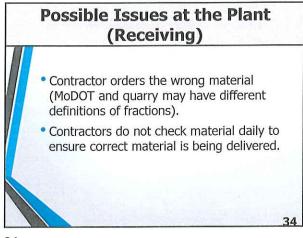


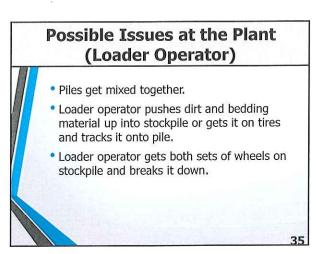




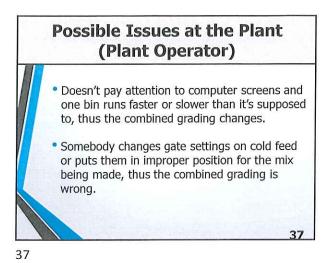


Daily Plant Procedures


- Make sure all equipment is well maintained. (e.g., look for holes in screens)
- Check the bill of lading on all materials before you unload them:
 - Correct material
 - Check for "testing statement"—some binder suppliers are now sending out non-certified binder
- Check the quantities of AC, mineral filler, hydrated lime, burner fuel, etc.
- Dust control is important with Superpave. Make sure your dust collection system is working properly.

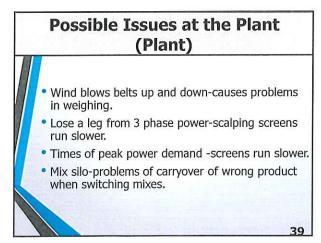


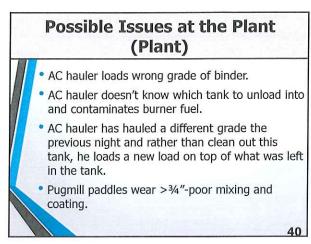
32

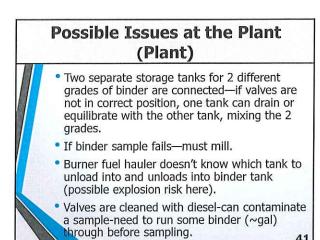


35

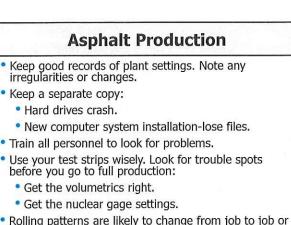
Possible Issues at the Plant (Loader Operator)


- Loader operator falls behind production, allows bin to empty, fills them with closest available rock.
- Wrong material in bins from spillage from adjacent bin.
- Wrong material in bins from getting piles mixed up.
- Bin runs empty, then gets material dumped in, locks collector belt, no material gets to cold feed belt.


36

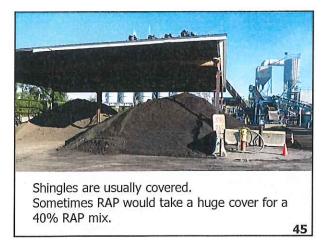


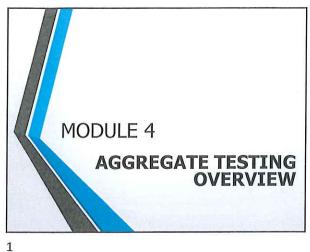
Possible Issues at the Plant (Plant)
Hole wears in shaker (scalper) screen and allows various oversized materials to get into mix: dirt clods, sticks, oversized aggregate, bottles, cans, etc.
Motor or belts burn up on a bin and it stops running but plant diagnostics do not catch it.

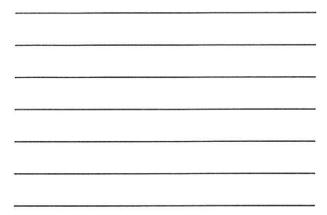

38

41

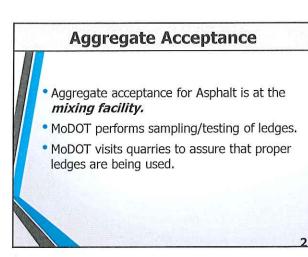
• Rolling patterns are likely to change from job to job or even on same job if material underneath fails.

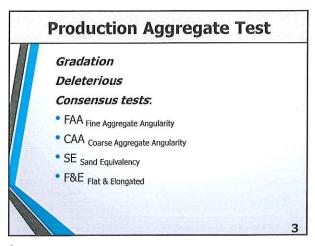


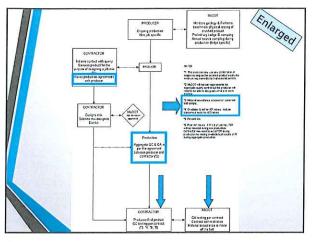




Module 4


Aggregate Testing Overview





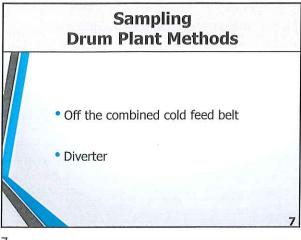
т

SAMPLING: Aggregate

• Gradation:

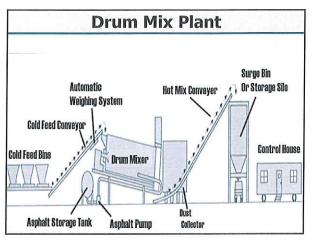
- Drum Cold feed belt
- Batch Hot bins
- Can use Asphalt sample T308 residue (Not applicable for dolomite).
 RAP T308 residue; combine mathematically with virgin gradation. (Dolomite will need to extract)

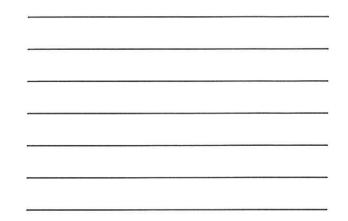

• Deleterious:

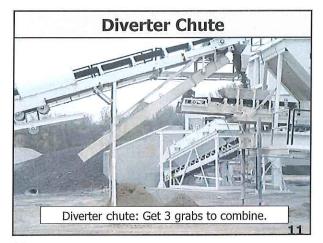

• All plants - Cold feed belt

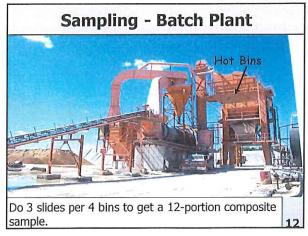
Consensus:

- All plants Cold feed belt
- QC retains half their sample (after final split) for QA. 5

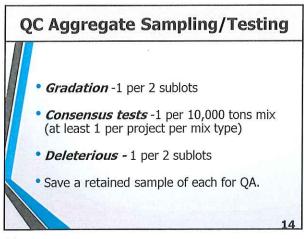


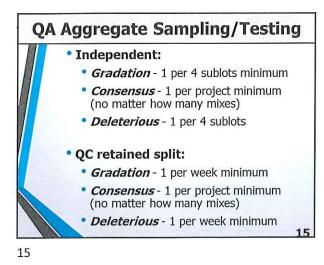




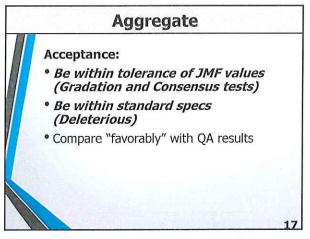












2: Aggregate Cold feed:

Deleterious

Consensus

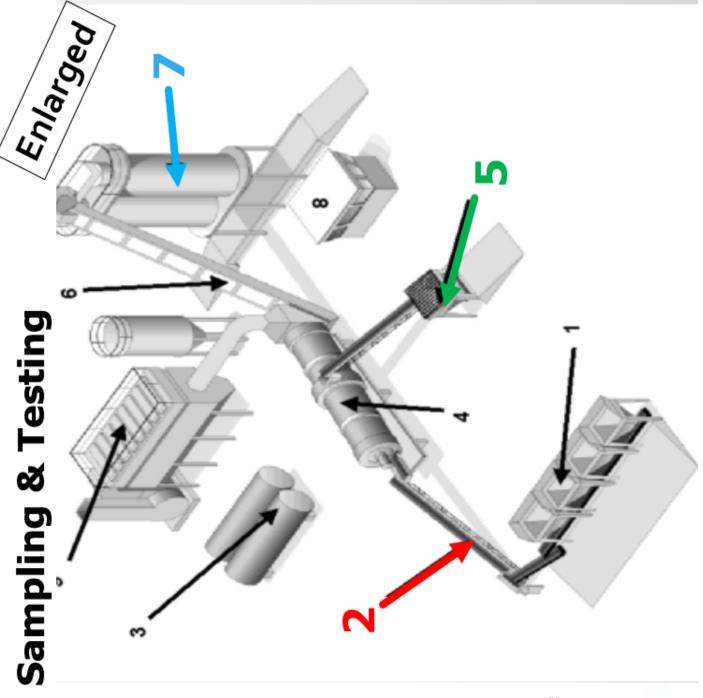
 Gradation: if dolomite and maybe if limestone

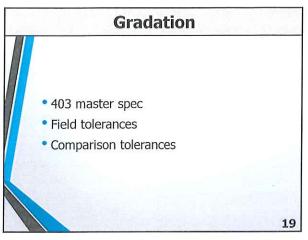
5: RAP

Binder content (T308/T164)

Gradation-binder residue

 (Mathematically combined with cold feed gradation if not using roadway sample for gradation)

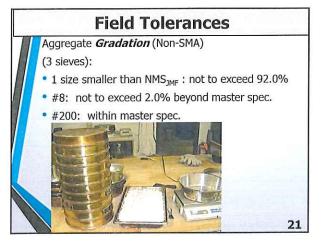

Micro-Deval- maybe

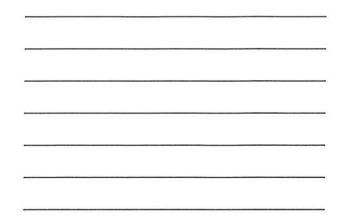

•7: Silo Discharge-Truck or HMA Mini-stockpile:

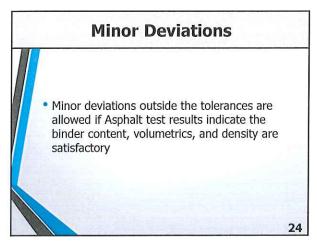
Maybe TSR

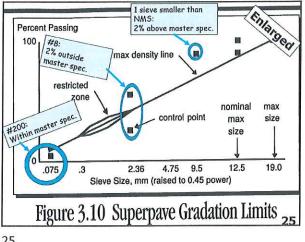
Not Shown-Roadway sample:

- Binder content/moisture
- Gradation-binder residue)
- Gyro pucks
- Rice Gravity

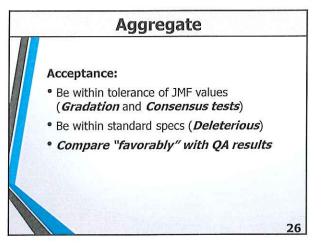


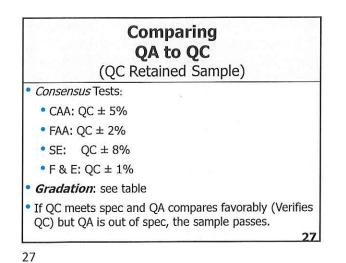

	SPECI	FIED GF	ADATIC	NS	1. Harrison	-
Sieve Size	SP250	SP190	SP125	SP095	SP048	
1 1⁄2 "	100					
1	90-100	100				
3/4	90 max	90-100	100			
1/2		90 max	90-100	100		
3/8			90 max	90-100	100	
#4				90 max	90-100	
#8	19-45	23-49	28-58	32-67		
#16					30-60	
#30						
#50						
#100						
#200	1-7	2-8	2-10	2-10	7-12	20

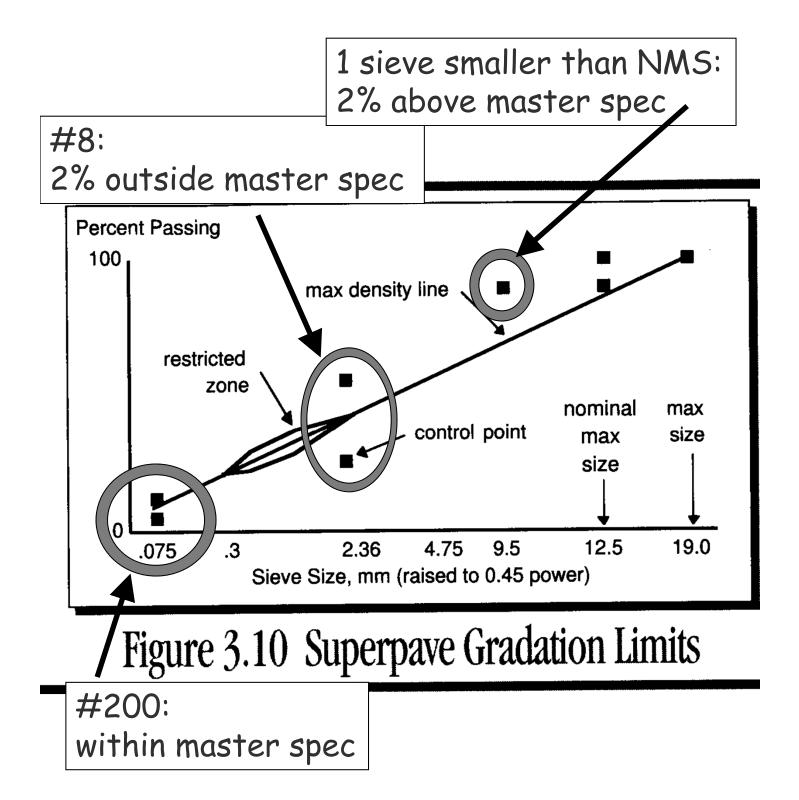


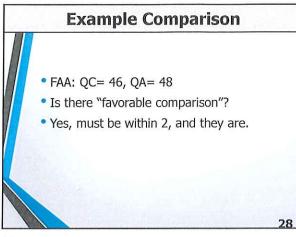


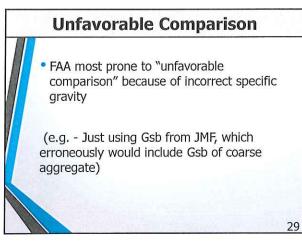

Example	Sieve	SP190	Tolerance	Test
/	1.5			
SP 190	1	100		100
	3/4	90-100		99
	1/2	90 max	92 max	91
	3/8			
	#4			
	#8	23-49	21-51	22
	#16			
	#30			
	#50			
	#100			
	#200	2-8	2-8	5.2




	%'s off JN	1F Target G	radation	
	Sieve	SP095	SP125	
	3/4 "			
	1/2″		± 4	
ALC: NO	3/8"	± 4	± 4	
	#4	± 3	± 3	
	#8	± 3	± 3	
	#200	± 2	± 2	








	Sieve Size	Percentage points	
	≥³/4″	± 5.0%	
	1/2″	± 5.0	
Gradation	3/8″	± 4.0	
on QC retained sample	#4	± 4.0	
so are running same	#8	± 3.0	
type of sample.	#10	± 3.0	
c/pc of oscillation	#16	± 3.0	
(Use for Gradation	#20	± 3.0	
comparisons)	#30	± 3.0	
	#40	± 2.0	
	#50	± 2.0	
19 ST 말해라 ' 문' 그가 -	#100	± 2.0	
all has the second	# 200	± 1.0	3

Module 5

Asphalt Sampling Loose Mix & Cores

MODULE 5 OUTLINE

- Resources
- Sample Types
- Retaining Samples
- Lots and Sublots
- Sample Location (RN)
- Sampling Asphalt Loose Mix
 Loose Mix Sampling Steps
- Sampling Asphalt Cores
 - QLA Core Sampling Steps

2

RESOURCES

403 specification

General provisions & Supplemental Specifications AASHTO Test Methods:

3

R 97 Sampling Asphalt Mixtures

R 67 Sampling Asphalt Mixtures (Cores)

Engineering **P**olicy **G**uide (EPG)

FAQ - located in EPG

Superpave Course Notebook

SAMPLE TYPES

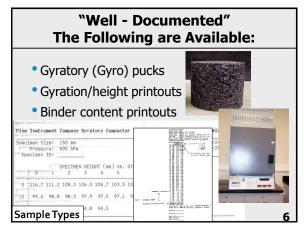
Quality Level Analysis (QLA)

Randomly Chosen

- QC For determination of pay factors.
- QA For seeing if QC samples define the characteristics of the lot (Favorable Comparison).

<u>"Extra" or "Check" or "Self-test" samples.</u>

NOTE: Samples should be clearly marked as to what they are.


4

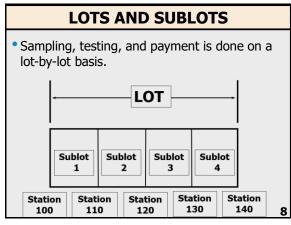
Extra or Check Samples

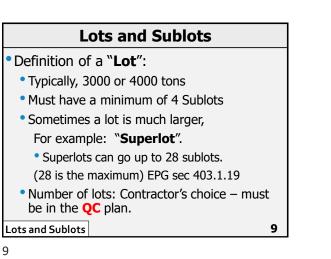
Extra sampling by QA or QC:

- Check how the mix is doing.
- Investigate problem areas e.g., does a problem exist?
- Determine limits of the problem.
- Can be from truck, plant or roadway
- Not random and can not be used for QLA.
 - Quality Level Analysis (QLA).
- Can be used to define removal limits, but must be "Well Documented"

5

RETAINING SAMPLES


EPG Sec: 403, Clearly label the samples that are to be retained. Do not discard retained samples until all QC/QA comparison issues are resolved.
If the lab becomes crowded, the RE should store the samples in the project office.
The retained sample is a contract requirement and belongs to the Commission.


The contractor can keep ADDITIONAL mix for internal use.

The retained samples can be used for dispute resolution.

Retaining Samples

7

Lots and Sublots

• Sublot:

- Maximum sublot size = 1000 tons.
- More sublots means more lab work but may increase the pay factor somewhat.

10

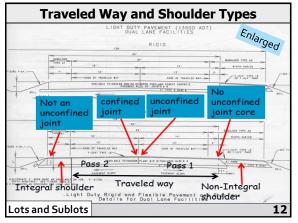
11

NOTE: If a lot = 3000 tons, a sublot = 750 tons.

Lots and Sublots

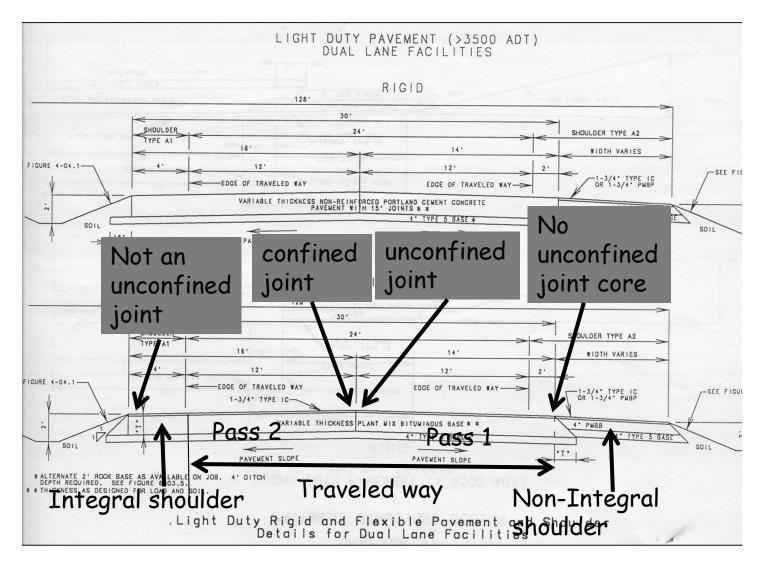
10

Lot Routines for 403 mixes


- Traveled way + Integral Shoulders
- Non-integral Shoulders (If SuperPave)
- If not Superpave, (e.g., BP-1 mix), random numbers are not required, see "non-traveled area" next slide.

NOTES:

- A 403 mix is a mix as described in MODOT's EPG under Category 403.
- Superpave mixes will begin with SP, for example; SP250, SP190, SP125.
- Non Superpave examples would be BP-1, and BB mixes.

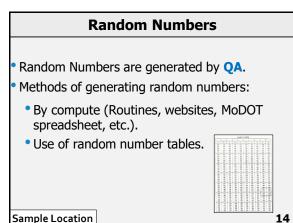

Lots and Sublots

11

Traveled Way and Shoulder Types

SAMPLE LOCATION

Random Numbers are used to generate a random location for sampling.


- **Object**: to produce unbiased samples. Sample bias occurs either during construction or during sampling.
 - See ASTM D3665 on Random Samples
- QC should provide contingencies in QC Plan to handle random numbers in weird locations (does not apply to early tonnage e.g., first 50 tons).

13

15

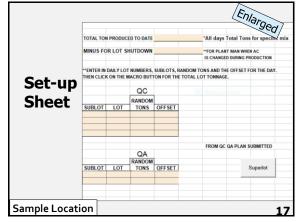
Sample Location

13

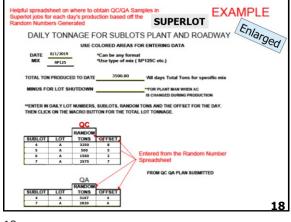
Sample Location

14

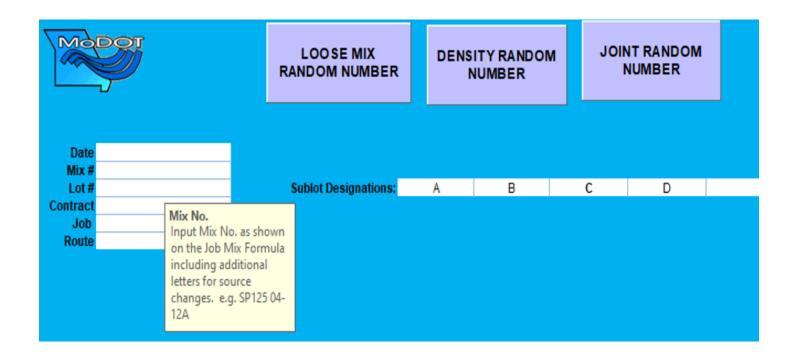
Random Number Generation


- MoDOT spreadsheet is the preferred method.
- Use the "Asphalt Random Location spreadsheet"
- MoDOT internal site:

http://eprojects/Template/Forms/AllItems.aspx


Sample Location

	Ν	loDOT S	Spread	sheet	Enlarge
M		LOOSE MIX RANDOM NUMBER	DENSITY RANDOM NUMBER	JOINT RANDOM NUMBER	
Date Mix # Lot # Contract Job	Mix No.	Subiot Designations:	Á B	C D	
Route	Input Mix No. as sh on the Job Mix For including additions letters for source changes. e.g. SP12 12A	mula al			
Sample	Locatio	n			1

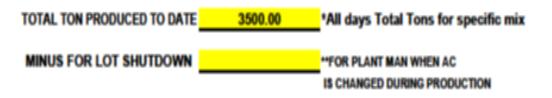


MoDOT Spreadsheet

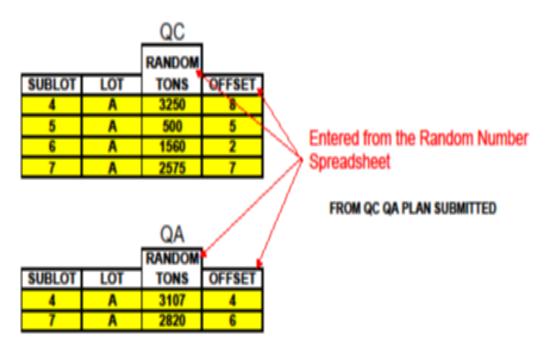
Set-Up Sheet

TOTAL TON PRODUCED TO DATE *All days Total Tons for specific MINUS FOR LOT SHUTDOWN **FOR PLANT MAN WHEN AC IS CHANGED DURING PRODUCTION **ENTER IN DAILY LOT NUMBERS, SUBLOTS, RANDOM TONS AND THE OFFSET FOR THE DAY THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE. QC RANDOM SUBLOT LOT TONS OFFSET FROM QC QA PLAN SUBMITTED QA RANDOM SUBLOT LOT TONS OFFSET SUBLOT IOT IOT IONS IOFFSET Superiot	TOTAL TON		D TO DATE		*All days	Total Tons	for specific
IS CHANGED DURING PRODUCTION ***ENTER IN DAILY LOT NUMBERS, SUBLOTS, RANDOM TONS AND THE OFFSET FOR THE DAY THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE. QC RANDOM RANDOM Rectangular Single SUBLOT LOT TONS OFFSET SUBLOT LOT TONS OFFSET Image: Sublicities of the state	101112 101				 /iii dujo		
Memory and and a stress of the stress of	MINUS FO	R LOT SH	UTDOWN		**FOR PLAN	T MAN WHE	AC
THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE. QC Rectangul or Ship Image: Ship QC Rectangul or Ship Image: Ship Image: Ship RANDOM Rectangul or Ship Image: Ship Image: Ship Image: Ship SUBLOT LOT TONS OFF SET Image: Ship Image: Ship Image: Ship SUBLOT LOT TONS OFF SET Image: Ship Image: Ship <t< td=""><td></td><td></td><td></td><td></td><td>IS CHANGE</td><td>D DURING PR</td><td>ODUCTION</td></t<>					IS CHANGE	D DURING PR	ODUCTION
THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE. QC Rectangul or Ship Image: Ship QC Rectangul or Ship Image: Ship Image: Ship RANDOM Rectangul or Ship Image: Ship Image: Ship Image: Ship SUBLOT LOT TONS OFF SET Image: Ship Image: Ship Image: Ship SUBLOT LOT TONS OFF SET Image: Ship Image: Ship <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
$ \begin{array}{c c c c c c } \hline \mbox{l} $							OR THE DAY.
RANDOM SUBLOTRANDOM TONSOFF SETIntersection ConstraintsIntersection 			ACRO DUTI	ON FOR TH	TIONNAG	-	
RANDOM SUBLOTRANDOM TONSOFF SETIntersection ConstraintsIn			20		Rectangul	ur Spin	
SUBLOT LOT TONS OFF SET Interview Interv					Rectangui	n omp	
Image: Constraint of the second s	SUBLOT	LOT		OFFSET			
QA RANDOM	JUDLUT	201	10113	OFFSLI			
QA RANDOM							
QA RANDOM							
QA RANDOM							
QA RANDOM					5000000		
RANDOM			~		FROMQC	QA PLAN S	URWITTED
SUBLOTLOTTONSOFF SET $\begin{tabular}{ c } & \begin{tabular}{ c } & \beg$		LOT		OFFEET			Suporlat
Image: sector	SUBLUI	LUI	TUNS	UFFSET		`	Superior
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: selection of the							
Image: selection of the							
Image: state of the state of							
Image: state stat							
Image: state stat							
Image: state of the state							
Image: selection of the se							

Helpful spreadsheet on where to obtain QC/QA Samples in Superlot jobs for each day's production based off the Random Numbers Generated

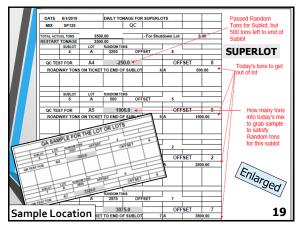

EXAMPLE

DAILY TONNAGE FOR SUBLOTS PLANT AND ROADWAY

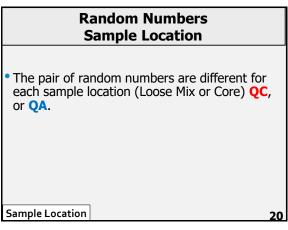

USE COLORED AREAS FOR ENTERING DATA

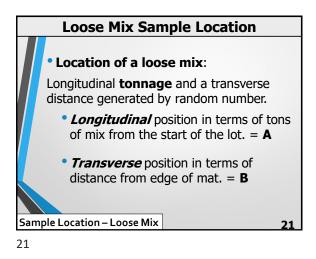
DATE	8/1/2019
MIX	SP125

*Can be any format *Use type of mix (SP125C etc.)

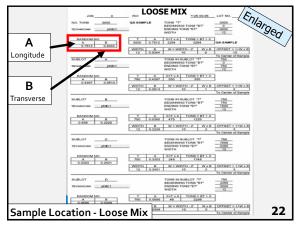


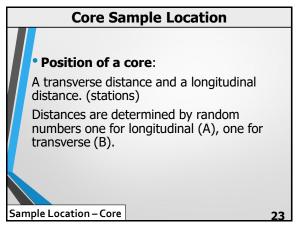
"ENTER IN DAILY LOT NUMBERS, SUBLOTS, RANDOM TONS AND THE OFFSET FOR THE DAY. THEN CLICK ON THE MACRO BUTTON FOR THE TOTAL LOT TONNAGE.

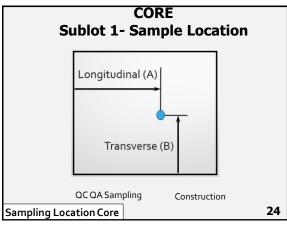


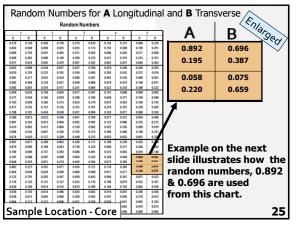

									T
DATE	8/1/2019		DAILY TO	NAGE FOR	SUPERLO	TS			Passed Random
MIX	SP125			QC					Tons for Sublot, but
									500 tons left to end of
TOTAL ACTI	UAL TONS	3500	.00		- For Shut	down Lot	0	00	Sublot
RESTART	TONAGE	3500						_	Subiol
	SUBLOT	LOT	RANDOM TO						
	4	A	3250	OFF	SET	8		-	
QC TES	ST FOR	A4	-25	i0.0 🦟		OFF	SET	8	Today's tops to get
ROAD	WAY TONS	ON TICKET	TO END O	F SUBLOT	4	A	50	0.00 🔸	Today's tons to get
									Jout of lot
									//
	SUBLOT	LOT	RANDOM TO		OFT				///
	5	A	500	066	SET	5			/ //
			400	0.0		0.00	OFT	/	
	ST FOR	A5		0.0 🔶			SET	5	How many tons
ROAD	WAY TONS	ON TICKET	TO END O	F SUBLOT	5	A	15	00.00	into today's mix
									to grab sample
									to satisfy
<u> </u>									Random tons
	SUBLOT	LOT	RANDOM TO	ALC: NO				1	
	6	A	1560		SET	2			for this sublot
	- °		1000	011	521	-			1/ 1
QC TES	ST FOR	A6	206	50.0		OFF	SET	2	/ /
		ON TICKET			6	A		00.00	
KOAD		ONTICKET	TO END O	SUBLUI	0	^	20	1	
	SUBLOT	LOT	RANDOM TO						
	7	A	2575	OFF	SET	7			
		47	207	15.0		0.55	OFT		
	ST FOR	A7		75.0			SET	7	
ROAD	WAY TONS	ON TICKET	TO END O	F SUBLOT	7	A	35	00.00	

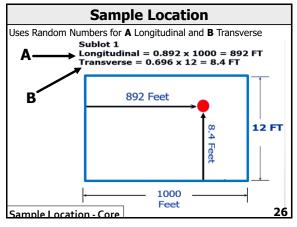
	C	A SAM	PLE FC	RTHE	LOT	RLOT	S	
	SUBLOT	LOT A	RANDOM TO 3107		SET	4		
QA TE:	ST FOR	A4	-39	3.0		OFF	SET	4
	SUBLOT	LOT	RANDOM TO	N.S.				
	7	A	2820		SET	6		
QA TES	T FOR	A7	332	20.0		OFF	SET	6

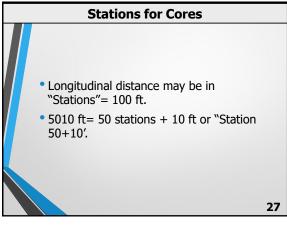






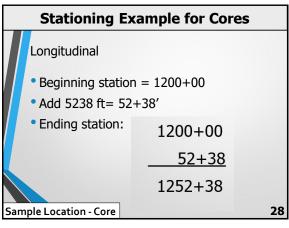


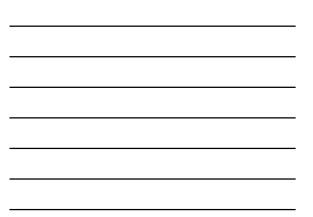


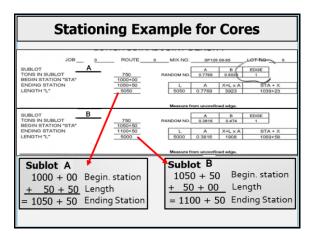

LOOSE MIX

JOB 0	ROUTE	0	MIX NO.	SP125	09-95	LOT NO.	5
NO. TONS <u>3000</u> TECHNICIAN <u>phillc1</u>	QA SAMP	LE		IG TONS " ONS "ET"		3000 0 3000 12	
RANDOM NO. A B 0.7512 0.9344	T 3000	A 0.7512	X=T x A 2254	22	= BT + X 54	QA SAMPL	
	WIDTH 12	B 0.9344	W = WI	DTH - 2' 10	<u> </u>		0
SUBLOT <u>A</u> TECHNICIAN phillc1			BEGINNIN	SUBLOT " IG TONS " TONS "ET"	BT"	To Center o 750 0 750 12	of Sample
RANDOM NO. A B 0.4397 0.0513	T 750	A 0.4397	X=T x A 330	TONS = 33	= BT + X 30]	
	WIDTH 12	B 0.0513	W = WI	DTH - 2' 10	W x B 1	OFFSET = 2 To Center of	2
SUBLOT <u>B</u> TECHNICIAN <u>philic1</u>			BEGINNIN	SUBLOT • NG TONS • TONS "ET"	BT.	750 750 1500 12	
A B 0.638 0.2229	T 750	A 0.6380	X=T x A 479	12]	
	WIDTH 12	B 0.2229	W = WI	DTH - 2' 10	W x B 2	OFFSET =	3
SUBLOT <u>C</u> TECHNICIAN <u>philic1</u>			BEGINNIN	SUBLOT " NG TONS " TONS "ET"	BT"	750 1500 2250 12	
RANDOM NO.	T 750	A 0.3303	X=T x A 248	TONS =	= BT + X 48	-	
0.3303 0.2401	WIDTH 12	B 0.2401		DTH - 2' 10	W×B 2	OFFSET =	3
SUBLOT <u>D</u> TECHNICIAN <u>philic1</u>		×	BEGINNIN	SUBLOT • NG TONS • FONS "ET"	BT"	750 2250 3000 12	
RANDOM NO.	T 750	A 0.0596	X=T x A 45	TONS = 22	= BT + X 95]	
0.0596 0.0308	WIDTH 12	B 0.0308	W = WI	DTH - 2' 10	W x B 0	OFFSET =	

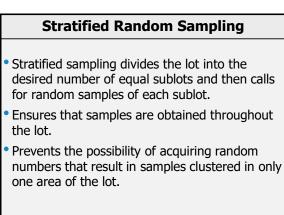
Superpave

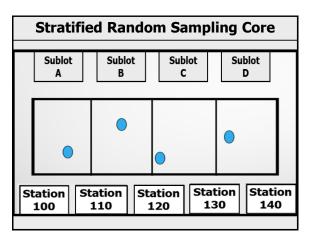


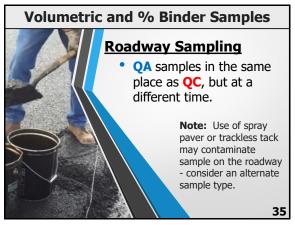


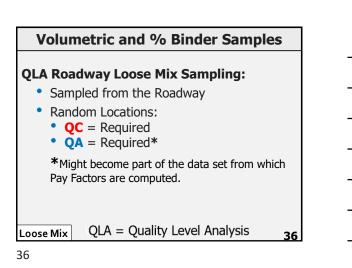

Random Numbers

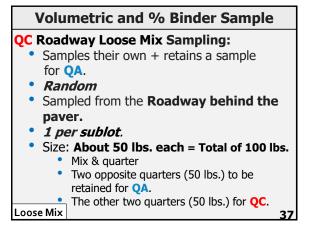
· ·	1		2		3		4		5
Α	В	Α	В	Α	В	Α	В	Α	В
0.576	0.730	0.430	0.754	0.270	0.870	0.732	0.721	0.998	0.239
0.892	0.948	0.858	0.025	0.935	0.114	0.153	0.508	0.749	0.291
0.669	0.726	0.501	0.402	0.231	0.505	0.009	0.420	0.517	0.858
0.609	0.482	0.809	0.140	0.396	0.325	0.937	0.310	0.253	0.761
0.971	0.824	0.902	0.470	0.997	0.392	0.892	0.957	0.640	0.463
0.053	0.899	0.554	0.627	0.427	0.760	0.470	0.240	0.304	0.393
0.810	0.159	0.225	0.163	0.549	0.405	0.285	0.542	0.231	0.919
0.081	0.277	0.035	0.039	0.860	0.507	0.081	0.538	0.986	0.501
0.982	0.468	0.334	0.921	0.690	0.806	0.879	0.414	0.106	0.931
0.095	0.801	0.576	0.417	0.251	0.884	0.522	0.235	0.398	0.222
0.509	0.025	0.794	0.850	0.917	0.387	0.751	0.608	0.698	0.683
0.371	0.059	0.164	0.838	0.289	0.169	0.659	0.377	0.796	0.996
0.165	0.996	0.356	0.375	0.654	0.379	0.815	0.592	0.348	0.743
0.477	0.535	0.137	0.155	0.767	0.187	0.579	0.787	0.358	0.595
0.788	0.101	0.434	0.638	0.021	0.894	0.324	0.871	0.698	0.539
0.566	0.815	0.622	0.549	0.947	0.169	0.817	0.472	0.854	0.466
0.901	0.342	0.873	0.964	0.942	0.985	0.123	0.086	0.335	0.212
0.470	0.682	0.412	0.064	0.150	0.962	0.925	0.355	0.909	0.019
0.068	0.242	0.667	0.356	0.195	0.313	0.396	0.460	0.740	0.247
0.874	0.420	0.127	0.284	0.448	0.215	0.833	0.652	0.601	0.326
0.897	0.877	0.209	0.862	0.428	0.117	0.100	0.259	0.425	0.284
0.875	0.969	0.109	0.843	0.759	0.239	0.890	0.317	0.428	0.302
0.190	0.696	0.757	0.283	0.666	0.491	0.523	0.665	0.919	0.146
0.341	0.688	0.587	0.908	0.865	0.333	0.328	0.404	0.892	0.696
0.846	0.355	0.831	0.218	0.945	0.364	0.673	0.305	0.195	0.387
0.882	0.227	0.552	0.077	0.454	0.731	0.716	0.265	0.058	0.075
0.464	0.658	0.629	0.269	0.069	0.998	0.917	0.217	0.220	0.659
0.123	0.791	0.503	0.447	0.659	0.463	0.994	0.307	0.631	0.422
0.116	0.120	0.721	0.137	0.263	0.176	0.798	0.879	0.432	0.391
0.836	0.206	0.914	0.574	0.870	0.390	0.104	0.755	0.082	0.939
0.636	0.193	0.614	0.486	0.629	0.663	0.619	0.007	0.296	0.456
0.630	0.673	0.665	0.666	0.399	0.592	0.441	0.649	0.270	0.612
0.804	0.112	0.331	0.606	0.551	0.928	0.830	0.841	0.602	0.183
0.360	0.193	0.181	0.399	0.564	0.772	0.890	0.062	0.919	0.875
0.183	0.651	0.157	0.450	0.800	0.875	0.205	0.446	0.648	0.985

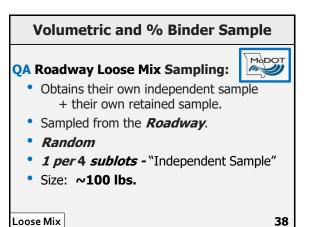

Random Numbers

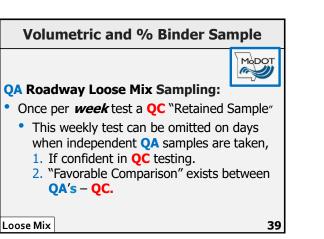


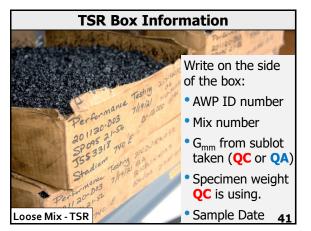

<u>Truck</u>

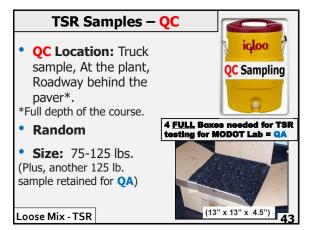


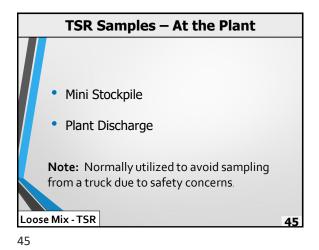

Procedure:

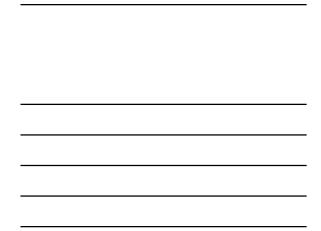

- Use a platform with safety railing.
- Use a shovel.
- Remove 1 foot from the top surface.
- Visually divide an area into 4 quadrants.
- Obtain an increment from a quadrant and another increment from the opposite quadrant, repeat if needed, combine for a sample.
 (New Slide) 31


34






Loose Mix - TSR



TSR Samples
Locations:
 Roadway (Behind the paver)
 Truck (Preferred)
 Plant Discharge
• Stream
• Random
• Size: 75-125 lbs.
QA get samples in same place as QC , but at a different time.
Loose Mix - TSR 42

"Mini-Stockpile"

- Used for TSR samples Need about **2** tons sampled from silo
- discharge into a truck. Dumped
- Back dragged
- Sampled into, 4 buckets or boxes.
- Back at lab; material is combined, mixed, quartered, and combined into 2 piles.
- Then **4** pucks are sampled from each pile.

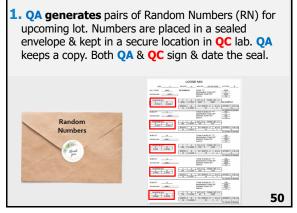
Loose Mix - TSR 46

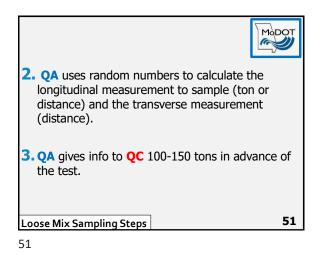
46

Plant Discharge

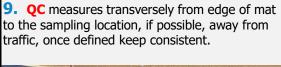
- (Chop Gate-Diverter Chute)
- Used for TSR samples
- Divert entire production stream to a loader bucket.
- Sample across the loader bucket, one shovel per box , all boxes.
- Repeat until boxes are full.
- Cool (beware of dust) and close boxes.

47


CAUTION!


- Sampling methods limits the position of sampling.
- Do not leave sample boxes uncovered at this location—may get contaminated with dust and overspray of release agent. Loose Mix





- **4. QC** gives info to plant operator.
- 5. Plant operator marks ticket of the load that the RN ton fell in.
- **6. QC** follows truck to site.
- 7. QC notes the location (station) where the load went down. This will be arbitrary.
- Samples should not be taken in areas of handwork; move 10 ft ahead of affected area.

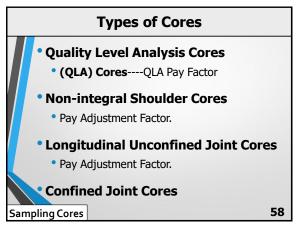
Loose Mix Sampling Steps

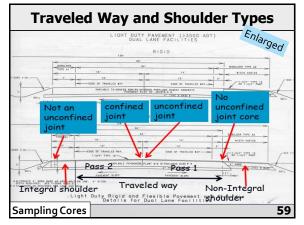
52

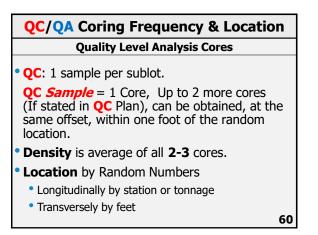
52

53

CAUTION!


- Filling one box (bucket) at a time may render different characteristics box to box, better to place one shovelful per box at a time.
- Should recombine and quarter.

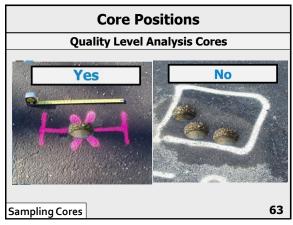

Loose Mix Sampling Steps


56

QC/QA Coring Frequency & Location Quality Level Analysis Cores

- QA: 1 sample per 4 sublots.
- QA's Core can be at same location as one of the QC cores: same offset; within 6" longitudinally; or randomly located.
- In traveled way (Not on integral shoulder).
- Applies to unconfined joints as well as traveled way.

61

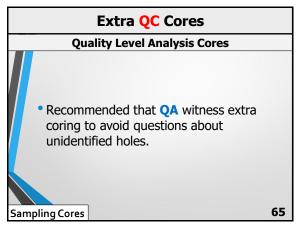

62

61

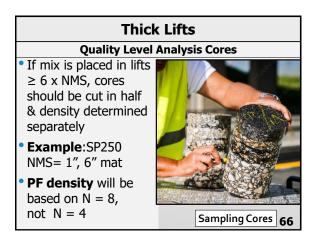
- Independent = Acceptance sample
- Can be randomly located as a location independent from QC's core, OR
- Typically, same "location" as **QC** core sample:
 - Same transverse offset from mat edge as **QC** sample.
 - Within 6 in. longitudinally from **QA** core.

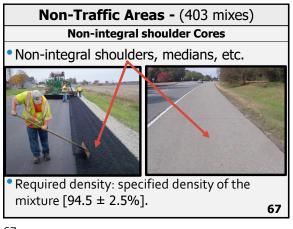
Sampling Cores

Coring


Quality Level Analysis Cores

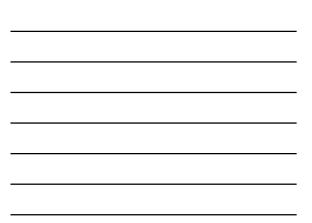
403.22.4.2 – Density core holes should be patched promptly to prevent moisture intrusion and damage to the pavement.


Sampling Cores


64

64

65

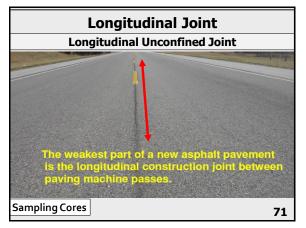


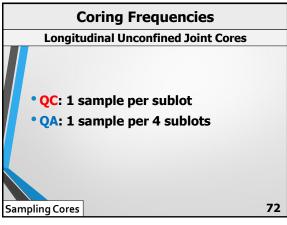
Non-Traffic Areas - (403 mixes)
Non-integral Shoulder Cores
 When rolling pattern demonstrates successful achievement of density, RE may allow the pattern in lieu of density tests.
 Intelligent Compaction
 On re-surfacing projects where shoulders cannot withstand the compactive effort, RE can relax the density requirements.
Sampling Cores 68

Density Pay Adjustment Factor						
Non-integral Shoulder Cores						
Field Density, % of Gmm	% of Contract Unit Price					
92.0 - 97.0	100					
91.5 - 91.9 or 97.1 - 97.5	90					
91.0 - 91.4 or 97.1 - 97.5	85					
90.5 - 90.9 or 97.6 - 98.0	80					
90.0 - 90.4 or 97.6 - 98.0	75					
Below 90.0 or above 98.0	Remove & replace					

Longitudinal Joint

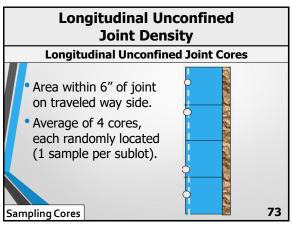
Longitudinal Unconfined Joint Cores


There are two common joint conditions when paving HMA, confined and unconfined. A confined joint occurs when a longitudinal joint is constructed abutting up to existing HMA or Concrete pavement or curb and gutter.

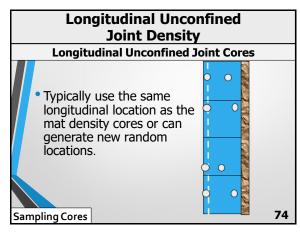

An unconfined joint occurs when a longitudinal joint is constructed along a free edge.

Sampling Cores

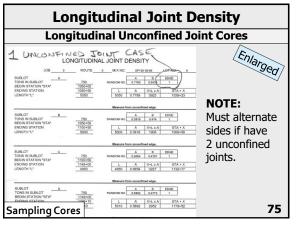
70


70





72



LONGITUDINAL JOINT DENSITY

	0	ROUTE	0 MIX NO.	SP125	09-95	LOT NO 5
SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION LENGTH "L"	Α	750 1000+00 1050+50 5050	RANDOM NO.	A 0.7769 A 0.7769	B 0.5038 X=L x A 3923	EDGE 1 STA + X 1039+23
			Measure fr	om unconfii	ned edge.	
SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	<u>B</u>	750 1050+50	RANDOM NO.	A 0.3816	B 0.474	EDGE 1
ENDING STATION		1100+50 5000	L 5000	A 0.3816	X=L x A 1908	STA + X 1069+58
		5000	0000		1.000	
LENGIA L	ĩ			om unconfi		
LENGTH "L" SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	с	 				EDGE 1
SUBLOT	C	750	Measure fr	om unconfii A	ned edge.	EDGE
SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	, <u> </u>	750 1100+50 1149+00	Measure fr RANDOM NO.	om unconfi A 0.6654 A	B 0.4791 X=L x A 3227	EDGE 1 STA + X
SUBLOT TONS IN SUBLOT BEGIN STATION "STA" ENDING STATION	<u>C</u> D	750 1100+50 1149+00	Measure fr RANDOM NO.	om unconfi A 0.6654 A 0.6654	B 0.4791 X=L x A 3227	EDGE 1 STA + X

Joint Density Confined Joint Cores

 Density on confined joints is handled with the traveled way coring. Required density is same as for the traveled way.

- 94.5 ± 2.5% for non-SMA.
- 94.0% minimum for SMA.

SMA: Stone-Mastic (Matrix)- Asphalt, is a gap-graded HMA that isdesigned to Maximize rutting resistance and durability by using astructural basis of stone-on-stone contact.greatly reduces rutting and requires more durable aggregates, higherasphalt content and, typically, a modified asphalt binder and fibers.Sampling Cores76

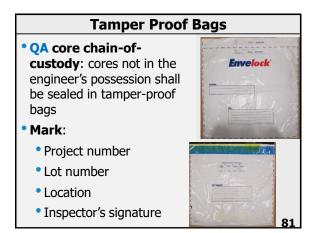
76

77

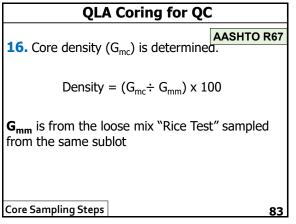
QLA Coring for QC Typical Scenario					
1. Roadway inspector marks where each sublot starts.					
2. QA generates and records Random Numbers					
for freshly laid sublot.					
3. QA gives random numbers to QC when rolling is complete.					
 Freshly compacted asphalt mixture allowed to cool. 					
5. Cores are marked on the asphalt mat.					
Core Sampling Steps	78				

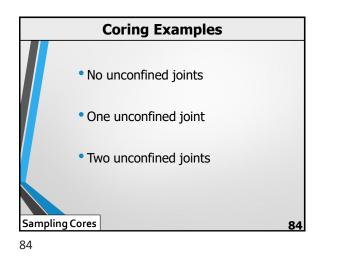
 QC cuts the core no later than the day following placement. Use water or air to aid in drilling. 						
7. Keep bit perpendicular to the surface with constant pressure. AASHTO R67						
8. Drill slightly below the bottom of the asphalt mix to be sampled.						
 Use a retrieval d damage. 	evice to remove	the core without				
10. Brush or wash core.	off any loose par	rticles from the				
- Cores should be	free from seal coa ther foreign mater	, ,, , ,				
Core Sampling Steps		79				

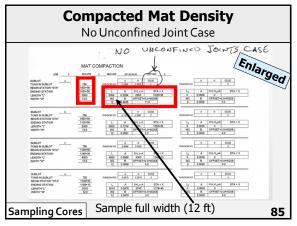
11. When cool, label the core and place it in a protective container.


- Write the type of core, job number and Mix ID on the core with a sharpie or paint pen.
- A concrete cylinder mold with lid will work for a container.
- May need to place the core in a tamper proof bag.
- Un-marked cores are not accepted at the lab.

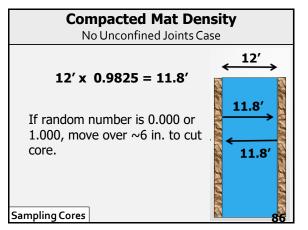
80

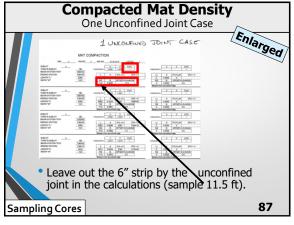

Core Sampling Steps

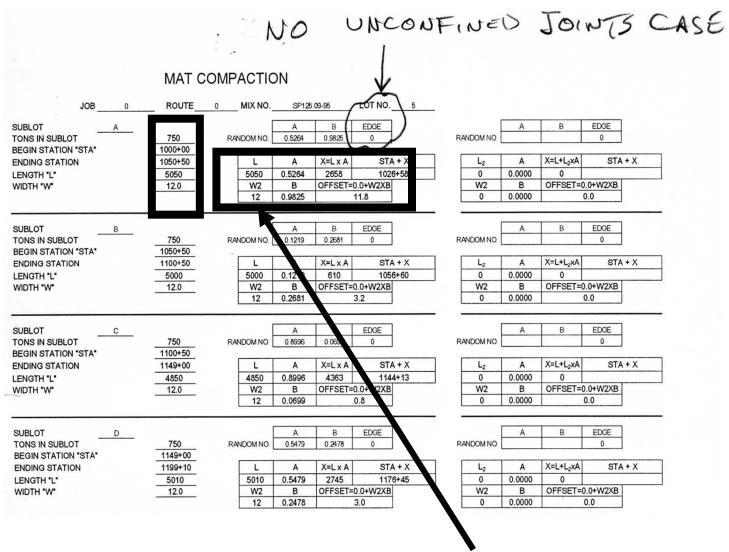

80

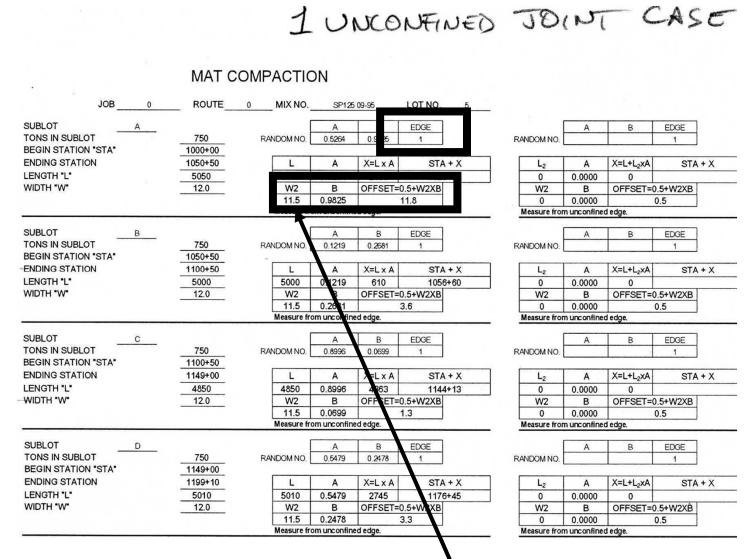

12. QA takes possession of the cores, if possible.
 13. Transport to the lab without jarring, rolling, freezing or excessive heat. If core is damaged, contact MoDOT for further instructions.
14. Cores may be separated from other pavement lifts by sawing or other appropriate methods.
15. Cores should be allowed to air dry overnight to a constant weight next day; check at 2-hour intervals as per AASHTO T166.


Sampling Core Steps

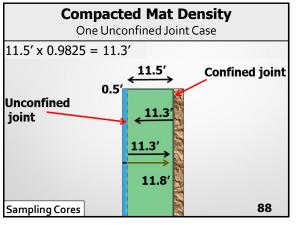




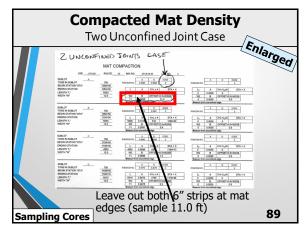


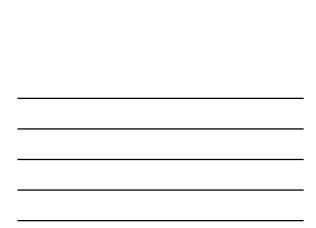


COMPACTED MAT DENSITY No Unconfined Joint Case



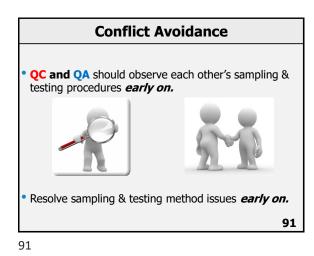
Sample full width (12 ft)


COMPACTED MAT DENSITY One Unconfined Joint Case


Leave out the 6" strip by the unconfined joint in the calculations (sample 11.5 ft)

Sampling	Core	s		Pay Factor
Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined	pular Snip	Considered p	part of the traveled way	/
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	2222	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	(not QLA)	Random Number	1 Sample/sublot	Density Pay Adjustment Factor

COMPACTED MAT DENSITY Two Unconfined Joints Case


ZUNC	ONFINED	JOINTS CASE				
	MAT C	OMPACTION				
JOB	J1P1036 ROUTE	MIX NO SP126 09-96 LV NO.	5		1	8
SUBLOT TONS IN SUBLOT BEGIN STATION "STA"	A	RANDOM NO. 0.5264 0.9825 2	RANDOM NO.	A	В	EDGE 2
ENDING STATION	1050+50	L A X=L x A STA +	X L ₂	A	X=L+L2XA	STA + X
LENGTH "L"	5050		B 0	0.0000	0	
WIDTH "W"	12.0	W2 B OFFSET=0.5+W2XB	W2	В	OFFSET=0	.5+W2XB
		11 0.9825 11.3	0	0.0000		0.5
		Measure from unconfined edde.	Measure from	n unconfined	l edge.	
SUBLOT	в					5505
TONS IN SUBLOT	750	A B EDGE RANDOM NO. 0.1219 0.2681 2	RANDOM NO.	A	В	EDGE 2
BEGIN STATION "STA"	1050+50	0.1213 0.2001 2	RANDOWINO.			2
ENDING STATION	1100+50	L A X=LxA STA+	X L ₂	A	X=L+L ₂ xA	STA + X
LENGTH "L"	5000	5000 0.12 9 610 1056+6		0.0000	0	SIATA
WIDTH "W"	12.0	W2 B OFFSET=0.5+W2XB	W2	B	OFFSET=0	5+11/2YB
		11 0.2681 3.4	0	0.0000		0.5
Second a second second		Measure from unconfined edge.	Measure from			
	141					
SUBLOT	C	A B EDGE		A	В	EDGE
TONS IN SUBLOT		RANDOM NO. 0.8996 0.699 2	RANDOM NO.			2
BEGIN STATION "STA"						
ENDING STATION	1149+00	L A X=LXA STA+		Α	X=L+L ₂ xA	STA + X
LENGTH "L" WIDTH "W"		4850 0.8996 4363 1144+1		0.0000	0	
	12.0	W2 B OFFSET=1.5+W2XB	W2	B	OFFSET=0	and the second se
		11 0.0699 18 Measure from unconfined edge.	0	0.0000		0.5
		medadi e nom di commed edge.	Measure from	nunconfined	ledge.	
SUBLOT	D	A B EDLE	(A	в	EDGE
TONS IN SUBLOT	750	RANDOM NO. 0.5479 0.2478 2	RANDOM NO.			2
BEGIN STATION "STA"	1149+00					
ENDING STATION	1199+10	L A X=L x A ST +	X L ₂	A	X=L+L ₂ xA	STA + X
LENGTH "L"	5010		5 0	0.0000	0	
WIDTH "W"	12.0	W2 B OFFSET=0.5+W2XB	W2	В	OFFSET=0	.5+W2XB
		11 0.2478 3.2	0	0.0000		0.5
March States (States)		Measure from unconfined edge.	Measure from	unconfined	edge.	

Leave out both 6" strips at mat edges (sample 11.0 ft)

CORING SUMMARY

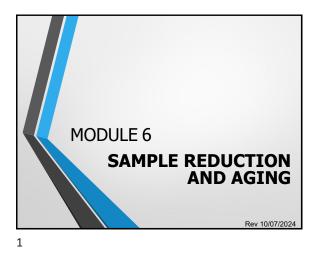
Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/sublot	QLA Pay Factor
	QA	Random Number	1 sample/ 4 sublots	2 2
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion Densi Adjus Fac	
Longitudinal Joint, confined		Considered p	part of the traveled way	/
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	????	RE discretion Density Adjust	
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/ <u>sublot</u>	Density Pay Adjustment Factor

CoringSummary.doc (3-2-16)

 Common Errors: Sampling Cores

 • Avoid distorting, bending, or cracking during and after removal from the pavement.

 • Samples should be free from seal coats, tack coats, soil, paper, paint, etc.


 • Make sure puck /core has cooled to proper temperature.

 Sampling Cores
 92

Module 6

Sample Reduction and Aging

Module 6 Out-Line

AASHTO R 47 Reducing Sample Size

- Splitting loose mix samples
 - Mechanical Splitter
 - See Bituminous Manual for more information

Quartering loose mix samples

- Volumetric Samples
- Tensile Strength Ratio Samples

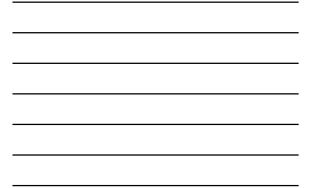
AASHTO R 30 Mixture Conditioning (Aging)

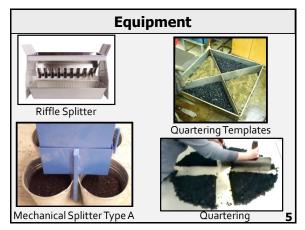
- Short Term Conditioning
- Long Term Conditioning

2

AASHTO R47

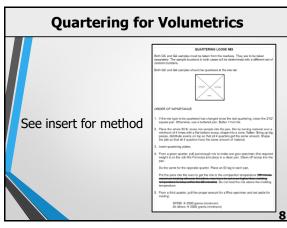
Reducing Samples of Asphalt Mixtures to Testing Size

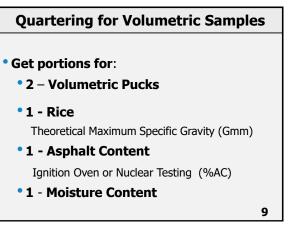

- This practice outlines methods for reducing large samples of asphalt mixture to the appropriate size for testing.
- The individual test methods provide the minimum quantity of material needed.
- For larger samples, the preferred methods for reducing asphalt is by mechanical splitter, or the quartering method.

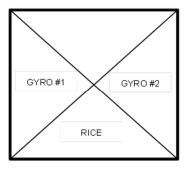


2


For more information Refer to your Bituminous Technician Manual. **3**







QUARTERING LOOSE MIX

Both QC and QA samples must be taken from the roadway. They are to be taken separately. The sample locations in both cases will be determined with a different set of random numbers.

Both QC and QA samples should be quartered at the site lab.

ORDER OF IMPORTANCE

- If the mix type to be quartered has changed since the last quartering, clean the 2'X2' square pan. Otherwise, use a buttered pan. Butter = hot mix.
- 2. Place the whole 50 lb. loose mix sample into the pan. Mix by turning material over a minimum of 4 times with a flat-bottom scoop, shape into a cone, flatten. Bring up big pieces, distribute evenly on top so that all 4 quarters get the same amount. Shape the pile so that all 4 quarters have the same amount of material.
- 3. Insert quartering plates.
- From a given quarter, pull just enough mix to make one gyro specimen (the required weight is on the Job Mix Formula) and place in a clean pan. Clean off scoop into the pan.

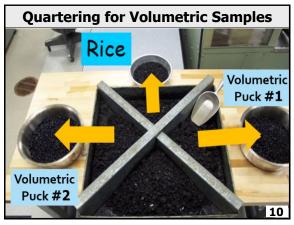
Do the same for the opposite quarter. Place an ID tag in each pan.

Put the pans into the oven to get the mix to the compaction temperature (30 minute maximum heating allowed, therefore, may have to set oven higher than melding temperature to keep within the 30 minutes). Do not heat the mix above the molding temperature.

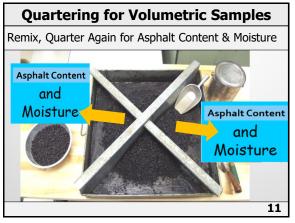
From a third quarter, pull the proper amount for a Rice specimen and set aside for cooling:

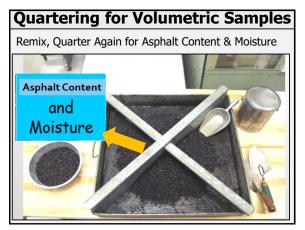
> SP250 \rightarrow 2500 grams (minimum) All others \rightarrow 2000 grams (minimum)

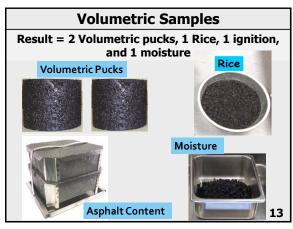
Scrape material stuck on the scoop into the appropriate pan. Place an ID tag in each pan.

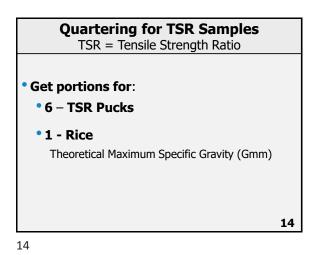

- 6. Remove the quartering plates; remix the material, cone, flatten, quarter.
- Remove sufficient material for the nuclear sample. The required amount is stated on the Job Mix Formula sheet. Scrape the scoop; place an ID tag in the pan.

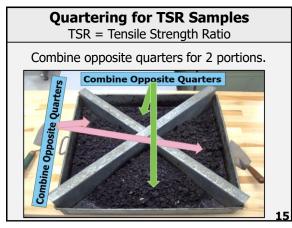
Compact nuclear sample into the nuclear gage pan while mix is still warm (may have to re-warm).

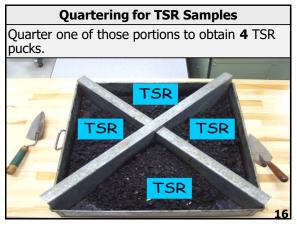

If running AC content by the ignition oven method, obtain the sample out of this quarter:

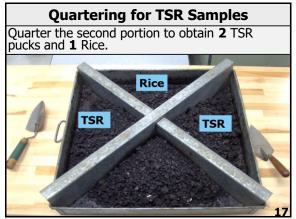

SP250 → 3000 to 3500 grams SP190 → 2000 to 2500 grams SP125 → 1500 to 2000 grams SP095 and SP048 → 1200 to 1700 grams

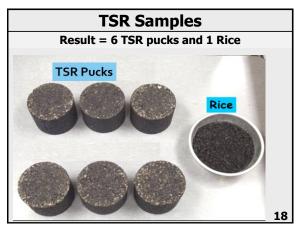

- Obtain moisture sample from same sample as the asphalt content sample. Treat the moisture sample the same as the mix sample in terms of the time interval between splitting and testing.
- Leave the 2'X2' pan buttered if the type of mix will not change before the next 50 lb. is quartered.

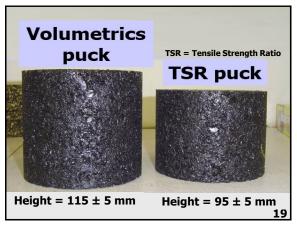


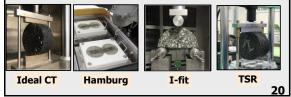












AASHTO R30 and R121

Laboratory Conditioning of Asphalt Mixtures

- Used for *lab mixed* volumetric specimens.
- Field Extracted Cores.
- Short Term is also used in preparation of lab mixed asphalt for performance testing.
- Example of performance tests below:

20

Significance and Use

The properties and performance of Asphalt can be more accurately predicted by using conditioned test samples.

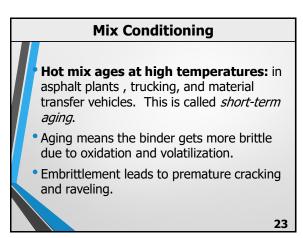
- <u>Short term conditioning</u> is used for mechanical property (performance) testing to simulate plant mix and construction effects on the mixture.
- Long term conditioning for mixture mechanical property testing to simulate the aging that occurs in a dense-graded surface layer over the 1-3 years of a pavement's life.

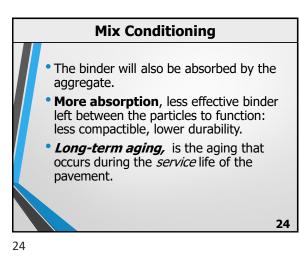
Equipment

Oven – A forced-draft oven, thermostatically controlled, capable of maintaining any desired temperature setting from room temperature to 176°C with in ± 3 °C.

Thermometers – having a range from 25 to 185°C and readable to \pm 0.75°C.

- Thermometers to use:
- ASTM E1 Mercury thermometers
- ASTM E230/E30M thermocouple thermometer, Type T,


Special Class;


- IEC 60584 thermocouple thermometer, Type T, Class1

22

Metal pan, metal spatula or spoon, timer, and gloves.

22

R30 Short Term - Mixture Conditioning

- Applies to laboratory-prepared loose mixtures only.
- Use for volumetric properties as well as mechanical tests.
- Place mixture 25-50 mm thick in a pan.
- Place in a force draft oven for 2 hr. <u>+</u> 5 min. at:
- $116 \pm 3^{\circ}C$ for WMA

$135 \pm 3^{\circ}C$ for HMA

Or at compaction temperature

- Stir after 60 <u>+</u> 5 min.
- The Mixture is now ready for compaction.
- Compact Specimens using Gyratory Compactor (T312).
- Cool specimen overnight or cool faster place specimens in front of a fan.

25

R121 Long Term - Mixture Conditioning

- This procedure is for long term aging of compacted specimens AASHTO R121 Method A.
 - Lab prepared specimens that have been through short term conditioning AASHTO R30.
 - Roadway specimens (cores) that have been cut, trimmed, and dried to a constant mass.
 Plant-mixed asphalt mixtures.
- Use cooled compacted specimens.
- Place specimen in a conditioning oven for 120 ± 0.5 hr. at a temperature of $85 \pm 3^{\circ}$ C.
- Then turn off the oven and open doors to allow specimens to cool to room temperature for **16+ hrs.**

26

27

• Specimens are now ready for testing.

26

R121 Long Term - Mixture Conditioning

R121 SCOPE:

This standard practice includes 5 long-term mixture conditioning methods, with Method A using compacted mixture specimens and Method B, C, D, and E using uncompacted mixture. The long-term conditioning procedures for mixture mechanical property testing are proceeded by the procedure for short-term conditioning according to R30.

For more information see AASHTO R121.

27

lew Slide

Module 7

Gyratory Compactor AASHTO T312

MODULE 7 OUTLINE

2

- Scope
- Referenced Documents
- Significance and Use
- Equipment
- Preparation of Gyratory
- Sample Preparation
- Procedure Compaction
- Density Procedure
- Calculations & Reporting
- Common Errors

REFERENCED DOCUMENTS

• R35 Superpave Volumetric Design for Asphalt Mixtures

- M323 Volumetric Design Specs
- R30 Mix Conditioning
- T 312 Gyratory Compactor operation
- T 166 Bulk Specific Gravity of gyratory pucks
- T 209 Maximum Specific Gravity of Voidless Mix (Rice)
- T 283 Moisture Sensitivity
- M339M/M339, Thermometers Used in the Testing of Construction Materials

4

SIGNIFICANCE AND USE

- To prepare specimens for determining mechanical and volumetric properties of asphalt mixtures. Specimens simulate the density, aggregate orientation, and structural characteristics of the actual roadway.
- May be used to monitor the density of test specimens during preparation.
- May be used for field control of mixture during the production process.

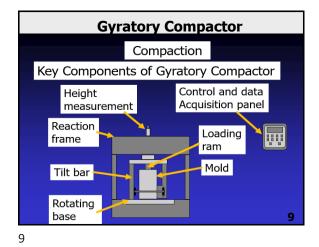
5

4

5

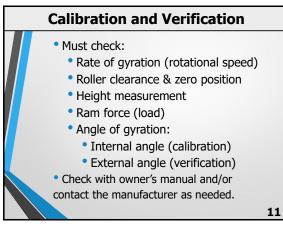
Uses of the GYRO							
1. During <i>mix design</i>	GYRO = Gyratory Compactor						
(lab fabricated sam	nple)						
2. During <i>construction</i> for field verification							
(plant-mixed material)							
To Evaluate:							
 Volumetric properties 							
e.g., air voids a	and <i>VMA</i>						
 Densification properti 	es						
e.g., tenderness potential							
 Moisture sensitivity (2) 	TSR)						
 Other performance te 	ests – Hamburg 6						

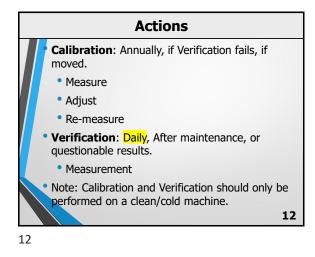
EQUIPMENT

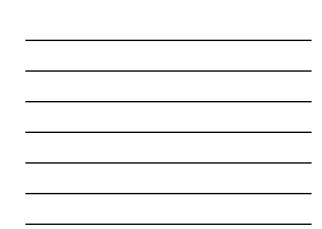

- Superpave Gyratory Compactor
- Specimen Height Measurement and Recording Device
- Specimen Molds
- Ram Heads and End Plates
- Lab Equipment such as balance, thermometer, oven, pans etc.

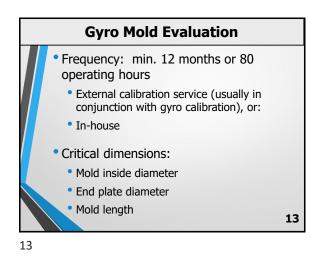
More information on equipment can be found in the appendix, item #7


7



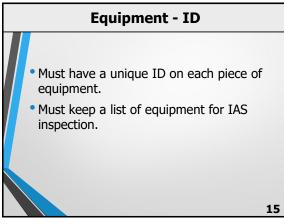






 Maintenance

 • Maintenance of Gyratory Compactor Operation:

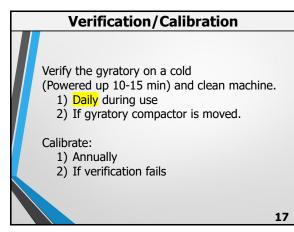

 • Clean rollers with solvent

 • Keep rotation ring cleaned and oiled

 • Periodically, check oil level

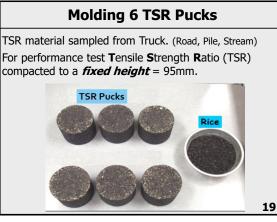
 • Make sure anti-rotational cogs are tight. Keep some spares on hand.

14



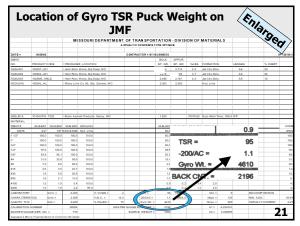
PREPARATION OF GYRATORY

- Prior to the time to compact a sample, turn on the Gyratory Compactor to warm up. (see manufacturers instructions)
- Verify the machine settings are correct for angle, pressure, and number of gyrations.
- Lubricate any bearing surface as needed.
- If applicable, turn on the device for measuring and recording the height of the specimen, and verify the readout is in the proper units, and recording device is ready.


16

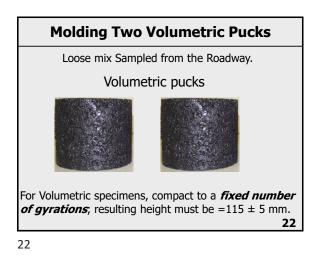
16

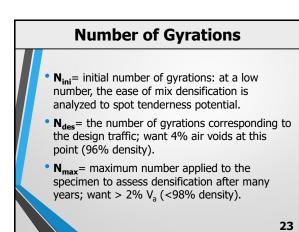
17

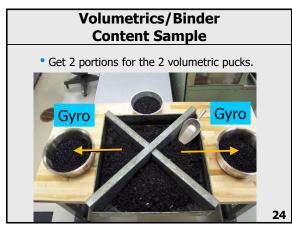


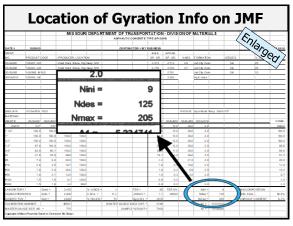
TSR Sample

- Need 60-75 lb. sample for six TSR pucks.
- Use the JMF to get the grams needed.
- Example on next slide, JMF shows 4,610 grams is needed to produce a 95mm height TSR specimen.

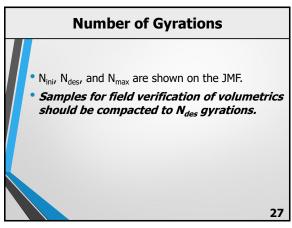

20



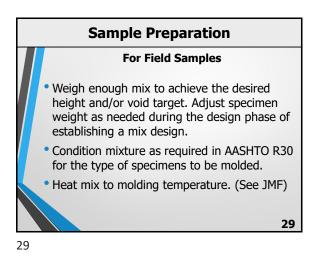


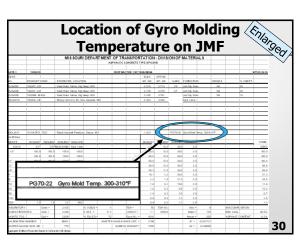

Location of Gyro Puck Weight on JMF

						A G	PHALTIC CO		VDE SD125	нв							
						A 3		INCRETE T	TPE 3P120	пр							
DA TE =	10/29/03						CONTRAC	TOR = MY B	USINESS							s	P125 03-1
IDENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATIO	Л				SP. GR.	SP. GR.	%ABS	FORMATIO	1	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.515	2.713	2.9	Jet City Dol).	5-8		25	
35JSJ002	100204LD		/ Hard Rock						2.476	2.725	3.7	Jet City Dol		5-8		25	
35JSJ003	1002MSM		/ Hard Rock						2.480	2.761		Jet City Dol		5-8		10	
30CAJ016	1002HLHL			, ,	e. General, M	10			2.303	2.303		Hyd. Lime					
				,	,												
														C).9		
36DLJ016	1015ACPG	.7022	/ Black Aspl	halt Product	s, Decoy, M)			1.023								
MATERIAL										TS	R =			1	95		
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CAJ016					35JSJ0								COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime					6(20	NAC	•			ia D		GRA
1 1/2"	100.0	100.0	100.0	100.0					60	-20	0/AC	,					100.
1"	100.0	100.0	100.0	100.0					60	-				4.0			100.
3/4"	100.0	100.0	100.0	100.0					60	Gy	io W	1. #	_	46	10		100.
1/2"	97.6	100.0	100.0	100.0					5								98.
3/8"	83.8	96.1	100.0	100.0					50	BACI	(CN	11 x		21	20		89.
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.		/	61			51.
#8	7.0	8.0	82.0	100.0					4.2	1.0	21.	3 2.0					28.
#16	2.6	3.5	40.7	100.0					1.6	0.4	10	2.0					14.
#30	1.6	2.6	26.6	100.0					1.0	0.3	6.	9 2.0					10.
#50	1.6	2.1	13.5	100.0					1.0	0.2	3.	5 2.0					6.
#100	1.5	1.9	5.4	100.0					0.9	0.2	1	4 2.0					4.
#200	1.5	1.8	4.2	99.0					0.9	0.2	1.	1 2.0					4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		roR =	95	CR Wt.		Nini =	9		MIX COMP	POSITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	38 0		Ndes =	125		MIN. AGG		93.8%
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	4610	\square		Nmax =	205		ASPHALT	CONTENT	6.29
CALIBRATION	NUMBER		90004			MASTER	R GAUGE BA	K CNT. =	2100			A1 =	-5.234741				
MASTER GAUG	SE SER NO	=	770				SAMPLE	WEIGHT =	7200			A2 =	3.436895				

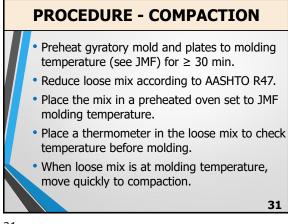


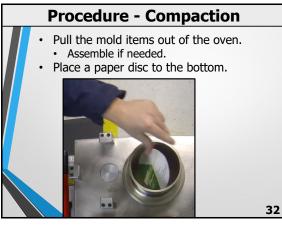
Gyration Levels											
Design	N _{initial}	N _{design}	N _{maximum}								
F		50									
E	7	75	115								
С	8	80 or 100	160								
В	9	125	205								
 C Mixes at 80 gyrations: no N_{initial} or N_{max} requirements. SMA Mixes: 											
• N _{design} = 100 • No N _{max} requirement											




Location of Gyration Info on JMF

												MATERI					
						AS	PHALTIC	CONCRETE T	YPE SP12	5HB							
DA TE =	10/29/03						CONTRA	CTOR = MY E	USINESS							s	SP125 03-1
IDENT.									BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATIO	ON				SP. GR.	SP. GR.	%ABS	FORMATION	N	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock S	Stone, Dig	Deep, MO				2.515	2.713	2.9	Jet City Dold).	5-8		25	
35JSJ002	100204LD	1	/ Hard Rock	Stone, Dig	Deep, MO				2.476	2.725	3.7	Jet City Dolo).	5-8		25	
35JSJ003	1002MSM	SLD	/		20					2.761		Jet City Dold).	5-8		10	
30CAJ016	1002HLHL		/		2.0					2.303		Hyd. Lime					
			-	N	ini =			9	9								
				Nd	98 =			12	5								
36DLJ016	1015ACPG.	.7022	1						•		PG70-22	Gyro Mold T	emp. 300-31	0°F			
MATERIAL				Jan				20	F								
IDENT #	35JSJ001	35JSJ002		4118				<u> </u>	0	35JSJ002	35JSJ003	30CAJ016					COME
03016	3/4"	3/8"	N							12.0	26.0	2.0					GRA
1 1/2"	100.0	100.0						1474	-).(12.0	26.0	2.0					100.
1"	100.0	100.0	100.0	100.0					60.0	12.0	26.0	2.0					100
3/4"	100.0	100.0	100.0	100.0					60.	12.0	26.0	2.0					100
1/2"	97.6	100.0	100.0	100.0					58.6	6 12.0	26.0	2.0					98.
3/8"	83.8	96.1	100.0	100.0					50.3	3 11.5	26.0	2.0					89
#4	31.8	35.0	99.9	100.0					19.1	4.2	26.0	2.0					51.
#8	7.0	8.0	82.0	100.0					4.2	2 0	21.3	2.0					28.
#16	2.6	3.5	40.7	100.0					1.6	6 0.4	10.6	2.0					14.
#30	1.6	2.6	26.6	100.0					1.0	0.3	6.9	2.0					10.
#50	1.6	2.1	13.5	100.0					1.0	0.3	3.5	2.0					6
#100	1.5	1.9	5.4	100.0					0.9	0.2	4						4.
#200	1.5	1.8	4.2	99.0					0.9	0.2		2.0					4.
LABORATORY		Gmm =	2.405		% VOIDS =	4		TSR =	9	5 TSR Wt.		Nini =	9		МІХ СОМРО	SITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4		-200/AC =	1.1	3855.0		Ndes =	125		MIN. AGG.		93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72		Gyro Wt. =	461)		Nmax =	205		ASPHALT C	ONTENT	6.29
CALIBRATION I	NUMBER		90004			MASTER	RGAUGE	BACK CNT. =	2196	3		A1 =	-5.234741	\sideset			
	GE SER NO.	_	770				CAMPI	E WEIGHT =	720			A2 =	3.436895				





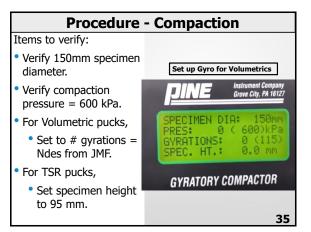
Location of Gyro Molding Temperature on JMF

							PHALTIC CONCRE									
						~ 3	FIRE IIC CONCRE	TE TIFE SF125								
DA TE =	10/29/03						CONTRACTOR =	MY BUSINESS							s	SP125 03-1
IDENT.								BULK	APPAR.							
NO.	PRODUCT	CODE	/ PRODUCE	R, LOCATI	Л			SP. GR.	SP. GR.	%ABS	FORMATION	1	LEDGES		% CHERT	
35JSJ001	100207LD	1	/ Hard Rock	Stone, Dig	Deep, MO			2.515	2.713	2.9	Jet City Dold).	5-8		25	
35JSJ002	100204LD	1	/ Hard Rock	Stone, Dig	Deep, MO			2.476	2.725	3.7	Jet City Dold).	5-8		25	
35JSJ003	1002MSM	SLD	/ Hard Rock	Stone, Dig	Deep, MO			2.480	2.761		Jet City Dolo).	5-8		10	
30CAJ016	1002HLHL		/ Missy Lim	e Co. #2, St	e. General, N	10		2.303	2.303		Hyd. Lime					
36DLJ016	1015ACPG	7022	/ Black Asp	halt Product	s, Decoy, MC	C		1.023		PG70-22	Gyro Mold T	emp. 300-3	10°F)		
MATERIAL										_		_				
IDENT #	35JSJ001	35JSJ002	35JSJ003	30CAJ016				35JSJ001	35JSJ002	35JS J003	30CA3010					COME
03016	3/4"	3/8"	MAN SAND	Hyd. Lime				50.0	12.0	26.0	2.0					GRA
1 1/2"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100.
1"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100.
3/4"	100.0	100.0	100.0	100.0				60.0	12.0	26.0	2.0					100
1/2"								58.6	12.0	26.0	2.0					98
3/8"								50.3	11.5	26.0	2.0					89.
#4								19.1	4.2	26.0	2.0					51.
#8	_		-					4.2	1.0	21.3	3 2.0					28.
#16	PG7	0-22	Gyro	Molo	I Tem	p. 300)-310°F	1.6	0.4	10.6	5 2.0					14.
#30								1.0	0.3	6.9	2.0					10.
#50								1.0	0.3	3.5	5 2.0					6.
#100								0.9	0.2	1.4	2.0					4.
#200	1.5	1.8	4.2	99.0				0.9	0.2	1.1	2.0					4.:
LABORATORY		Gmm =	2.405		% VOIDS =	4	TSR =	95	TSR Wt.		Nini =	9	1	ИІХ СОМРО	SITION	
CHARACTERIS	TICS	Gmb =	2.308		V.M.A. =	14.4	-200/AC	;= 1.1	3855.0		Ndes =	125	1	MIN. AGG.		93.89
AASHTO T312		Gsb =	2.629		% FILLED =	72	Gyro W	t. = 4610			Nmax =	205		ASPHALT C	ONTENT	6.29
CALIBRATION I	NUMBER		90004			MASTER	R GAUGE BACK CN	T. = 2196			A1 =	-5.234741				
	GE SER NO	-	770				SAMPLE WEIGH	T = 7200			A2 =	3.436895				

32

Procedure - Compaction

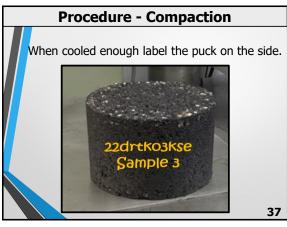
- Place a funnel on top of the mold.
- At the oven, check if mix is at molding temperature.
- If on temperature, place the mix in the mold in one lift. Scrap the pan and spatula to include all the sample into the mold.



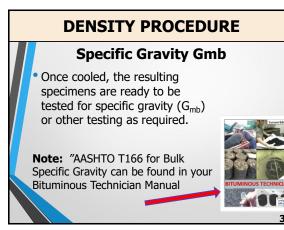
Procedure - Compaction

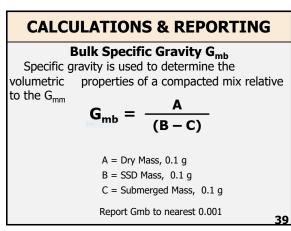
- Level the mix and place a paper disc on top the sample.
- Place the lid on top with beveled side facing up.
- Place the mold into the gyratory compactor.
- Verify settings on the gyro are correct.

34

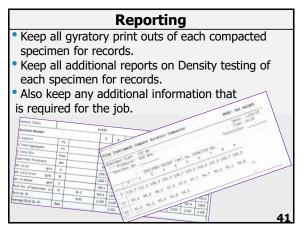


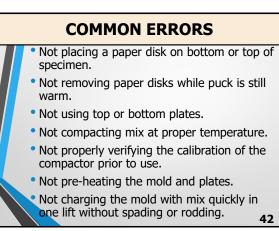
35

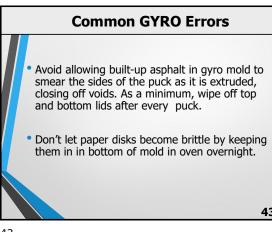

Procedure - Compaction


- Press the START button.
- Once compaction is finished, extrude the sample from mold.
 - Allow to cool for a minute or two for stability before handling.
- Flip the puck over onto a cooling table and remove the other Paper disc.

% Absorption (% Abs)


The percentage of water absorbed by the specimen based on the volume of the specimen.


% Abs =
$$\frac{(B - A)}{(B - C)} X 100\%$$


$$A = Dry Mass, 0.1 g$$

$$B = SSD Mass, 0.1 g$$

$$C = Submerged Mass, 0.1 g$$
Report absorption to nearest 0.01%

AASHTO T 312: Specimen Compaction

Pre-Verification Checklist: (Note: State operation & frequency).	1	2	F
State required frequency of verification & calibration:			
Verify on a cold (powered up for 10-15 minutes) and clean machine 1) Daily during use, or 2) if gyro is moved			
Calibrate: 1) Annually, or 2) If verification fails			
Pre-Compaction Checklist: (Note: Proctor will tell you the type of specin			
to be molded, you will explain the setting for the machine for that operation	on.)	
State & verify required parameters for compaction:	<u> </u>	<u> </u>	Т
1. Verify 150 mm specimen diameter		<u> </u>	_
2. Verify compaction pressure = 600 kPa			_
3. For Volumetric pucks, SET GYRATIONS = N _{des} (from JMF)			
For TSR pucks, set SPEC. HT. (specimen height) = 95.0 mm			
 Preheat gyratory mold and plates to molding temperature. (see JMF) for ≥ 30 minutes) 			
 Loose Mix sample must be reduced according to AASHTO R47. (see JMF for information) 			
Place the mix in a preheated oven set to molding temp. (See JMF for temp.)			
8. Place a thermometer in the loose mix to check temperature.			
9. When loose mix is at molding temperature, move quickly to compaction.			
Compaction Procedure: (Mold specimen, proctor can assist with machin	e		
operation as needed.) CAUTION!! Use PPE, everything is HOT! 10. Pull the hot mold items out of the oven.		<u> </u>	Τ
11. Assemble mold & bottom plate (If necessary) & insert a paper disk into			-
the bottom of the mold and place a funnel on the top.			
12. Check if mix is at molding temperature, if so, take the loose mix from the oven, place it in the mold in 1 lift.			
 Scrape pan and spatula clean to include all of the sample to the mold. 			
13. Level the surface of loose mix in the mold, place 2nd paper disk on top.			_
14. Place top plate on top beveled side up.			
15. Place mold in machine according to manufactures instructions.			
16. Verify setting are correct on the Gyro, Press START and let compaction			T
proceed.			T
proceed. 17. When the compaction has completed, open door and move mold to puck extrusion station. a. Note: Some machines will automatically extrude the sample.			

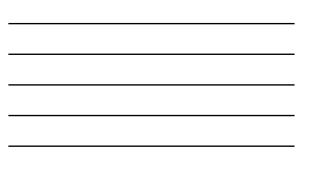
18. Carefully remove the top plate and paper disk.a. If the mix is tender, may need to cool a few seconds before handling to avoid collapse.	
19. After minimum cooling period to assure puck stability, carefully set puck upside-down on cooling rack, and remove 2 nd paper disk ASAP	
20. Mark the puck for identification purposes on the side of the sample.	
PASS?	
FAIL?	

Proctor_____

_Date_____

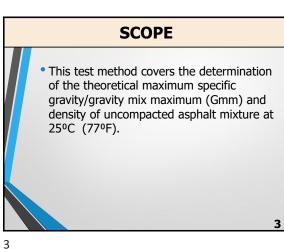
Reviewer

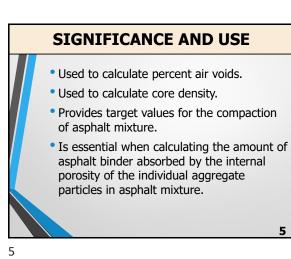
____Date_____

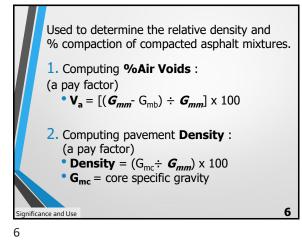

Module 8

Maximum Specific Gravity AASHTO T209

(Gmm), (Rice)




OUTLINE Scope Significance and Use Equipment Sampling Sample Preparation • Procedure – Weigh in Water – Weigh in Air Calculation Supplemental Procedure • Report


2

 Changes in Gmm Common Errors

EQUIPMENT

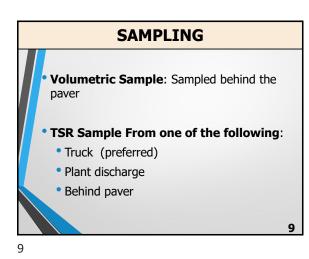
Follow AASHTO R18 and R61 for calibrations, standardizations and checks

See The Appendix Item #7 for more information.

- Vacuum Container
- Pycnometer Standardized Daily
- Scale Standardized yearly
- Vacuum Pump Vacuum to pressure of 25mmHg
- Vacuum Measurement Device Standardized yearly measure residual pressure to 25mmHg
- Bleeder Valve –
- Thermometer Standardized yearly
- Drying Oven maintaining $135 \pm 5^{\circ}C (275 \pm 9^{\circ}F)$
- Water Bath maintained at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$

7

8


7

Pycnometer Daily Standardization

Note: Keep a record of daily weights of the pycnometer daily standardizations.

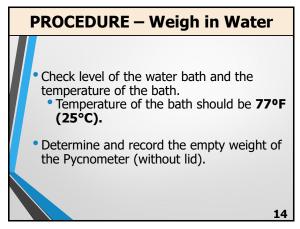
- Determine weight of empty pycnometer immersed in 25 ± 1.0 °C, for 10 ± 1 min.
- Check wt. against the average of the last 3 daily weights, today's wt. must be within 0.3g of that average.
- If it is in, weight is good to use.
- If no, redo 2 more times, use average of today's 3 weights as "Empty wt. of Pycnometer".

(Report to 0.1)

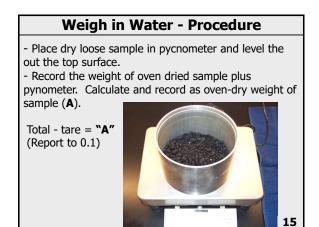
		Sample Size For T20	09 (Rice)					
		Nominal Maximum Aggregate Size, mm	Minimum Sample Size, g					
	37.	5mm or Greater (1.5")	4000					
	1	9 to 25mm (¾ - 1″)	2500					
	1	2.5 mm (1/2") or smaller	2000					
MODOT NOTES:								
Samp	SP250 → 2500 grams (minimum) All others → 2000 grams (minimum)							

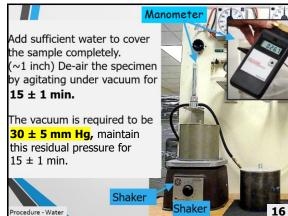
Dry specimen to constant weight at 221 ± 9°F (105 ± 5 °C) until mass repeats within 0.1%.
NOTE: See appendix for cookbook on "mass repeats". Or Use AASHTO T 329 Moisture content of mix to be assured that the specimen is dry (< 0.1%).

12


12

Sample Preparation

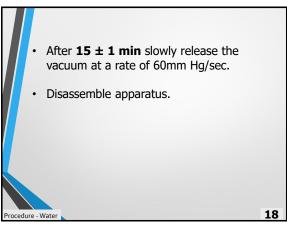

• While sample is cooling, separate loose mix into small pieces. Avoid fracturing the aggregate, so that the particles of the fine aggregate portion are not larger than 1/4 inch in size. Bring specimen to room temperature.

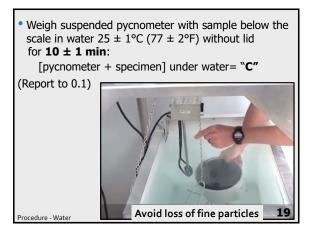


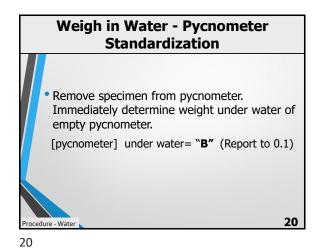
14

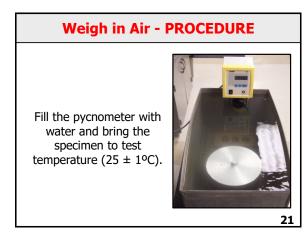
Procedure -

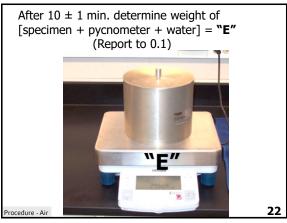
16

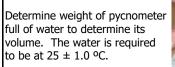

Agitation


- Mechanical Agitation Method A
 Maintain vacuum at 30 ± 5 mm Hg for 15 ± 1 min.
- Agitate using the mechanical device during the vacuum period.

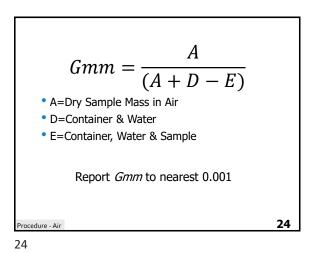

Manual Agitation – Method B


- Maintain vacuum at $30 \pm 5 \text{ mm Hg}$ for 15 ± 1 min.
- Agitate the pycnometer & sample during the vacuum period by vigorously shaking at intervals of about 2min.
- Glass vessels should be shaken on a resilient surface such as a rubber or plastic mat to avoid excessive impact while under vacuum.


17

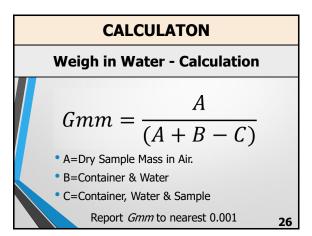


Report as "D"

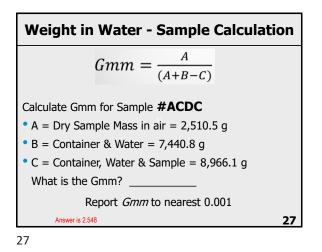

(Report to 0.1)

"D" will be too high with cold temperature & cloudiness.

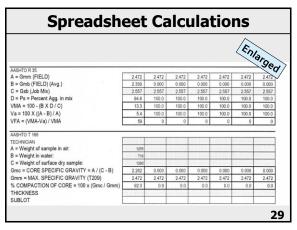
"D" will be too low with high temperature.

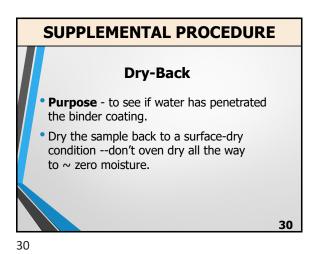

23

Procedure - Air



$$Gmm = \frac{A}{(A + D - E)}$$
Calculate Gmm for Sample #**ZZTOP**
• A = Dry Sample Mass in air = 2,510.5 g
• D = Container & Water = 7,442.6 g
• E = Container, Water & Sample = 8,974.1 g
What is the Gmm? __________
Report Gmm to nearest 0.001
Procedure - Air Answer is 2.564
25





JOB 0 RO	UTE	MIX NO.	P.01.		LOT NO.	0			Enlarge
SUBLOT DATE				-	-	-	-		112.
AMP/TO T 200 D1 -	e Gmm	A2 required	where Tots als	sorplian 12	0% on any ag	proprie had	ion.		410
TECHNICIAN RIC	eannn	1954.4			222222				20
A2v011 of sample (dry-back) D = 201 of flask filed selfs sofer		7672.2		_	_	_	_		_ ·
X = A + D (A2 used in beuraf A for d	(ry-back)	0.000			0.0	0.0	0.0	0.0	
E = WL of Eask Wed with water and Y = X - E		8-471.0 645.1	4.9	0.0	0.0	0.0	0.0	0.0	
Omm = MAX, SPECIFIC GRAVITY	=A/Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472	
Address T 406 TECHNICIAN			1			1			
MOLDING TEMPERATURE A = Weight of sample in air		6M7 8				_		_	
B = Weight of sample in some	SPEC. 1	2811.0		_	_	_			
C = Weight of surface dry sample Omb = BULK SP. G. = A / (C-8)		2,342	6-300	0.000	6.000	0.000	0.000	0.000	
A = Weight of sample in air: B = Weight of sample in water:	APRC 2	4800.1	11000						
C = Weight of surface dry surrele			1						
0mb = BULK SP. G. = A / (G-B) AVG. Gmb	Gmb	2.886		0-300 0-300	6.000 6.000	6.000	000.3	0.000 0.000	
TECHNICIAN	0								
							_	_	
BAMPLE WEIGHT BACKGROUND		-		_		-	-		
COUNTS DAUGE % AC									
AASHED T 300 (IGNTION) DAUGE NAC		8.39			- 1				
NUCLEAR OR IDNITION % MORETURE	Pb	A 12		-			1	_	
% AC BY IONITION OR NUCLEAR		52							
A = Own (FIELD)		2.472	2.472	2.472	2.472	2.472	2.472	2.472	
C = Onb [Job 58x]		2.887	2.647	2.887	2.867	2.847	2.887	2.857	
D = Ps = Percent Agg in mix VMA = 100 - (B X D / C)		10.0	130-0 130-0	490.0	120.0	120.0	\$30.0 \$90.0	930.0 930.0	
Va = 100 X ((A - B) / A) VFA = (VMA Va) / VMA		5.4	180-3	1011	180-0	180.0	180.0	100.0	
AASHTO T 195		L 10				1		0	
TECHNOLMAN							-		
	cores	100		-				-	
C = Weight of surface dry sample:		- 00							
Omm = MAX. SPECIFIC GRAVITY	(T299)	2.472	2.472	2.472	2.472	2.472	2.472	2.472	
THICKNESS SUBLOT			-						
FOR IND CORE SUBLOT WHEN DENOT	ED IN GO PLAN								
A = Weight of sample in air:						-			
B = Weight in water: C = Weight of surface dry sample:									
Ome = CORE SPECIFIC BRAVITY	= A / (C - B)	6-000	0.005	0.000	0.000	0.000	0.000	0.000	
Gmm = MAX. SPECIFIC GRAVITY % COMPACTION OF CORE = 100	x (Gave) / General	2.472	2.472	2,472	2.472	2.472	2,472	2.472	2
							_		

SUPERPAVE MIXTURE PROPERTIES

JOB	0			. #VA	LUEI	LOT NO.	0		
SUBLOT									-
DATE									
AASHTO T 209		Rice Gmn	A2 require	d when T85 a	bsorption >2	2.0% on any	aggregate fra	action.	
TECHNICIAN									
A = Wt. of sampl			1594.4	4					
A2=Wt. of sample									
D = Wt. of flask f X = A + D (A2 us			7472.2		0.0	0.0	0.0		0.0
•		vater and sample:	9066.6 8421.5	0.0	0.0	0.0	0.0	0.0	0.0
Y = X - E		ater and sumple.	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX. SF	PECIFIC G	RAVITY = A / Y	2.472		2.472	2.472	2.472	2.472	2.472
AASHTO T 166									
TECHNICIAN MOLDING TEMP		E							
A = Weight of sa			4867.8	2					
B = Weight of sa		ter	2801.9						
C = Weight of su		SFEC. I	4880.4						
Gmb = BULK SP			2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of sa		:	4899.1						
B = Weight of sa			2814.5	5					
C = Weight of su			4911.9	9					
Gmb = BULK SP	P. G. = A /		2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb		Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
TECHNICIAN									
MoDOT TM54 (NUC	CLEAR)								
SAMPLE WEIGH	ΗT								
BACKGROUND									
COUNTS									
GAUGE % AC									
AACUTO T 200 //C									
AASHTO T 308 (IG GAUGE %AC			5 35						
AASHTO T 308 (IG GAUGE %AC NUCLEAR OR IGNI			5.35					-	
GAUGE %AC		Ph		1					
GAUGE %AC NUCLEAR OR IGNI	TION								
GAUGE %AC NUCLEAR OR IGNI % MOISTURE	TION	JCLEAR Pb	0.12						
GAUGE %AC NUCLEAR OR IGNI % MOISTURE		_{JCLEAR} Pb	0.12		2.472	2.472	2.472	2.472	2.472
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD	TION ON OR NU	_{jclear} Pb	0.12 5.2 2.472	2.472	0.000	0.000	0.000	0.000	2.472
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix	TION ON OR NU)) (JCLEAR	0.12 5.2 2.472 2.557	2.472	2.557	2.557	2.557	2.557	2,557
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz D = Ps = Percen	TION ON OR NU D) (JCLEAR	0.12 5.2 2.472 2.557 94.8	2.472 0.000 2.557 100.0	2.557 100.0	2.557 100.0	2.557 100.0	2.557 100.0	2.557 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix D = Ps = Percent VMA = 100 - (B >	TION ON OR NU)) (g.) x) t Agg. in m X D / C)	JCLEAR	0.12 5.2 2.472 2.557 94.8 13.3	2.472 2.557 100.0 100.0	2.557 100.0 100.0	2.557 100.0 100.0	2.557 100.0 100.0	2.557 100.0 100.0	2.557 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mi) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A -	TION ON OR NU) (JCLEAR	0.12 5.2 2.472 2.557 94.8 13.3 5.4	2.472 2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix D = Ps = Percent VMA = 100 - (B >	TION ON OR NU) (JCLEAR	0.12 5.2 2.472 2.557 94.8 13.3	2.472 2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mi) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A -	TION ON OR NU) (JCLEAR	0.12 5.2 2.472 2.557 94.8 13.3 5.4	2.472 2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mit) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va)	TION ON OR NU) (JCLEAR	0.12 5.2 2.472 2.557 94.8 13.3 5.4	2.472 2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va)) AASHTO T 166 TECHNICIAN A = Weight of sa	TION ON OR NU O) (nix 100	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59	2.472 3.557 2.557 100.0 100.0 100.0 0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va)) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight in wa	TION ON OR NU O) (100 • Cores	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59	2.472 2.557 100.0 100.0 100.0 5	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 × ((A - VFA = (VMA-Va)) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of su	TION ON OR NU O) (+++++++++++++++++++++++++++++++++++	nix 100 COPES sample:	2.472 2.52 2.557 94.8 13.3 5.4 59	2.472 2.557 100.0 100.0 100.0 0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 × ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight in wa C = Weight of su	TION ON OR NU O) (nix 100 COPES sample:	2.472 2.557 94.8 13.3 5.4 59 1255 71 1250 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 71 71 71 71 71 71 71 71 71	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 × ((A - VFA = (VMA-Va)) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of su	TION ON OR NU O) (nix 100 COPES sample:	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 125 71 125 711	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2.557 100.0 100.0 100.0	2:557 100.0 100.0 100.0	2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF	TION ON OR NU O) (nix 100 COPES sample:	2.472 2.557 94.8 13.3 5.4 59 1255 71 1250 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 71 71 71 71 71 71 71 71 71	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF % COMMITCINESS	TION ON OR NU O) (nix 100 COPES sample:	2.472 2.557 94.8 13.3 5.4 59 1255 71 1250 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 71 71 71 71 71 71 71 71 71	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mix) D = Ps = Perceni VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF	TION ON OR NU O) (nix 100 COPES sample:	2.472 2.557 94.8 13.3 5.4 59 1255 71 1250 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 1260 71 71 71 71 71 71 71 71 71 71	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mit) D = Ps = Percent VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa B = Weight of su Gmm = MAX. SF SUBLOT FOR 2ND CORE SU	TION ON OR NU D) (A Agg. in m X D / C) B) / A) 0 / VMA * mple in air ter: rface dry s ECIFIC G	nix 100 COPES sample:	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 1256 71 1266 71 1266 71 1266 71 1266	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Mit) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa B = Weight of su Gmm = MAX. SF 70 COMM - CORE SU THICKNESS SUBLOT FOR 2ND CORE SU TECHNICIAN	TION ON OR NU D) (Agg. in m (D / C) B) / A) (Agg. in m (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	nix 100 COPES sample: RAVITY (T209) COPES N DENOTED IN QC PL/	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 1256 71 1266 71 1266 71 1266 71 1266	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF % COMMINENT THICKNESS SUBLOT FOR 2ND CORE SU TECHNICIAN A = Weight of sa	TION ON OR NU D) (Trig) x) t Agg. in m X D / C) B) / A) b / VMA x) t Agg. in m X D / C) B) / A) b / C) B) / A) y / VMA x) t Agg. in m X D / C) B) / A) y / VMA x) t Agg. in m X D / C) B) / A) y / VMA x) t Agg. in m x) t Agg. in m x)	nix 100 COPES sample: RAVITY (T209) COPES N DENOTED IN QC PL/	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 1256 71 1266 71 1266 71 1266 71 1266	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz) D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of sa Gmm = MAX. SF X COMMINICIAN THICKNESS SUBLOT FOR 2ND CORE SL TECHNICIAN A = Weight of sa B = Weight of sa B = Weight of sa B = Weight of sa	TION ON OR NU D) (Tog) (nix 100 COPES sample: RAVITY (T209) RAVITY (T209) N DENOTED IN QC PL/ :	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 1256 71 1266 71 1266 71 1266 71 1266	2.472 2.557 100.0 100.0 100.0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 0 0	2.557 100.0 100.0 0	2.557 100.0 100.0 100.0 0	2:557 100.0 100.0 0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF X COMMINICIAN THICKNESS SUBLOT FOR 2ND CORE SU TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of sa	TION ON OR NU D) (TOD) (nix 100 COPES sample: RAVITY (T209) RAVITY (T209) N DENOTED IN QC PL : sample:	0.12 5.2 2.472 2.557 94.8 13.3 5.4 59 125 71 126 71 2.472 2.472 2.472	2.472 3.557 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2:557 100.0 100.0 100.0 0 0.000 2.472 0.0
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz) D = Ps = Percen VMA = 100 - (B.) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of su Gmm = MAX. SF X COMMINICIAN THICKNESS SUBLOT FOR 2ND CORE SU TECHNICIAN A = Weight of sa B = Weight of sa B = Weight of sa Gmc = CORE SU	TION ON OR NU D) (TOD) (nix 100 COPES sample: RAVITY (T209) N DENOTED IN QC PL sample: SRAVITY = A / (C - B	AN	2.472 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000	2.557 100.0 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000	2.557 100.0 100.0 0 0 0 0.000	2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2:557 100.0 100.0 0.00 0.000 0.000
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of sa C = Weight of sa Gmm = MAX. SF X COMMINICIAN A = Weight of sa B = Weight of sa C = Weight of sa	TION ON OR NU D) (TTG) x) t Agg. in m X D / C) B) / A) b) / A)	JCLEAR ix 5 100 :: sample: RAVITY (T209) :: sample: :: sample: :: : :: :: :: :: :: :: :: :: :: :: :: :: ::	AN	2.472 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000 2.472 0.000 2.472	2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000 2.472	2.557 100.0 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000 2.472	0.000 2.557 100.0 100.0 0.00 0.000 2.472 0.0 0.000 2.472
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of sa C = Weight of sa Gmm = MAX. SF X COMPACTION A = Weight of sa B = Weight of sa B = Weight of sa B = Weight of sa C = Weight of sa	TION ON OR NU D) (TTG) x) t Agg. in m X D / C) B) / A) b) / A)	nix 100 COPES sample: RAVITY (T209) N DENOTED IN QC PL sample: SRAVITY = A / (C - B	AN	2.472 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000	2.557 100.0 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000	2.557 100.0 100.0 0 0 0 0.000	2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2:557 100.0 100.0 0.00 0.000 0.000
GAUGE %AC NUCLEAR OR IGNI % MOISTURE % AC BY IGNITI A = Gmm (FIELD C = Gsb (Job Miz D = Ps = Percen VMA = 100 - (B) Va = 100 X ((A - VFA = (VMA-Va) AASHTO T 166 TECHNICIAN A = Weight of sa B = Weight of sa C = Weight of sa C = Weight of sa Gmm = MAX. SF X COMMINICIAN A = Weight of sa B = Weight of sa C = Weight of sa	TION ON OR NU D) (TTG) x) t Agg. in m X D / C) B) / A) b) / A)	JCLEAR ix 5 100 :: sample: RAVITY (T209) :: sample: :: sample: :: : :: :: :: :: :: :: :: :: :: :: :: :: ::	AN	2.472 2.557 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000 2.472 0.000 2.472	2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.557 100.0 100.0 0 0 0 0.000 2.472	2.557 100.0 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000 2.472	0.000 2.557 100.0 100.0 0.00 0.000 2.472 0.0 0.000 2.472

SPREADSHEET CALCULATIONS

AASHTO R 35							
A = Gmm (FIELD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
B = Gmb (FIELD) (Avg.)	2.339	0.000	0.000	0.000	0.000	0.000	0.000
C = Gsb (Job Mix)	2.557	2.557	2.557	2.557	2.557	2.557	2.557
D = Ps = Percent Agg. in mix	94.8	100.0	100.0	100.0	100.0	100.0	100.0
VMA = 100 - (B X D / C)	13.3	100.0	100.0	100.0	100.0	100.0	100.0
Va = 100 X ((A - B) / A)	5.4	100.0	100.0	100.0	100.0	100.0	100.0
VFA = (VMA-Va) / VMA	59	0	0	0	0	0	0

AASHTO T 166 TECHNICIAN A = Weight of sample in air:

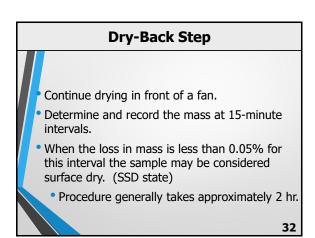
B = Weight in water:

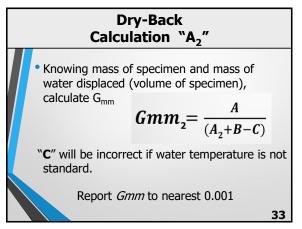
C = Weight of surface dry sample:

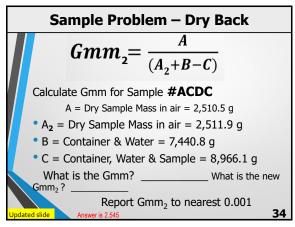
Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) % COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT

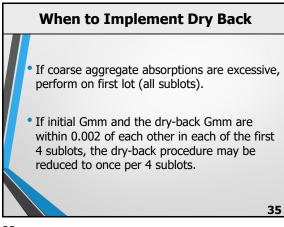
92.3	0.0	0.0	0.0	0.0	0.0	0.0
2.472	2.472	2.472	2.472	2.472	2.472	2.472
2.282	0.000	0.000	0.000	0.000	0.000	0.000
1260						
710						
1255						

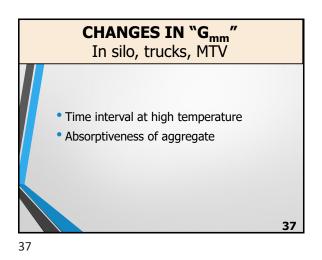
Dry-Back Step

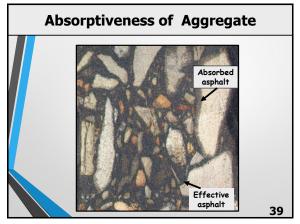

 If absorption of *any* coarse aggregate (+4) fraction is greater than 2.0%, dry back the specimen to a surface dry condition and weigh. Use this weight "*A₂" in the denominator in place of "A"*.


Absorption data is on the JMF.


31


31





REPORT	
Gmm and density to the nearest 0.001	
All weighs to nearest 0.1	
Temperature of the water	
Type of asphalt mixture	
Type of sample	
Sample ID	
Date	
Type of procedure "Water" or "Air"	
Report if used dry back procedure	
• Report Gmm ² to the nearest 0.001	36

COMMON TESTING ERRORS

- Not allowing specimen to cool to proper temperature.
- Over-manipulating the specimen, producing broken, uncoated particles
- Not having a manometer connected directly to the pycnometer
- Not maintaining the proper level of vacuum.
- Not breaking up sample completely
- Not agitating sample enough
- Agitating sample too much

40

Common Testing Errors, cont'd

- If the specimen was too warm when placed in the pycnometer: after the vacuum step, if stirring is done, aggregate may be broken.
- Not placing the lid in the same position each time.
- Not sufficiently drying the outside of the pycnometer before weighing.
- Allowing entrapped air bubbles in pycnometer.
- Not performing the dry-back procedure for highly absorptive aggregates.
- Not calibrating the pycnometer often enough.
- Not maintaining proper water temperatures.

41

40

AASHTO T 209: Theoretical maximum Specific Gravity (Rice Test): "Weigh in Air" Method Rev: 10/02/2023

State the following requirements for routine testing of a particular mix: 1. Pycnometer calibration required daily 2. Sample moisture content must be <0.1%: Verify by either a. Oven drying until mass repeats within 0.1%, or b. Use results of AASHTO T329	
 Sample moisture content must be <0.1%: Verify by either a. Oven drying until mass repeats within 0.1%, or 	
a. Oven drying until mass repeats within 0.1%, or	
3. Perform "dry-back" procedure if <u>ANY coarse aggregate fraction</u> has	
Absorption >2.0% (use surface-dry weight "A2" in place of "A" in the denominator of the non-dry-back Gmm equation.	
Routine Rice Test Procedure:	
(Demonstrate procedure, Proctor will shorten time frames)	
4. Separate particles while cooling sample:	
a. Don't break aggregate	
b. Reduce sand-binder clumps to $\leq 1/4$ inch	
c. Cool until mix is at room temperature	
5. Determine and record empty weight of the pycnometer (without lid). a. Place and	
level sample in pycnometer. b. Record weight of sample + pycnometer.	
c. Calculate oven-dry weight of sample [A]	
6. Cover sample with approximately 1" of bath water	
 Subject to specified vacuum of 30 ±5 mm Hg while agitating for 15 ± 1 min. (Manually agitate at intervals of 2 min for 15 ± 1 min using a rubber/plastic mat.) 	
8. Immediately after the 15± 1 min. time period (i.e., the vacuum application stops),	
very slowly release vacuum at <mark>60mm Hg/sec</mark> .	
 Start 10 ± 1 minute time period in which the final weight must be obtained (i.e., finish the test). Disassemble apparatus. 	
10. Being careful not to expose the mix to the air slowly submerge pycnometer in water	
bath at the specified temperature (is it?) and carefully place capillary lid on	
pycnometer.	
11. Just prior to end of 10 ± 1 min. time period, remove pycnometer, dry off the exterior, then determine and record total weight [E].	
12. After recording E, completely remove contents, re-submerge empty pycnometer in	
water bath, place capillary lid on pycnometer, wait 10 ± 1 min. for temperature	
stabilize, remove pycnometer, dry off the exterior, then determine and record total	
weight [D].	
13. Calculate non-dry-back Gmm = A / (A + D - E) : Nearest 0.001?	
14. Calculate dry-back Gmm = A / (A2 + D - E) : Nearest 0.001?	
PASS?	
FAIL?	

Proctor_____Date_____

Reviewer_____Date_____

AASHTO T 209: Theoretical Maximum Specific Gravity (Rice Test): "Weigh In Water" Method rev 01/05/2024

	Trial#	1	2	R
Pre-Procedure Checklist: (State for proctor operation and f	requenc	y)		
State the following requirements for routine testing of a particula	ar mix:			
1. Pycnometer calibration required daily				
 Sample moisture content must be <0.1%: Verify by a) oven until mass repeats within 0.1% OR b) use results of AASHT 329 	ΟT			
 Perform "dry-back" procedure if <u>ANY coarse aggregate frac</u> has absorption > 2.0% (use surface-dry weight "A2" in place in the denominator of the non-dry-back Gmm equation 				
Routine Rice Test Procedure: (Demonstrate procedure, pro	ctor will	shor	ten	
time frames where needed.)				1
 4. Separate particles while cooling sample: 1) Don't break agg 2) Reduce sand-binder clumps to ≤ ¼"; 3) Cool until mix is a temperature 				
 Determine and record empty weight of the pycnometer (with lid). Place and level sample in pycnometer. Record weight of sample + pycnometer. Calculate and record oven-dry weigh sample [A] 	of			
6. Cover sample with approximately 1" of bath water				
 Subject to specified vacuum of 30 ± 5 mm Hg while agitatin 15 ± 1 minutes 	g for			
 Very slowly release vacuum at a rate not to exceed 60 mm then disassemble apparatus 	<mark>Hg</mark> ,			
Confirm that water bath temperature is in spec. and water is default level (are they?), then zero out the weigh-in-water sy				
10. Being careful not to expose the mix to the air, suspend pycnometer (without lid) and contents in water bath				
11. Determine and record combined mass of pycnometer and contents [C] after 10 ± 1 minutes of immersion				
12. After recording C, remove pycnometer from water bath, con remove the contents, reset the weigh-in-water system to its condition, re-suspend empty pycnometer (without lid) in wat bath, then determine and record mass [B] after steady-state been achieved (tank stops overflowing).	default er			
13. Calculate non-dry-back Gmm = A / (A + B – C): Nearest 0.0	01?			
14. Calculate dry-back Gmm = A / (A2 + B – C): Nearest 0.001	?			
	PASS?			
	FAIL?			

Proctor_____

Date

Module 9

Binder Ignition AC Content AASHTO T308

SCOPE

This test method AASHTO T308:

- Covers the determination of asphalt binder content of asphalt mixtures by ignition at temperatures that reach the flashpoint of the binder in a furnace.
- Heating may be convection method or direct infrared (IR) irradiation method.
- Two Methods,
 - **Method A** requires an ignition furnace with an internal balance.
 - **Method B** requires an ignition furnace with an external balance.

2

SIGNIFICANCE AND USE

This method can be used for:

- Quantitative determinations of asphalt binder content.
- Gradation in asphalt mixture and pavement specimens for quality control.
- Specification acceptance.
- Mixture evaluation studies.
- For gradation analysis according to AASHTO T30.

3

2

EQUIPMENT

- Ignition Furnace A forced air oven that heats by convection or direct IR irradiation. The convection type must be capable of maintaining 538 ± 5°C (1000 ± 9°F).
 For Method A the oven shall have an internal
 - For Method A the oven shall have an internal balance.
- Specimen basket assembly consisting of
 - Specimen Baskets
 - Catch Pan
 - Assembly guard
- See appendix, Item #7 for more information on equipment.

4

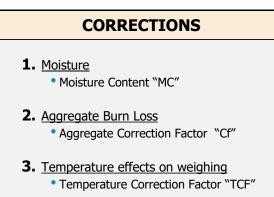
Oven Verification:

- The oven must be "verified' every 12 months and after each move.
 - Temperature
 - Balance

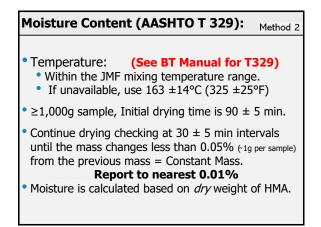
Methods:

- Yearly outside service (usually along with gyro and mold calibrations, etc.)
- In-house

5

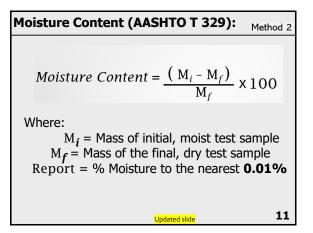

Ignition Oven Basics:

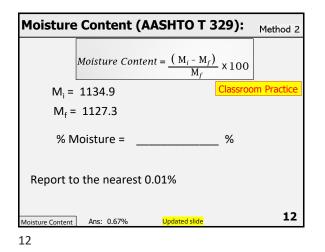
- % Binder: Loss in mass of specimen
- Problem: Other materials also burn off
 - Moisture
 - Aggregate
 - Miscellaneous


6

4

5


_		
1		Moisture
•	Мо	isture in mix will evaporate.
•	Thi	s will count as binder unless corrected.
•	Th	ere are two methods to correct for moisture:
	1 hod	Dry mix to a constant mass at 110 ± 5°C (230 ±9°F) prior to testing.
	Method	"Aging"—must still verify that constant mass has been achieved.
		OR
	Method 2	 Determine moisture content of mix (AASHTO T 329), subtract it from the apparent binder content.



Calculate the PERCENT CHANGE as follows:
(
$$A - B$$
) X 100
% Change = $A = Previous$ mass determination
 $B = Previous$ mass determination
REPORT = To the nearest 0.01%
Reminder from BT certification:
First subtract the container weight from the total
weight for A and B then record the weights to the

nearest **0.01 g** before calculating % change. **10**

10

Rounding:	Method 2
• When calculating, moisture content, to content, and Cf, round to nearest 0.0	
Side note: Binder Content: When comparing to specification, round binder content to n 0.1%.	rest
Moisture Content	13

Moisture Testing Frequency:	
 "Common Wisdom" as needed High RAP/RAS mixtures especially prone to moisture. Rainy weather "Warm mix" New aggregate If plant operator reports burning more fuel to maintain temperature. Fluctuating volumetrics or binder contents Watering piles per DNR. Same stockpiles Dry weather No moisture when tested 	14
Moisture Content	14

14

2. Aggregate Burn Loss

Aggregate Correction Factor :

- To correct for loss of mass during the mix ignition due to aggregate burn-off.
- Determined during mix design by mix designer (usually QC).
- Re-determined if mix design changes (e.g. >5% change in stockpiled aggregate proportions).
- Re-determined if a different oven is used (QA or QC).

15

15

Aggregate Correction

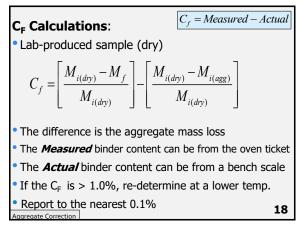
C_F Procedure:

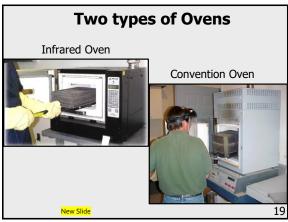
- Mix specimen in lab with dry aggregate at a known (*actual*) % binder.
- Input "zero" for the C_F
- Burn, obtain *measured* (apparent) % binder.
- The difference between the *measured* and the *actual* % binder is the Asphalt Binder Correction Factor (C_F).

16

17

• If the C_F is > 1.0%, re-determine at a lower temperature.


Aggregate Correction

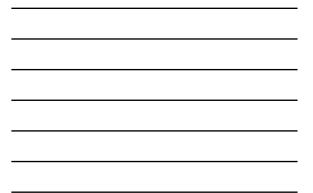

16

Definitions:

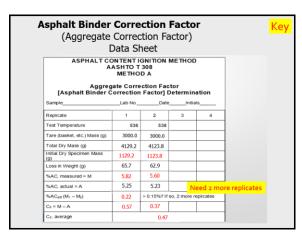
- **M** = mass (g)
- **Mi(dry)** = Mass of mix before burning, dry already.
- **Mf** = Final mass of mix after burning (binder and some aggregate burned off).
- (Mi(dry) Mf) = Binder & aggregate burned off.
- **Magg** = Initial unburned mass of just the aggregate, dry.
- (Mi(dry) Mi(agg)) = Mix mass minus aggregate mass is the mass of binder, initially.

Aggregate Correction

- If the difference in measured asphalt contents is > 0.15%, test two more replicates.
- For the four replicates, discard the high and low results.


21

Aggregate Correction



Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet ASPHALT CONTENT IGNITION METHOD AASHTO T 308 METHOD A Aggregate Correction Factor [Asphalt Binder Correction Factor]						
					sket Mass = Initial Dry Specimen Mass	
Sample	Lab No	Date		ls		
Replicate	1	2	3	4		
Test Temperature	538	538				
Tare (basket, etc.) Mass (g)	3000.0	3000.0	1			
Total Dry Mass (g)	5000.1	5005.2	/			
Initial Dry Specimen Mass (g)	2000.1	2005.2				
Loss in Weight (g)	125.2	126.1	_		Loss in weight x 100	
%AC, measured = M	6.26	6.29	 %AC,	measured	= M =	
%AC, actual = A	6.00	6.01				
$AC_{diff}(M_1 - M_2)$	0.03	> 0.15%? If	so, 2 more re	eplicates		
C _F = M - A	0.26	0.28				
C _F Average		0.2	27		Updated Slide	

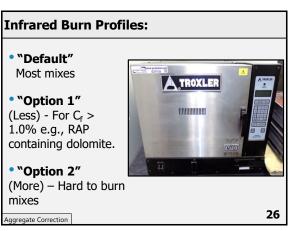
ASPHALT CONTENT IGNITION METHOD AASHTO T 30 Classroom Practice METHOD A Aggregate Correction Factor [Asphalt Binder Correction Factor] Determinant Sample Lab No. Date Initials					
Replicate	1	2	3	4	
Test Temperature	538	538			
Tare (basket, etc.) Mass (g)	3000.0	3000.0			
Total Dry Mass (g)	4129.2	4123.8			
Initial Dry Specimen Mass (g)					
Loss in Weight (g)	65.7	62.9			
%AC, measured = M					
%AC, actual = A	5.25	5.23			
%AC _{diff} (M ₁ – M ₂)		> 0.15%? If so, 2 more replicates			
$C_F = M - A$					
C _F , average		New Slide			

Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet							
METHOD A							
Aggregate Correction Factor [Asphalt Binder Correction Factor] [Total Dry Mass – Tare Basket Mass = Initial Dry Specimen Mass							
Sample	Lab No	Date	eInitial	ls			
Replicate	1	2	3	4			
Test Temperature	538	538					
Tare (basket, etc.) Mass (g)	3000.0	3000.0	1				
Total Dry Mass (g)	5000.1	5005.2					
Initial Dry Specimen Mass (g)	2000.1	2005.2					
Loss in Weight (g)	125.2	126.1			Loss in weight x 100		
%AC, measured = M	6.26	6.29	 %AC,	measured	= M =		
%AC, actual = A	6.00	6.01					
$\text{%AC}_{\text{diff}}(M_1 - M_2)$	0.03	> 0.15%? If	so, 2 more re	eplicates			
C _F = M - A	0.26	0.28					
C _F Average	0.27			Updated Slide			

ASPHALT CONTENT IGNITION METHOD AASHTO T 30 Classro

0

Aggregate Correction Factor


Sample	Lab No	Lab NoDateInitials				
Replicate	1	2	3	4		
Test Temperature	538	538				
Tare (basket, etc.) Mass (g)	3000.0	3000.0				
Total Dry Mass (g)	4129.2	4123.8				
Initial Dry Specimen Mass (g)						
Loss in Weight (g)	65.7	62.9				
%AC, measured = M						
%AC, actual = A	5.25	5.23				
%AC _{diff} (M ₁ – M ₂)		> 0.15%? If so, 2 more replicates				
$C_F = M - A$						
C _F , average		New Slide				

Use of Cf : Before production, when Cf is the unknown: Cf = Measured Content – Actual Content During production, when Actual Content is unknown: Actual = Measured Content – Cf

25

25

Aggregate Correction

26

RAP Aggregate Correction Factor :

(Asphalt Binder Correction Factor)

• Follow TM-77:

- Assumes aggregate C_F for RAP aggregate is same as C_F for virgin aggregate.
- Follow the standard procedure as if there was no RAP, i.e., use only the virgin aggregate, and only the binder content associated with the virgin aggregate portion when fabricating the specimen.
- So, the Cf from the virgin materials test is used as the Cf for the whole mix.

27

27

Aggregate Correction

3. Temperature Effects on Weighing Temperature Compensation Factor (TCF)

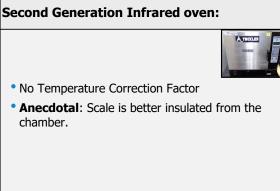
Convection Oven:

- Material "weighs" differently at elevated temperatures.
- Mass loss shown on the oven printout must be corrected.
- Oven calculates and prints the "Temperature Correction Factor (TCF)" for the particular test run.
- TCF = Apparent loss in mass due to heating.

28

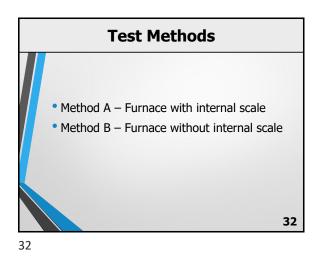
28

Use of Temperature Correction Factor:


• When determining the Aggregate Correction Factor, if the oven printout is used for determination of the Measured Asphalt Content, include the Temperature Correction Factor (TCF).

 If all weighing is performed outside of the oven and specimen is cooled to room temperature, do not use the TCF

29


29

31

EPG 403.1.5 Link: Engineering_Policy_Guide (modot.org)

Sampling:

• Obtain samples of Loose Mix according to AASHTO R97. (See Module 5 on Sampling)

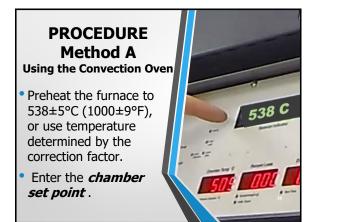
Reheating:

- Place the box or bucket of sample in an oven 110 ± 5°C (230 ± 9°F)
- gently warm the sample until workable.
- Remove the sample from box or bucket.

Reducing:

- Reduce the sample per AASHTO R47 (see module 6) to amount listed on Table 1.
- Spread sample in a large pan or two.

If needed, reheat the pan just until sample is workable. $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$


34

NOTE: Monitor the heating, do not leave sample in the oven too long.

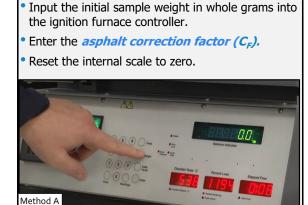
Sampling

34

Ignition Oven Specimen Size (TABLE 1)						
Mix	NMS, in.	Specimen Size, g				
SP048 & BP-3	#4	1200-1700				
SP095	3/8	1200-1700				
SP125, BP-1 & BP-2	1/2	1500-2000				
SP190 & Bit Base	3/4	2000-2500				
SP250	1	3000-3500				
L	1					
Sampling		35				

At the bench... Record weight of empty basket assembly. (0.1g) Place ~ half of the mix in each basket. Use a spatula or trowel to level and move the mix about **one inch** away from the edges of the basket. Method A

37



Cool to room temp.

- Weigh the test specimen and basket on external bench scale. (0.1g)
- Calculate and record the initial weight of the sample.
- Record to nearest 0.1g
- Total weight_{initial} - Empty Basket weight = Sample Weight_{initial}

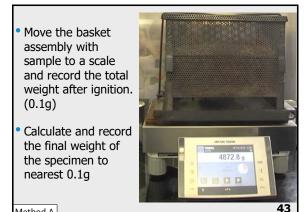
38

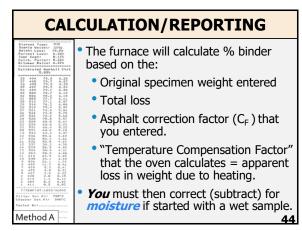
38

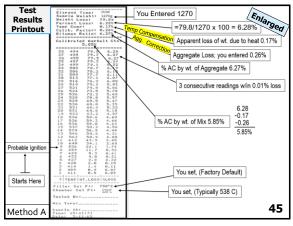
- Put on safety gear.
- Open the chamber door and place the specimen basket with sample in the furnace.
 - Make sure basket is not touching the walls.

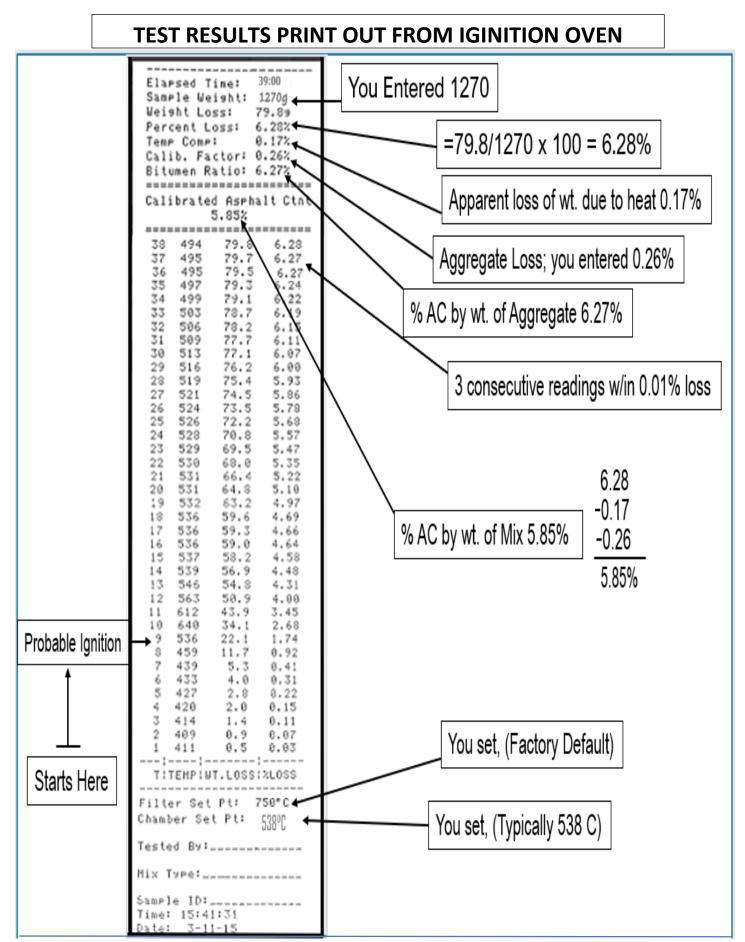
Method A

• Verify that the specimen weight is displayed on the furnace scale equals the **total mass_{inital}** weighed on bench scale ± 5 grams.


Start the oven. "Burn"

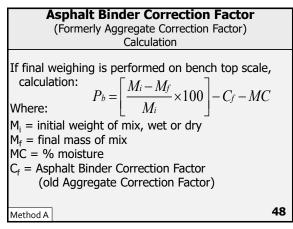

41

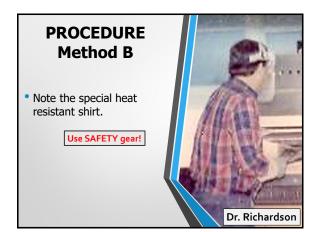

- Oven will stop when burn is complete.
- Tare off ticket of burn results.
- Put on safety gear, open the door, carefully pull out the basket and place it on a cooling plate.
- Place a protective cage on top of the basket assembly.
- Allow to cool to room temperature. \sim 60min.

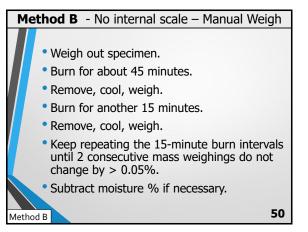


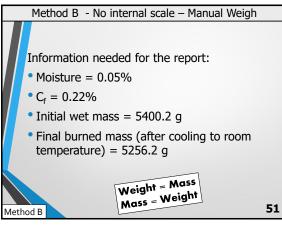
Method A

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-10) METHOD A Reproducing Oven Ticket Values

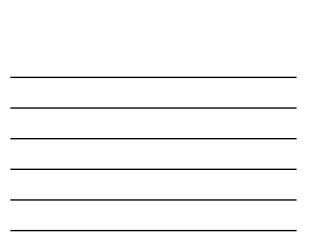

Revised 12-9-15 *If w_i = wet

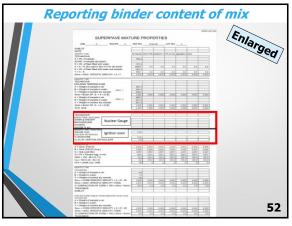

$m_i = wet$					
Project No.	Job No.	Route	County		
Technician	nnician Date Sublot No.				
Empty Basket Assembly	y Weight (g), [T _e]		3000.2		
Basket Assembly + Wet	t (or dry) Sample Weight	(g), [T _i]	4270.2		
Wet (or dry) Sample We	eight (g), [W _i = (T _i - T _e)]				
Loss in Weight (g), [L]((from tape)				
Total % Loss, [P _L = (L / \	Total % Loss, [P _L = (L / W _i) x100]				
Temperature Compensa	ation (%), [C _{tc}] (from tape	e)			
% AC, uncorrected, [P _{bu}					
Aggregate Correction (C					
Calibrated %AC (from i					
% Moisture Content, [M	C] (previous test)*		0.13		
% AC, corrected (by we	ight of mix), $[P_b = P_{bcal} - I$	MC]*			

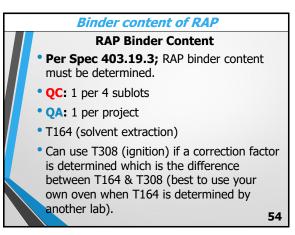

	Enlarged				
	Project No.	Job No.	Route	q	~
*lf w _i = we	et _{sician}	Date	Sublot No.		n Practice
	Empty Basket Asser	nbly Weight (g),	[T _e]	3000.2	1
	Basket Assembly +	Wet (or dry) Sam	nple Weight (g), [Ti]	4270.2	1
	Wet (or dry) Sample	Weight (g), [Wi	= (T _i - T _e)]		1
	Loss in Weight (g), [L] (from tape)			
	Total % Loss, [P _L = (L / W _i) x100]			Ī
	Temperature Compe	ensation (%), [C ₁] (from tape)		1
	% AC, uncorrected,	$[P_{bu} = P_{L} - C_{tc}]$			
	Aggregate Correction (Calibration) Factor (%), [C _f] (from tape)			e)	
	Calibrated %AC (from ignition oven tape), $[P_{bcal} = P_{bu} - C_{f}]$]
	% Moisture Content	, [MC] (previous	test)*	0.13]
Method A	% AC, corrected (by	weight of mix),	P _b = P _{bcal} – MC]*		1 46



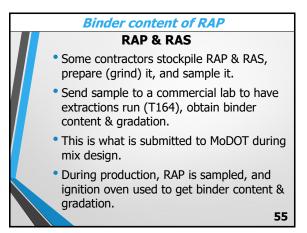
Elaried Tine: 30.00 Saarle Weisht: 1270g. Weisht Loss: 79.69 Tear Cote: 0.17% Calib. Factor: 0.26% Bitumen Ratio: 0.27%	Asphalt Content Ignitior (AASHTO T 308-10) Meth Reproducing Oven Ticket	
Calibrated Asphalt Ctnt 5.85%	Project N + LE	County
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*If w _i = wet Sublot No.	Mbc No.
34 499 79.1 6.22 33 503 70.7 6.19 32 506 78.2 6.15 31 509 77.7 6.11 30 513 77.1 6.07	Empty Basket Assembly Weight (g), [[]	3000.2
29 516 76.2 6.00 20 519 75.4 5.93 27 521 74.5 5.06 26 524 73.5 5.70	Basket Assembly + Wet (or dry) Sample Weight (g), []	4270.2
25 526 72.2 5.69 24 520 70.0 5.57 23 529 69.5 5.47 22 530 60.0 5.35	Wet (or dry) Sample Weight (g), $[W_i = (\underline{T}_{\underline{i}} - \underline{\underline{T}}_{\underline{n}})]$	1,270.0
21 531 66.4 5.22 20 531 64.6 5.10 19 532 63.2 4.97 10 536 59.6 4.69	Loss in Weight (g), [L] (from tape)	79.8
17 536 59.3 4.66 16 536 59.0 4.64 15 537 58.2 4.58 14 539 56.9 4.48 13 546 54.9 4.31	Total % Loss, [P _L = (L / W _i) x100](79.8 / 1270.0) X 100	<u>= 6.289</u> 6.28
12 563 50.9 4.00 11 612 43.9 3.45 10 640 34.1 2.68 9 536 22.1 1.74	Temperature Compensation (%), $[C_{tc}] \ \mbox{(from tape)}$	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% AC, uncorrected, $[P_{89} = P_L - C_{1c}]$ 6.28 - 0.17 = 6	.11 6.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aggregate Correction (Calibration) Factor (%), [C] (from t	ape) 0.26
Filter Set P 6.11 - 0.26 = 5	5.85 Calibrated %AC (from ignition oven tape), $[P_{best} = P_{by} - C_{by}]$	5.85
Chamber Set Pti 500°C Tested By:	% Moisture Content, [MC] (previous test)*	0.13
Method A 5.85 - 0.13 =	% AC, corrected (by weight of mix), $[P_b = \frac{P_{boal}}{1 - MC}]^*$ 5.72	5.72






SUPERPAVE MIXTURE PROPERTIES

JOB 0 ROUTE 0				LOT NO.			
SUBLOT							
DATE							
AASHTO T 209	A2 required w	hen T85 ab	sorption >2.	.0% on any a	ggregate frac	ction.	
TECHNICIAN A = Wt. of sample:	1504.4						
A = Wt. of sample. A2=Wt. of sample (dry-back):	1594.4						
D = Wt. of flask filled with water:	7472.2						
X = A + D (A2 used in lieu of A for dry-back)	9066.6	0.0	0.0	0.0	0.0	0.0	0.0
E = Wt. of flask filled with water and sample:	8421.5						
Y = X - E	645.1	0.0	0.0	0.0	0.0	0.0	0.0
3mm = MAX. SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472
AASHTO T 166 FECHNICIAN							
MOLDING TEMPERATURE							
A = Weight of sample in air:	4867.8						
B = Weight of sample in water: SPEC. 1	2801.9						
C = Weight of surface dry sample:	4880.4						
Smb = BULK SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of sample in air:	4899.1						
B = Weight of sample in water: SPEC. 2	2814.5						
C = Weight of surface dry sample:	4911.9						
Gmb = BULK SP. G. = A / (C-B)	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb	2.339	0.000	0.000	0.000	0.000	0.000	0.000
FECHNICIAN MoDOT TM54 (NUCLEAR)							
BACKGROUND Nuclear gage							
COUNTS							
GAUGE % AC	111111111111111111111111111111111111111						
AASHTO T 308 (IGNITION)							
	5.35						
SAUGE %AC NUCLEAR OR IGNITION Ignition oven	[
SAUGE %AC NUCLEAR OR IGNITION Ignition oven % MOISTURE	0.12						
SAUGE %AC JUCLEAR OR IGNITION Ignition oven 6 MOISTURE	[
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR	0.12	2.472	2.472	2.472	2.472	2.472	2.472
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR (A = Gmm (FIELD)	0.12	2.472	2.472	2.472	2.472	2.472	<u>2.472</u> 0.000
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR (ASHIOR 35 A = Gmm (FIELD) 3 = Gmb (FIELD) (Avg.)	0.12						
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix)	0.12 5.2 2.472 2.339	0.000	0.000	0.000	0.000	0.000	0.000
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix	0.12 5.2 2.472 2.339 2.557	0.000	0.000 2.557	0.000 2.557	0.000 2.557	0.000	0.000 2.557
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C)	0.12 5.2 2.472 2.339 2.557 94.8	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2.557 100.0	0.000 2:557 100.0	0.000 2.557 100.0
	0.12 5.2 2.472 2.339 2.557 94.8 13.3	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0	0.000 2.557 100.0 100.0
SAUGE %AC JUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
SAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA MASHTO T 166 TECHNICIAN	0.12 5.2 2.339 2.557 94.8 13.3 5.4 59	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNITION MOISTURE A AC BY IGNITION OR NUCLEAR A SHIOR 35 A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix VMA = 100 - (B X D / C) VA = 100 X ((A - B) / A) VFA = (VMA-Va) / VMA ASHTO T 166 FECHNICIAN A = Weight of sample in air:	0.12 5.2 2.339 2.557 94.8 13.3 5.4 59	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
SAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA A SHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0	0.000 2.557 100.0 100.0 100.0
GAUGE %AC NUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix VMA = 100 - (B X D / C) VA = 100 X ((A - B) / A) VFA = (VMA-Va) / VMA A SHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 0	0.000 2.557 100.0 100.0 100.0 0	0.000 2:557 100.0 100.0 0	0.000 2.557 100.0 100.0 0
SAUGE %AC NUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA A SHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Smc = CORE SPECIFIC GRAVITY = A / (C - B)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0.000	0.000 2:557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000
SAUGE %AC JUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) (Avg.) C Gsb (Job Mix) D P s = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
SAUGE %AC JUCLEAR OR IGNITION A MOISTURE C AC BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) (Avg.) C Gsb (Job Mix) D Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: B = CORE SPECIFIC GRAVITY = A / (C - B) B = MAX. SPECIFIC GRAVITY (T209) C = COMPACTION OF CORE = 100 x (Gmc / Gmm)	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282	0.000 2.557 100.0 100.0 0 0 0.000	0.000 2.557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0	0.000 2.557 100.0 100.0 0 0 0 0.000	0.000 2:557 100.0 100.0 0 0 0	0.000 2.557 100.0 100.0 0 0 0.000
SAUGE %AC JUCLEAR OR IGNITION A MOISTURE C AC BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) (Avg.) C Gsb (Job Mix) D Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
SAUGE %AC JUCLEAR OR IGNITION A MOISTURE 6 AC BY IGNITION OR NUCLEAR A SHIUR 35 A = Gmm (FIELD) 3 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 3 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 3 = Fercent Agg. in mix 1 MA = 100 - (B X D / C) 1 / (A = 100 X ((A - B) / A) 1 / (FA = (VMA-Va) / VMA 1 / (FA = (VMA-Va) / (TA) 1 / (C - B) 3 = Weight of surface dry sample: 3 = Weight of surface dry sample: 3 = Weight of surface dry sample: 3 = CORE SPECIFIC GRAVITY = A / (C - B) 3 mm = MAX. SPECIFIC GRAVITY = A / (C - B) 3 mm = MAX. SPECIFIC GRAVITY (T209) 4 / (C - MPACTION OF CORE = 100 x (Gmc / Gmm) 5 UBLOT	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
GAUGE %AC IUCLEAR OR IGNITION MOISTURE A C BY IGNITION OR NUCLEAR ASHIO R33 A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix MA = 100 - (B X D / C) Ya = 100 X ((A - B) / A) YFA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) C COMPACTION OF CORE = 100 x (Gmc / Gmm) HICKNESS GUBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHIO R33 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 9 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: 3 = Weight of Sample in air: 3 = Weight of Sample in air: 4 = Weight of Sample in air:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHIO R33 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 9 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS GUBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: 8 = Weight of sample in air: 8 = Weight of sample in air: 8 = Weight of sample in air: 9 = Weight of sample in air: 9 = Weight of sample in air: 9 = Weight in water:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0.000 2.472
GAUGE %AC IUCLEAR OR IGNITION 6 MOISTURE 6 AC BY IGNITION OR NUCLEAR ASHIO R33 A = Gmm (FIELD) 8 = Gmb (FIELD) (Avg.) 2 = Gsb (Job Mix) 9 = Ps = Percent Agg. in mix 7MA = 100 - (B X D / C) 7a = 100 X ((A - B) / A) 7FA = (VMA-Va) / VMA ASHTO T 166 ECHNICIAN A = Weight of sample in air: 8 = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) 6 COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT OR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: 8 = Weight of sample in air: 9	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0
A Grant Contraction of the second of the sec	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 0.000	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0
A C BY IGNITION Ignition oven MOISTURE A C BY IGNITION OR NUCLEAR A Gmm (FIELD) B Gmb (FIELD) (Avg.) C Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA ASHTO T 166 TECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY (T209) C COMPACTION OF CORE = 100 x (Gmc / Gmm) THICKNESS SUBLOT FOR 2ND CORE SUBLOT WHEN DENOTED IN QC PLAN ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of sample in air: B = Weight of sample in air: C = Weight of sample in air: B = Weight of sample in air: C = Weight of sample in air: C = Weight of sample in air: B = Weight in water: C = Weight of sample in air: C = Weight of surface dry sample: Gmc = CORE SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) Gmm = MAX. SPECIFIC GRAVITY = A / (C - B) C = Weight of surface dry sample: C = Weight o	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 2.472	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472
GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR A = Gmm (FIELD) B = Gmb (FIELD) (Avg.) C = Gsb (Job Mix) D = Ps = Percent Agg. in mix /MA = 100 - (B X D / C) /a = 100 X ((A - B) / A) /FA = (VMA-Va) / VMA VASHTO T 166 ECHNICIAN A = Weight of sample in air: B = Weight in water: C = Weight of surface dry sample:	0.12 5.2 2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0 0 0.000 0.000	0.000 2.557 100.0 100.0 0 0.000 2.472 0.0


Reporting binder content of mix				
Binder Portion Enlarge				
TECHNICIAN			"ged	
MoDOT TM54 (NUCLEAR) SAMPLE WEIGHT				
BACKGROUND				
COUNTS				
GAUGE % AC				
AASHTO T 308 (IGNITION)				
GAUGE %AC NUCLEAR OR IGNITION	5.35			
% MOISTURE	0.12			
% AC BY IGNITION OR NUCLEAR	5.2			
			53	

Binder Portion

TECHNICIAN Modot TM54 (NUCLEAR) SAMPLE WEIGHT BACKGROUND COUNTS GAUGE % AC AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR

		 	 	• • • • • • • • • • • • • • • • • • • •
5.35				
5.35				
0.12				

Aggregate Gradation

Gradation Samples

- MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample.
- An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock.
- RAP gradation in the field is determined with ignition oven.

56

56

Aggregate Gradation

RAS Gradation

- Not recommended to use T308 on RAS (too dangerous).
- Fan will suck fines out.
- Use extraction to get gradation or use the standard gradation.

57

Aggregate Gradation					
RAS Gradation					
	Sieve Size	% Passing			
	3/8″	100			
 Ground to minus 3/8 	#4	95			
inch.	#8	85			
 Gradation from solvent 	#16	70			
extraction, or assumed	#30	50			
from table:	#50	45			
	#100	35			
	#200	25			
		58			

Aggregate Gradation

Mix Gradation Samples

- When determining the *aggregate (gradation) correction factor* (AGCF), prepare an aggregate blank (no binder) specimen.
- Do a washed gradation analysis (AASHTO -T 30 Test for Mechanical Analysis of Extracted Aggregate) of the blank.
- Do a washed gradation analysis of the burned HMA specimen (T 30): Two replicates.

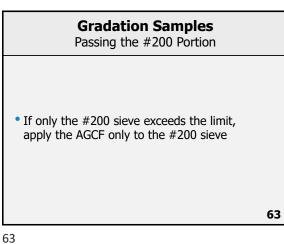
59

59

Gradation Samples Burned and Unburned Plus #200 Portion

• Determine a difference for each sieve, each replicate, say, for the #4 sieve:

(%-#4)_{blank} - (%-#4)_{burned} , replicate #1 (%-#4)_{blank} - (%-#4)_{burned}, replicate #2


• Calculate the average difference for that sieve (#4).

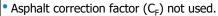
• The difference is called the AGCF for #4 sieve material. 61

61

Gradation Samples Burned and Unburned Plus #200 Portion					
 If the difference on <i>ai</i> allowable (see below), its own AGCF applied to 	then each sieve must have				
• Allowable difference	Allowable differences:				
• ≥ #8: ± 5.0%					
• ≥ #200 to < #8:	± 3.0%				
• ≤#200	± 0.5%				

62

_		Т308″	Enlarged				
Sieve	Burned Rep#1	Burned Rep#2	Unburned Blank	Rep#1 Diff	Rep#2 Diff	Avg. Diff= AGCF	Allowable
1″	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
3/4″	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
1/2"	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8″	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5
		For #4	sieve:				
		Rep#1: 5	53.9-52.1 = 1.	8			
		Rep#2: 5	53.9-55.6 = -1	.7			
		Avg diff	= [1.8 + (-1.7)] /2 = 0.05	= 0.1 (ro	unded)	64
		Compare	to ±5.0: 0.1	< 5.0 OK			04


Common Testing Errors

of Non-Comparison/Early Shut-off

- Starting test when oven is cold: incomplete burn; can affect TCF.
- Neglecting to push "Start" (binder burns but is not recorded).
- Not cleaning oven & vents often enough.
 - Tip: Perform "Lift" test regularly to verify clean oven.
- Using vent pipe less than 4 in, diameter.

65

65

- Not cleaning baskets.
- Allowing scale plate or support tubes to rub.
- Not spreading specimen out.
- Not tearing off ticket before opening oven door.
- Allowing door to not latch correctly.
- Not correcting for moisture (e.g., when plant speed increases, etc.).

Common Testing Errors

66

Example Adapted from FHWA "Addendum T308"

Sieve	Burned Rep#1	Burned Rep#2	Unburn ed Blank	Rep# 1 Diff	Rep# 2 Diff	Avg Diff= AGCF	Allow able
1"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
<u>3</u> "	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
$\frac{1}{2}$ "	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5

For #4 sieve:

Rep#1: 53.9-52.1 = 1.8

Rep#2: 53.9-55.6 = -1.7

Avg diff = [1.8 + (-1.7)]/2 = 0.05 = 0.1 (rounded)

Compare to ±5.0: 0.1 < 5.0 OK

Superpave

Module 9

- Using an oversize specimen.
- Not using the same size specimen for asphalt correction factor (C_F) determination and all production tests.
- Using a plant-made specimen instead of a labmade specimen for (C_F) determination.
- Not double-checking specimen weight on oven scale against exterior scale weight.

Common Testing Errors

67

67

- Materials used for (C_F) determination not the same as project materials.
- Inaccurate asphalt contents used for (C_F) determination.
- QA & QC starting with different temperature specimens.
- Door left open too long between loadings.
- Wrong chamber set point.
- Wrong burn profile.
- Weighing on bench balance when specimen is hot.

Common Testing Errors

68

Operation Problems

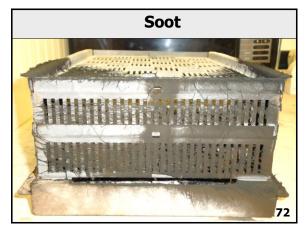
 Oven won't shut itself off—it's OK to manually shut off as long as 3 consecutive readings show less than 0.01% loss, and the sample appears to be completely burned (EPG 403.1.5).

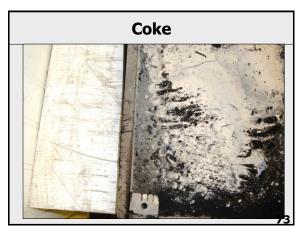
69

68

Premature Burn Stop

- Vibrations
- Basket or strap up against wall or top of chamber.
- Clogged port
- Used U.S. date, not European date (1998-2000 NCAT models).


More information on Binder Ignition in the Appendix item #5.


70

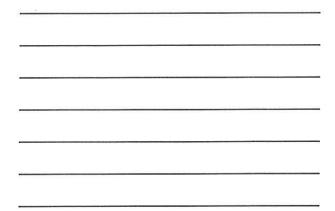
70

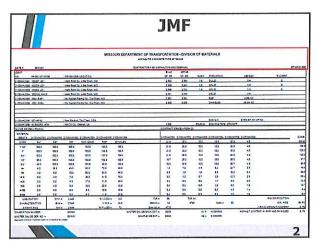
71

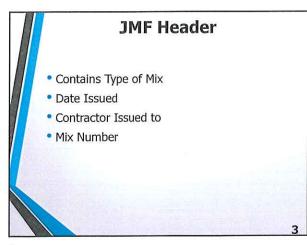
AASHTO T 308: Asphalt Content by Ignition; Method A

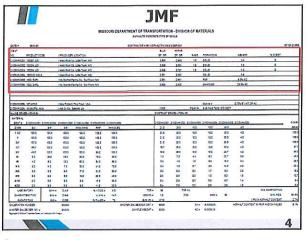
	Trial#	1	2	R
Pre	e-Production Oven Parameters Checklist: (Demonstrate oven setu	<mark>ıp)</mark>		
Inp	out required parameters for routine production of a particular mix:			
1.	Enter TEMP setpoint [chamber temperature]			
2.	Enter CALIB. FACTOR [binder (aggregate) correction factor]			
	utine Production Ignition Oven Procedure: <mark>(Demonstrate test pro- octor instruction)</mark>	cedur	<mark>e w</mark>	ith
3.	Obtain weight of empty basket assembly			
4. 5.	Place ~½ of hotmix sample in each basket; move mix ~¾" away from sides; re-assemble basket. Cool to room temperature. Obtain total weight of sample plus basket then calculate initial			
<u> </u>	weight of hotmix sample			
6.	Enter initial sample WEIGHT			
7.	Zero oven scale (push the number 0)			
8.	After putting on safety gloves, face shield, etc., carefully load sample into oven, making sure basket is not touching walls; close door			
9.	Check total weight: oven vs. exterior scale: No good if > 5 grams difference: Is it?			
10.	Initiates burn-off program by pressing START/STOP			
11.	After burn-off stops, remove and examine paper readout			
	Again, with safety gear on, open oven door, remove basket & place on cooling rack. Cool to room temperature.			
13.	Determine and record basket + specimen weight, then calculate and record final specimen weight (for manual calculations and/or verification of %AC).			
14.	Obtain Calibrated %AC through calculations (NOTE: in the field, this value will automatically be on the printout tape)			
15.	Correct the Calibrated %AC for moisture			
	PASS?			
	FAIL?			

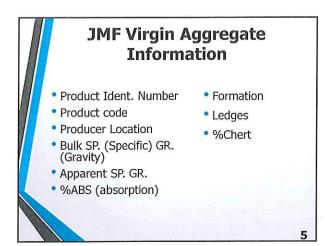
Proctor_____Date_____


Reviewer_____Date_____

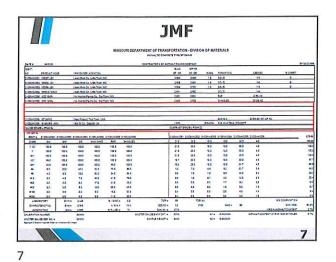

Module 10

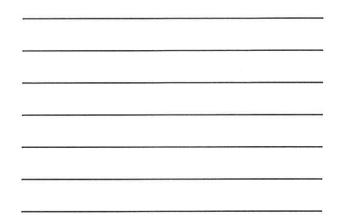

Job Mix Formula (JMF)





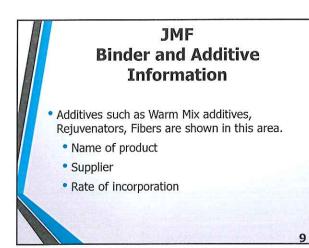
5

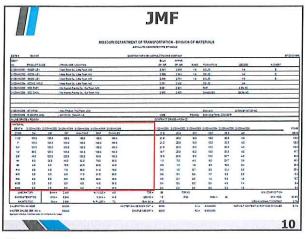

JMF Virgin Aggregate Information

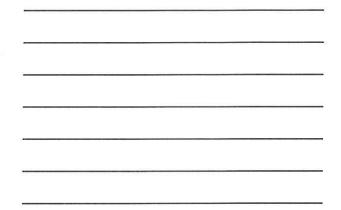

Each mix design is acceptable to use for a threeyear period.

• Ledge information is generally updated annually by the aggregate producer and MoDOT.

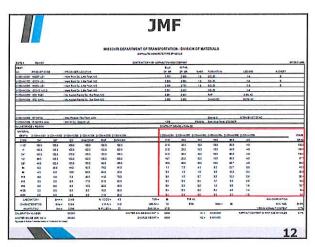
6

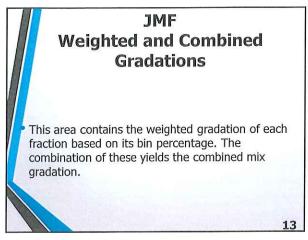

 If the product remains close (ledge is same, gravity, absorption, etc.), acceptable to use JMF information

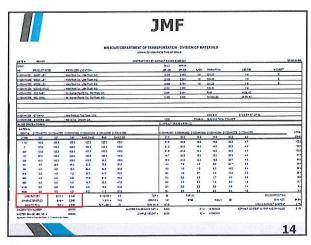


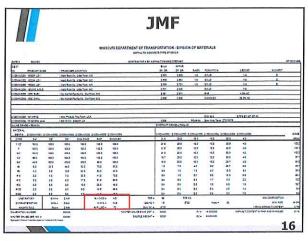


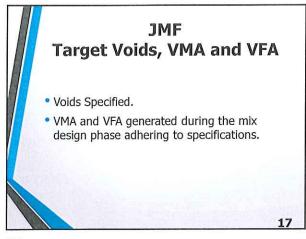
JMF Binder and Additive Information Product Ident. Number Product code Producer Location Bulk SpGr PG Grade Molding Temperature

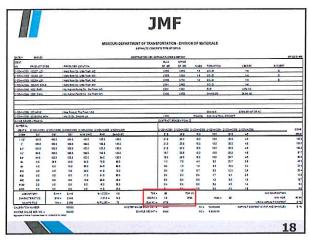

8

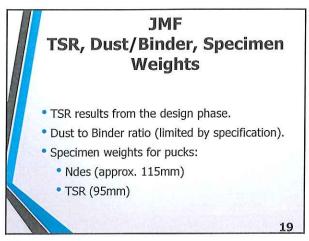


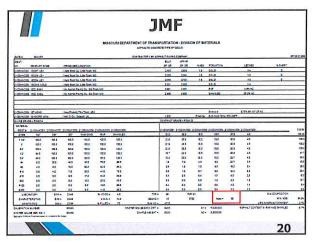


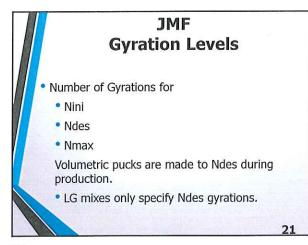


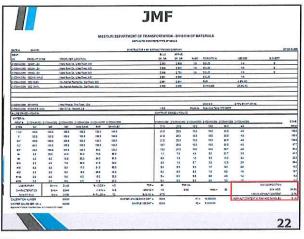


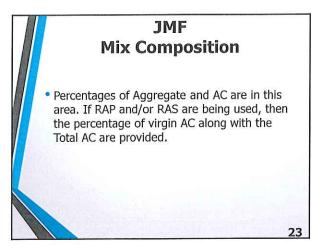






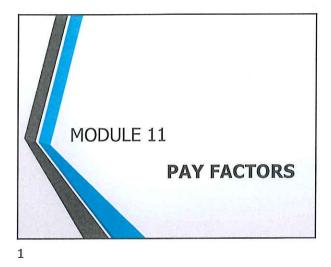


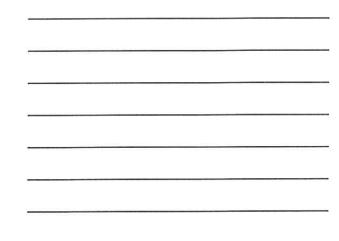


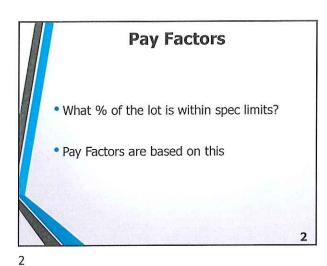


IDENT.							BULK	APPAR.						
NO. PRODUCT CODE	1	PRODUCER, LOCATION	LOCATION			S	SP. GR.	SP. GR.	%ABS	FORMATION		LEDGES	% CHERT	
21CDMAC001 100207LD1	/	Hard Rock Co.	Hard Rock Co., Little Town, MO				2.563	2.693	1.9	SOLID		1-4	0	
21CDMAC002 100204LD1	/	Hard Rock Co.	Hard Rock Co., Little Town, MO				2.558	2.691	1.9	SOLID		1-4	0	
21CDMAC003 100204LD1	/	Hard Rock Co.	'Hard Rock Co., Little Town, MO				2.566	2.701	1.9	SOLID		1-3	0	
21CDMAC004 1002MSMSLD	/	Hard Rock Co.	Hard Rock Co., Little Town, MO				2.551	2.682		SOLID		1-4		
21CDMAC005 1002RAP1	/ V	Wy Asphalt Pa	' My Asphalt Paving Co., Our Town, MO	л, MO			2.691	2.691		RAP		4.9% AC		
21CDMAC006 1002SHGL	/ /	My Asphalt Pa	My Asphalt Paving Co., Our Town, MO	n, MO			2.600	2.600		SHINGLES		26.3% AC		
21CDMAC006 1071APAS		Vew Product.	/ New Product. This Town. USA							Stick to It		0.75% BY WT OF AC		
21CDMAC006 1015ACPG4634		Hot Oil Co., Seaport, LA	saport, LA				1.035		PG46-34	Gvro Mold Temp. 270-280°F	270-280°F			
IN-LINE GRADE = PG46-34						CON	VTRACT GR	CONTRACT GRADE = PG64-22		- ,				
MATERIAL														
IDENT # 21CDMAC001	21CDMAC002 21	1CDMAC003	21CDMAC001 21CDMAC002 21CDMAC003 21CDMAC004 21CDMAC005 21CDMAC006	CDMAC005 21	1CDMAC006	21CL	DMAC001 2	1CDMAC002 21	1CDMAC003	21CDMAC001 21CDMAC002 21CDMAC003 21CDMAC004 21CDMAC005 21CDMAC006	1CDMAC005	21CDMAC006		COMB.
21008 3/4"	3/8"	3/8"	MAN SAND	RAP 8	SHINGLES		21.0	25.0	10.0	10.0	30.0	4.0		GRAD
1 1/2" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
1" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
3/4" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
1/2" 89.0	100.0	100.0	100.0	100.0	100.0		18.7	25.0	10.0	10.0	30.0	4.0		97.7
3/8" 49.0	100.0	100.0	100.0	99.0	100.0		10.3	25.0	10.0	10.0	29.7	4.0		89.0
#4 6.0	28.0	49.0	92.0	79.0	95.0		1.3	7.0	4.9	9.2	23.7	3.8		49.9
#8 4.0	6.0	10.0	60.0	54.0	85.0		0.8	1.5	1.0	6.0	16.2	3.4		28.9
#16 3.0	4.0	7.0	30.0	41.0	70.0		0.6	1.0	0.7	3.0	12.3	2.8		20.4
#30 3.0	3.0	6.0	17.0	31.0	50.0		0.6	0.8	0.6	1.7	9.3	2.0		15.0
#50 3.0	3.0	5.0	10.0	20.0	45.0		0.6	0.8	0.5	1.0	6.0	1.8		10.7
#100 2.0	3.0	5.0	8.0	15.0	35.0		0.4	0.8	0.5	0.8	4.5	1.4		8.4
#200 2.0	3.0	5.0	6.0	11.0	25.0		0.4	0.8	0.5	0.6	3.3	1.0		6.6
LABORATORY	Gmm =	2.445		% VOIDS =	4.0	TSR =	86	TSR Wt.	/t.			-	MIX COMPOSITION	
CHARACTERISTICS	Gmb =	2.346		V.M.A. =	14.3	-200/AC =	1.5	3700	~	Ndes =	80		MIN. AGG.	94.9%
AASHTO T312	Gsb =	2.599		% FILLED =	72	Gyro Wt. =	4710					VIRGIN A.	VIRGIN ASPHALT CONTENT	2.7%
CALIBRATION NUMBER		XXXXX			MA	MASTER GAUGE BACK CNT. =	XXXX		A1 =	XXXXXX-		ASPHALT CONTENT W/ RAP AND SHINGLES	AP AND SHINGLES	5.1%
MASTER GAUGE SER. NO. =		XXXXX				SAMPLE WEIGHT =	XXXX		A2 =	X.XXXXX				

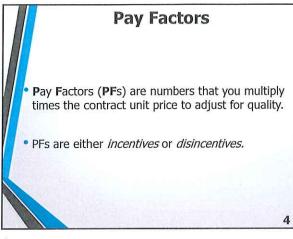

Aggregate & Mixture Properties Based on Contractors Mix Design

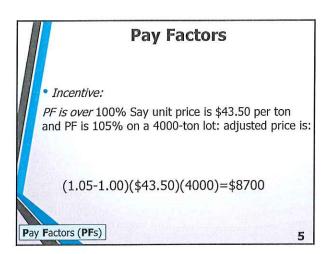

MISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS ASPHALTIC CONCRETE TYPE SP125CLG

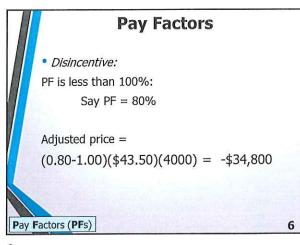

				MISS	OURI DEPAF	MISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS ARPHAINE CONCRETE TYPE SP13501.6	PORTATIO	N - DIVISIO	N OF MA	TERIALS			Job Mix ID SP = SuperPave	
DATE = 03/01/21	Aggregate Information in the mix	te the mix				CONTRACTOR = MY ASP	Aggregate Apparent Specific Gravity	gate scific Gravity	Aggregate % Absorption	ч			21 = year 21 = year 999 = #ID	SP125 21-999
IDENT. PRODUCT CODE		PRODUCER, LOCATION	LOCATION			Aggregate Built Constitut	BULK SP. GR.	APPAR. SP. GR.	ABS	FORMATION		LEDGES	% CHERT	
21CDMAC001 100207LD1		Hard Rock Co.	Hard Rock Co., Little Town, MO	0			2.563	2.693	1.9	SOLID		14	0	
		Hard Rock Co	/Hard Rock Co. , Little Town MO	MO			2.558	2.691	10	SOLID		1.4	0	
21CDMAC003 100204LD1		Hard Rock-Go.	Hard Rock So. Little Town, MO	0			2.568	2.701	1.9	SOLID		13	0	
21CDMAC004 1002MSMSLD		Hard Rock Co.	/ Hard Rock Co., Little Town, MO	0			2.551	2.682		SOLID		ī		
21CDMAC005 1002.RAP1		My Asphalt Pa	/ My Asphalt Paving Co., Our Town, MO	Wn, MQ	RAP = Recycled Asphalt	Asphalt Pavement	2.691	2.691		RAP		4.9% AC	Aggregate	
21CDMAC006 1002SHGL		My Asphalt Pa	/ My Asphalt Paving Co., Our Town, MO	Wm, MO	SHGL = Rec)	SHGL = Recycled Shingles	2.600	2.600		SHINGLES		26.3% AC	Percent Chert from Deleterious testing	rrom esting
											Percent Binder)		
											Oil in RAP 4.9 In Shingles 26.3			
			1011 E 116				T	Binder (AC) Performance Grade	formance Gra					
ZICUMACUUD TU/TAPAS		New Product,	New Product, Inis Town, USA		Binde	Binder (AC) Specific Gravity		f	10.00	CK 10 II	P	U./0% BY WI OF AC	C.	
21CDMAC006 1015ACPG. 4634	+	/ Hot Oil Co., Seaport, LA	eaport, LA				1.035		PG46-34	Gyro Mold Temp 2/0-280*F	2/0-280*F	Mix and r	Mix and molding temp for gyratory compaction	paction
IN-LINE GRADE = PG40-34							CONINACI G	GRADE - PG04-22						
MATERIAL 1	42	3	4	5	9100110000	/	Hannon Contraction	P2	p3	p4	P5	P6		anoo
710	7TCDIMIACUUZ	ICDIMACUUS		CUMARUNA ZICUMARUNA ZICUMARUNA ZICUMARUNI				700040017		5100MM0017	ZICUMMUUU Z	2100MA0000		COMB.
21008 3/4"	3/8"	3/8"	MAN SAND	RAP	SHINGLES		21.0	25.0	10.0	10.0	30:0	4.0		GRAD
1 1/2" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
1" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
3/4" 100.0	100.0	100.0	100.0	100.0	100.0		21.0	25.0	10.0	10.0	30.0	4.0		100.0
1/2" 89.0	100.0	100.0	100.0	100.0	100.0		18.7	25.0	10.0	10.0	30.0	4.0		1.79
ze 3/8" 🛉 49.0	100.0	100.0	100.0	99.0	100.0	Sieve	10.3	25.0	10.0	10.0	29.7	4.0		89.0
is 9	28.0	49.0	92. 0	79.0	86.0	Analysis	1.3	7.0	4.9	9.2	23.7	3.8	Total Aggregate	49.9
8# 8# 0.4	6.0	10.0	60.0	54.0	86.0	On each	0.8	1.5	1.0	6.0	16.2	3.4	Ps A66	28.9
60 #16 3.0 3.0	4.0	7.0	30.0	41.0	70.0	Material	0.6	0.	0.7	3.0	12.3	2.8		20.4
#30 3.0	3.0	0.0	17.0	31.0	50.0		0.6	g	A A	1.	9.3	2.0	_	15.0
#50/ 3.0	3.0	5.0	10.0	20.0	45.0	ISI	TSR Puck	0 Dust fr	15K PUCK Dust to Asohalt Raito = 1.5)= 1.5 1.0	A decision	•		10.7
#100 2.0	3.0	5.0	8.0	15.0	35.0	TSR = Tensile St	TSR = Tensile Strength Raito % = 86	_ <u> </u>	2	87	In-ucsign # of Gyrations = 80		/	= (
V /#200 2.0	3.0	5.0	6.0	11.0	25.0		0.4	8	TSR Gyro w	TSR Gyro weight 4710 grams	~~~~	\neg	UI BINGET 2./%	66
LABORATORY	Gmm =	2.445	6	= SOION %	4.0	TSR =	88	TSR /	ISR WL		-		MIX COMPOSITION)
CHARACTERISTICS	Gmb =	2.346	1	V.M.A. =	14.3	-200/AC =	5 ↓	37	3700 -	Ndes =	8		MIN. AGG.	94.9%
AASHTO T312	Gsb =	2.500	4	% FILLED =	22	Gyro Wt. =	4710	Tensile Strength Raito weight in grams	th Raito weigh	tin grams		N	VIRGIN ASPHALT CONTENT	2.7%
		TSR Puck	F			TCR Duck				TSR Puck	AS	PHALT CONTEN	ASPHALT CONTENT W/ RAP AND SHINGLES	5.1%
Aggregate Nominal Max Size V." or 12 5 mm		Gmm= max gravity = 2.446	_	I III	TSR Puck	% Air Voids 4.0%	TSR Puck	č	% Voids Fill	% Voids Filled with Asphalt = 72%	72%			
				imb= Bulk speci.	Gmb= Bulk specific Gravity= 2.346		% Voids in Mineral Agg. = 14.3	al Agg. = 14.3						
									ĺ	ĺ	ĺ			

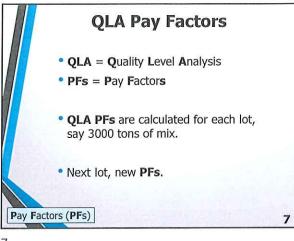

Module 11

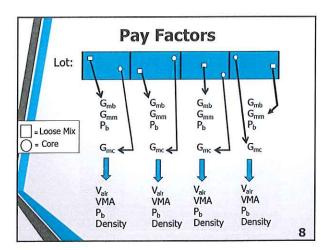
Pay Factors

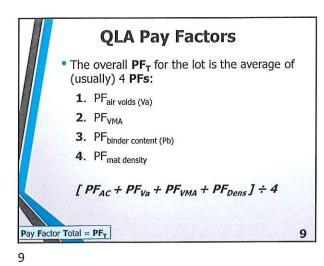


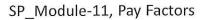


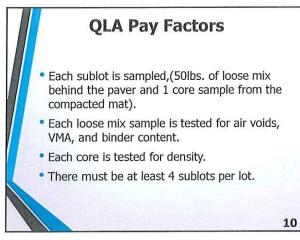


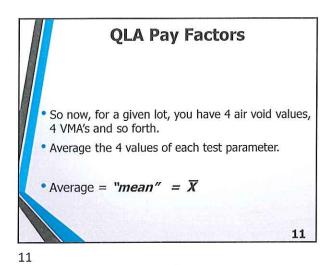


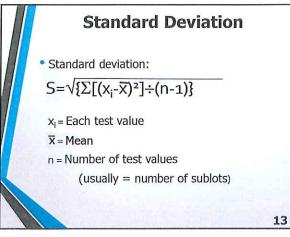

s	pec Limits	
Factor	Spec Limit	
Air voids	4.0 ± 1.0 %	
VMA	-0.5 to +2.0% Applied to min. design VMA: 12.0, 13.0, 14.0	
Binder content	Design ± 0.3 %	
Density Density (SMA)	94.5 ± 2.5 % ≥ 94.0 %	
		3

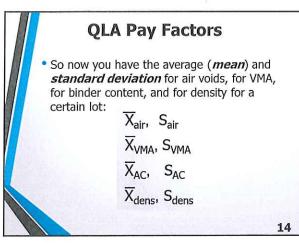


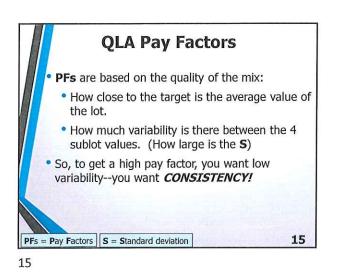


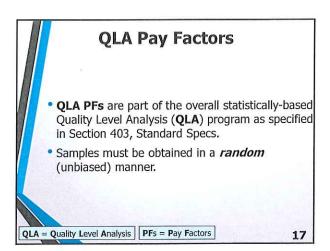


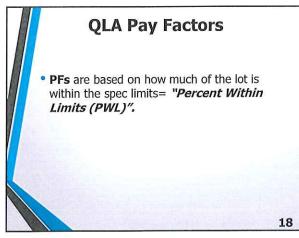


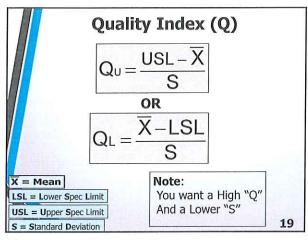


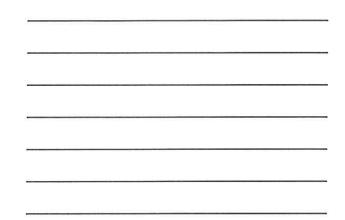


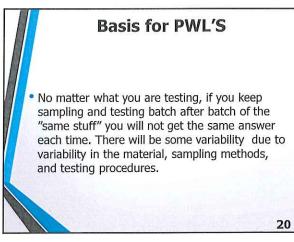


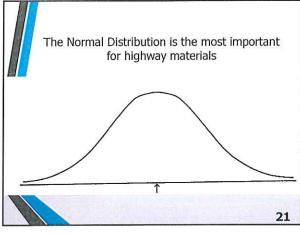

QLA Pay Factors • Calculate the *variability* of the 4 values of each parameter, say, air voids. • The measure of variability is called the *"Standard deviation" (S).*

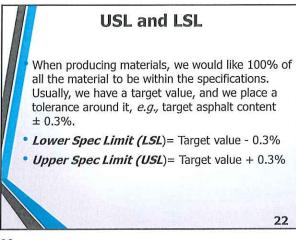


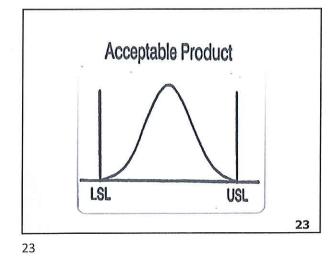


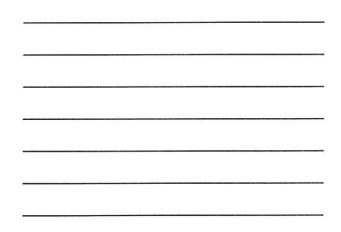


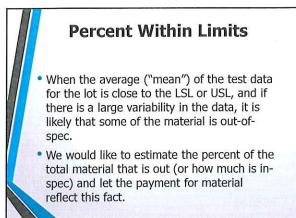


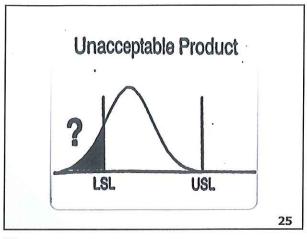


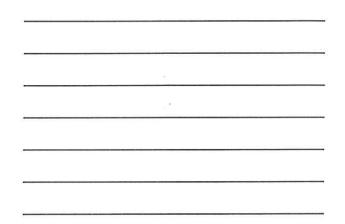


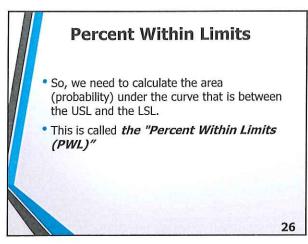


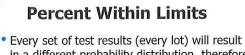


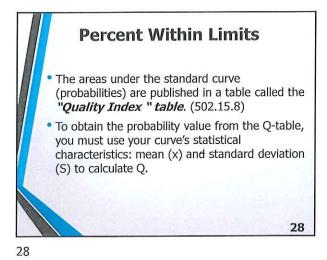


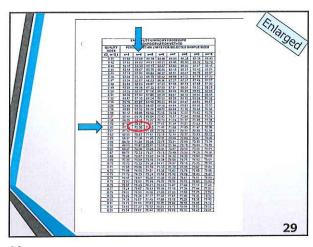


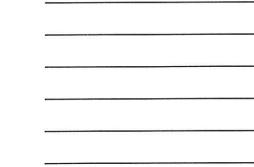


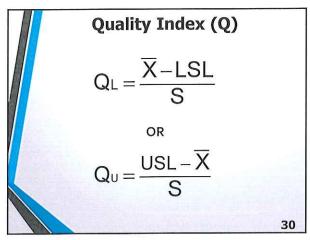




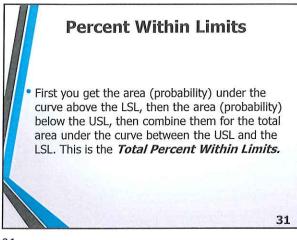


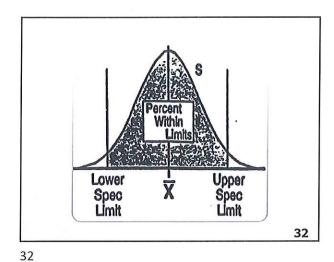

26

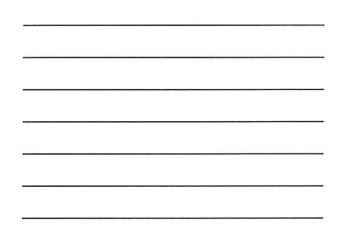


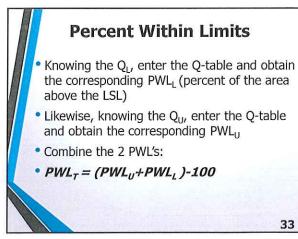

- in a different probability distribution, therefore a different curve.
- It is difficult to calculate the area (probability) under each curve.
- There is a method to convert any curve to a *standard curve*, with various areas under the curve already worked out.

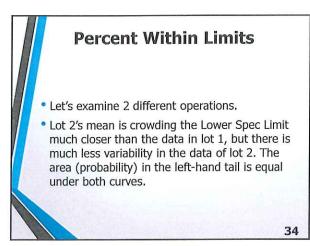
27

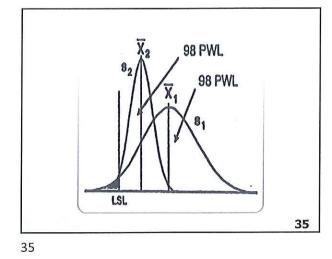


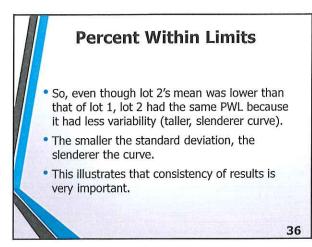


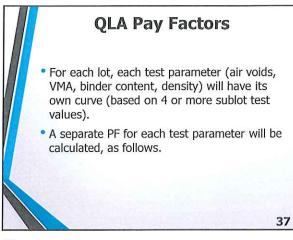


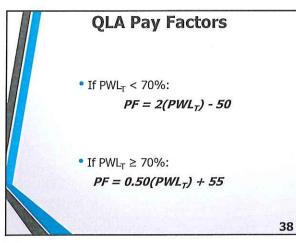

						·			
		V				PROCE			
-	QUALITY INDEX	PER						AMPLE S	IZES
	(Q _u or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10
	0.41	61.56	63.66	64.46	64.86	65.09	65.25	65.36	65.43
	0.42	61.85	64.00	64.81	65.21	65.45	65.60	65.72	65.79
	0.43	62.15	64.33	65.15	65.57	65.80	65.96	66.07	66.15
	0.44	62.44	64.67	65.50	65.92	66.16	66.31	66.43	66.51
	0.45	62.74	65.00	65.84	66.27	66.51	66.67	66.79	66.87
	0.46	63.04	65.33	66.18	66.62	66.86	67.02	67.14	67.22
	0.47	63.34	65.67	66.53	66.96	67.21	67.37	67.49	67.57
	0.48	63.65	66.00	66.87	67.31	67.56	67.73	67.85	67.93
	0.49	63.95	66.34	67.22	67.65	67.91	68.08	68.20	68.28
	0.50	64.25	66.67	67.56	68.00	68.26	68.43	68.55	68.63
	0.51	64.56	67.00	67.90	68.34	68.61	68.78	68.90	68.98
	0.52	64.87	67.33	68.24	68.69	68.95	69.12	69.24	69.32
	0.53	65.18	67.67	68.58	69.03	69.30	69.47	69.59	69.67
	0.54	65.49	68.00	68.92	69.38	69.64	69.81	69.93	70.01
	0.55	65.80	68.33	69.26	69.72	69.99	70.16	70.28	70.36
	0.56	66.12	68.66	69.60	70.06	70.33	70.50	70.62	70.70
	0.57	66.44	69.00	69.94	70.40	70.67	70.84	70.96	71.04
N	0.58	66.75	69.33	70.27	70.73	71.00	71.17	71.29	71.38
	0.59	67.07	69.67	70.61	71.07	71.34	71.51	71.63	71.72
	0.60	67.39	70.00	70 95	71.41	71.68	71.85	71.97	72.06
	0.61	67.72	70.33	71.28	71.74	72.01	72.11	72.30	72.39
	0.62	68.05	70.67	71.61	72.08	72.34	72.37	72.63	72.72
	0.63	68.37	71.00	71.95	72.41	72.68	72.63	72.97	73.06
	0.64	68.70	71.34	72.28	72.75	73.01	72.89	73.30	73.39
	0.65	69.03	71.67	72.61	73.08	73.34	73.15	73.63	73.72
	0.66	69.37	72.00	72.94	73.41	73.67	73.55	73.95	74.04
	0.67	69.71	72.33	73.27	73.73	73.99	73.95	74.28	74.36
	0.68	70.05	72.67	73.60	74.06	74.32	74.35	74.60	74.69
	0.69	70.39	73.00	73.93	74.38	74.64	74.75	74.93	75.01
	0.70	70.73	73.33	74.26	74.71	74.97	75.15	75.25	75.33
	0.71	71.08		74.59		75.29	75.46	75.57	75.64
	0.72	71.44	74.00	74.91	75.35	75.61	75.78	75.88	75.96
	0.73	71.79	74.33	75.24	75.68	75.92	76.09	76.20	76.27
	0.74	72.15	74.67	75.56	76.00	76.24	76.41	76.51	76.59
3	0.75	72.50	75.00	75.89	76.32	76.56	76.72	76.83	76.90
	0.76	72.87	75.33	76.21	76.63	76.87	77.03	77.14	77.21
	0.77	73.24	75.67	76.53	76.95	77.18	77.34	77.44	77.51
	0.78	73.62	76.00	76.85	77.26	77.50	77.64	77.75	77.82
	0.79	73.99	76.34	77.17	77.58	77.81	77.95	78.05	78.12
	0.80	74.36	76.67	77.49	77.89	78.12	78.26	78.36	78.43
	0.81	74.75	77.00	77.81	78.20	78.42	78.56	78.66	78.72
	0.82	75.15	77.33	78.12	78.51	78.72	78.86	78.95	79.02
	0.83	75.54	77.67	78.44	78.81	79.03	79.16	79.25	79.31

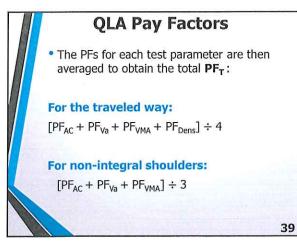


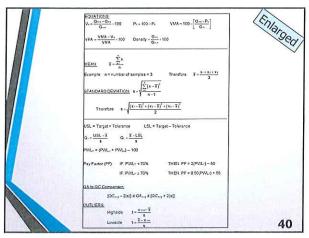


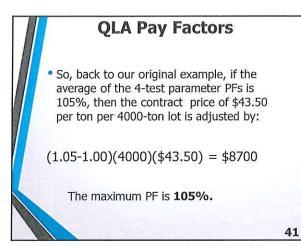


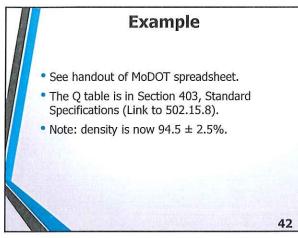


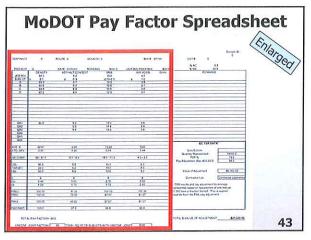


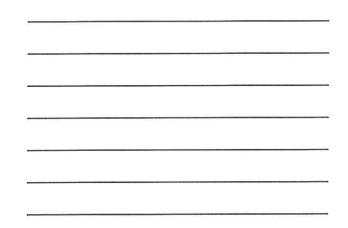


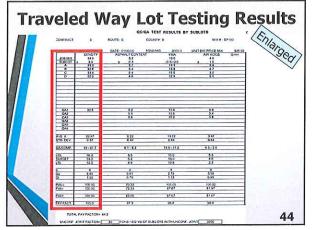


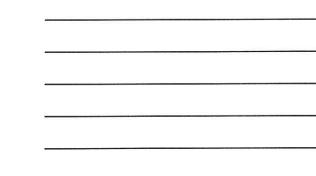


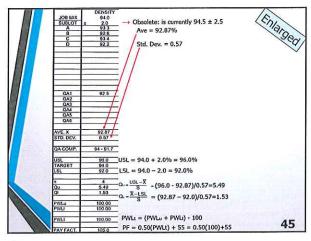




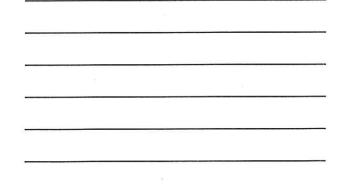



EQUATIONS:


$$V_a = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100$$
 $P_s = 100 - P_b$ $VMA = 100 - \left[\frac{G_{mb} \times P_s}{G_{ab}}\right]$ $VFA = \frac{VMA - V_a}{VMA} \times 100$ Density = $\frac{G_{mc}}{G_{mm}} \times 100$ MEAN: $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ Example: n = number of samples = 3Therefore: $\overline{x} = \frac{x_1 + x_2 + x_3}{3}$ STANDARD DEVIATION: $s = \sqrt{\frac{\left(\sum_{i=1}^{n} (x_i - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})\right)^2}{n-1}}$ USL = Target + ToleranceLSL = Target - Tolerance $Q_U = \frac{USL - \overline{x}}{s}$ $Q_L = \frac{\overline{x} - LSL}{s}$ PWL_T = (PWL_U + PWL_L) - 100THEN: PF = 2(PWL_T) - 50
IF: PWL_T > 70%Pay Factor (PF):IF: PWL_T < 70%
IF: PWL_T > 70%QA to QC Comparison:
[QC_{avg} - 2(s)] ≤ QA_{avg} ≤ [QC_{avg} + 2(s)]OUTLIERS:


Highside:
$$t = \frac{x_{max} - \overline{x}}{s}$$

Lowside: $t = \frac{\overline{x} - x_{min}}{s}$



MoDOT Pay Factor Spreadsheet

Sample ID 0 CONTRACT: 0 ROUTE: 0 COUNTY: 0 MIX #: SP190 LOT #: 5 % AC 52 PROJECT DATE: 01/00/00 TONS/MG 3000.0 UNIT BID PRICE MIX \$45.0 % MA 94.8 ASPHALT CONTENT DENSITY REMARKS VMA AIR VOIDS Gmm JOB MIX 94.0 5.2 13.0 4.0 2.0 SUBLOT 0.3 -0.5/+2.0 13.3 1.0 в 92.6 5.2 13.8 3.7 93.4 5.4 13.5 3.0 92.2 4.6 12.3 3.1 QA1 92.5 13.0 3.8 5.2 QA2 QA3 5.5 13.8 3.4 5.6 13.0 38 QA4 QA5 QA6 QC TSR DATA* AVE. X 92.87 5.22 13.22 3.42 STD. DEV. 0.57 0.46 0.44 Lots/Sublots 0.64 10000.0 Quantity Represented QA COMP. 94 - 91.7 6.1 - 4.3 14.5 - 11.9 4.3 - 2.5 TSR % 72.0 Pay Adjustment (Sec 403.23.5) 98.0 15.0 96.0 5.5 5.0 TARGET 94.0 5.2 13.0 4.0 LSL 92.0 4.9 12.5 3.0 Value of Adjustment -\$9,000.00 Contractor Laboratory 4 4 4 Contractor Lab Qu 5.49 0.61 2.78 3.59 0.95 1.53 0.70 1.13 TSR results and pay adjustment for tonnage presented based on requirement of one test per PWLu 100.00 70.33 100.00 100.00 10,000 tons or fraction thereof. This is applied PWLI 100.00 73.33 eparate from the PWL pay adjustment. 87.67 81.67 43.66 PWLt 100.00 87.67 81.67 PAY FACT. 105.0 37.3 95.8 98.8 TOTAL PAY FACTOR= 84.2 TOTAL \$ VALUE OF ADJUSTMENT -\$21,330.00 UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

MoDOT

Module 11

MoDOT Pay Factor Spread sheet

Pay Factor 5.01 7/6/200

Traveled Way Lot Testing Results

QC/QA TEST RESULTS BY SUBLOTS

CONTRACT	: 0	ROUTE: 0	COUNTY: 0	MIX # : S	P190
PROJECT	: 0	DATE: 01/00/00	TONS/MG 3000.0	0 UNIT BID PRICE MIX	\$45.00
	DENSITY	ASPHALT CONTI		AIR VOIDS	Gmm
JOB MIX	94.0	5.2	13.0	4.0	
SUBLOT	± 2.0	± 0.3	-0.5/+2.0	± 1.0	
А	93.3	5.7	13.3	3.9	and the second
В	92.6	5.2	13.8	3.7	
С	93.4	5.4	13.5	3.0	
D	92.2	4.6	12.3	3.1	
QA1	92.5	5.2	13.0	3.8	
QA2		5.5	13.8	3.4	
QA3		5.6	13.0	3.8	
QA4					
QA5					
QA6					
AVE. X	92.87	5.22	13.22	3.42	
STD. DEV.	0.57	0.46	0.64	0.44	
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5	
JSL	96.0	5.5	15.0	5.0	
FARGET	94.0	5.2	13.0	4.0	
_SL	92.0	4.9	12.5	3.0	
า	4	4	4	4	
Qu	5.49	0.61	2.78	3.59	
וב	1.53	0.70	1.13	0.95	
PWLu	100.00	70.33	100.00	100.00	
PWLI	100.00	73.33	87.67	81.67	
PWLt	100.00	43.66	87.67	81.67	
PAY FACT.	105.0	37.3	98.8	95.8	

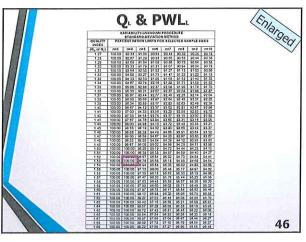
TOTAL PAY FACTOR= 84.2

UNCONF. JOINT FACTOR= 90 TONS / SQ YD OF SUBLOTS WITH UNCONF. JOINT 3000

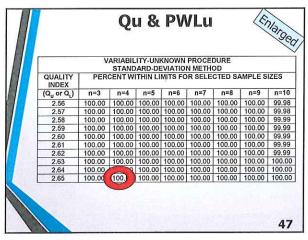
Superpave

Traveled Way Lot Testing Results

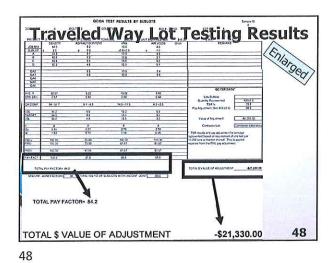
JOB MIX SUBLOT A B C D	$\begin{array}{c} \begin{array}{c} \text{DENSITY} \\ 94.0 \\ \pm & 2.0 \\ \hline 93.3 \\ 92.6 \\ 93.4 \\ \hline 92.2 \\ \hline \end{array} \end{array} \rightarrow Obsolete: is currently 94.5 \pm 2.5 \\ \text{Ave} = 92.87\% \\ \text{Std. Dev.} = 0.57 \\ \hline \end{array}$
QA1 QA2 QA3 QA4 QA5 QA6 AVE. X STD. DEV.	92.5 92.87 92.87 0.57
QA COMP.	94 - 91.7
USL TARGET LSL	96.0USL = $94.0 + 2.0\% = 96.0\%$ 94.092.0LSL = $94.0 - 2.0 = 92.0\%$
n Qu Ql PWLu PWLI	$\frac{4}{5.49} Q_{U} = \frac{USL - \overline{X}}{S} = (96.0 - 92.87)/0.57 = 5.49$ $\frac{1.53}{Q_{L}} Q_{L} = \frac{\overline{X} - LSL}{S} = (92.87 - 92.0)/0.57 = 1.53$ $\frac{100.00}{100.00}$
PWLt	$\frac{100.00}{100.00} PWLt = (PWLu + PWLl) - 100$
PAY FACT.	105.0 PF = 0.50(PWL+) + 55 = 0.50(100)+55


Superpave

Q. & PWLL


	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD QUALITY PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES									
QUALITY INDEX	PER	CENT WI	THIN LI	MITS FO	RSELE	CTED SA	MPLE S	IZES		
$(\mathbf{Q}_{\mathrm{U}} \text{ or } \mathbf{Q}_{\mathrm{L}})$	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10		
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19		
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38		
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58		
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78		
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96		
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15		
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33		
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52		
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70		
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87		
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04		
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22		
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39		
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56		
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72		
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88		
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05		
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21		
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37		
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52		
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67		
1.48	100.00	99.33	95.80	94.84	94.39	94.12	93.95	93.83		
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98		
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13		
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27		
1.52	100.00	100.00	P 6.57	95.51	95.02	94.73	94.54	94.41		
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54		
1.54	100.00	100.00	6.94	95.84	95.33	95.02	94.83	94.68		
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82		
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95		
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08		
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20		
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33		
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46		
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58		
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70		
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81		
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93		
1.65	100.00	100.00	98.72	97.42	96.81	96.45	96.22	96.05		
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16		
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27		
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37		
1.69	100.00	100.00	99.22	97.90	97.27	96.90	96.65	96.48		

Qu & PWLu


	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD										
QUALITY INDEX	PERC	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES									
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10			
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98			
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98			
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99			
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99			
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99			
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99			
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99			
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00			
2.64	100.00	2	100.00	100.00	100.00	100.00	100.00	100.00			
2.65	100.00	100.)	100.00	100.00	100.00	100.00	100.00	100.00			
		100.									

Traveled Way Lot Testing Results

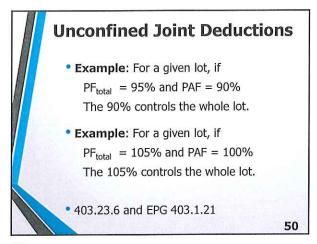
Pay Factor 5.01 7/6/200

		QC/	QA TEST RESULTS B	Y SUBLOTS			Sample ID 0
NTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : S	P190	LOT # : 5	
ROJECT:	0	DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45.00	% AC 5. % MA 94.	
	DENSITY	ASPHALT CONTEN		AIR VOIDS	Gmm	REMARKS	
OB MIX	94.0	5.2	13.0	4.0			
A BLOT	± 2.0 93.3	± 0.3 5.7	-0.5/+2.0 13.3	± 1.0 3.9			
B	92.6	5.2	13.8	3.7			
С	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
QA1 QA2	92.5	5.2 5.5	13.0 13.8	3.8 3.4			
QA2 QA3		5.6	13.8	3.4			
QA4		0.0	10.0	0.0	The second		
QA5							9
QA6							
E. X	92.87	5.22	13.22	3.42		QC TSR DAT	A*
D. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
				0.11		Quantity Represented	10000.0
COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
	96.0		15.0	E 0		Pay Adjustment (Sec 403.23.5)	98.0
RGET	94.0	5.5	15.0 13.0	5.0			
-	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
	4	4	4	4		Contractor Lab	Contractor Laboratory
	5.49 1.53	0.61	2.78	3.59 0.95		* TSR results and pay adjustment for	or toppage
	1.00	0.70	1.10	0.85		represented based on requirement of	
VLu	100.00	70.33	100.00	100.00		10,000 tons or fraction thereof. This	
VLI	100.00	73.33	87.67	81.67		separate from the PWL pay adjustme	ent.
/Lt	100.00	43.66	87.67	81.67			
8			0.10.	01101			
Y FACT.	105.0	37.3	98.8	95.8	_		
	PAY FACTOR=					TOTAL \$ VALUE OF ADJUSTMEN	T\$21,330.00
UNCONF. J	IOINT FACTOR=[90 TONS / SQ YD	OF SUBLOTS WITH UNCON	F. JOINT 3000			
тот	AL PAY F	ACTOR= 84.2					
	TAI 0	VALUE	OF ADJ	ICTMEN	IT	6	521,330.

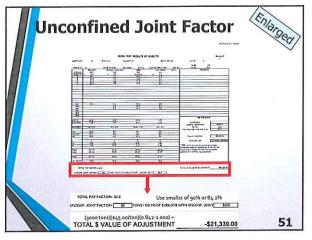
Superpave

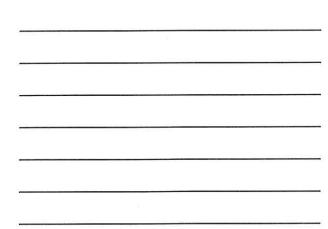
Module 11

trveled Way Lot Results adjustment



Unconfined Joint Deductions

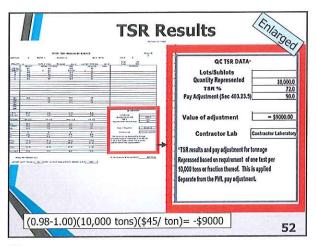

- Pay reduction applied to full width of lane for a given lot.
- The lowest adjustment factor (PF_{total} or the PAF for average unconfined joint density) will apply to the lot.
- Exception: If the PAF = 100% and the PF_{total} is over 100 (use the PF_{total})
- PF_{total} includes PFs for binder content, air voids, VMA, and density)

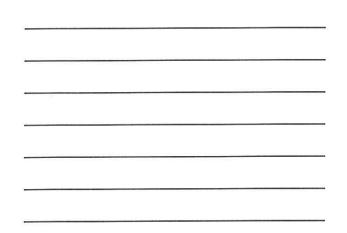

49

49

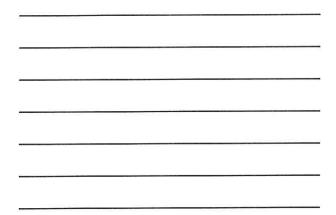
50

Unconfined Joint Factor


Pay Factor 5.01 7/6/200


		QC	QA TEST RESULTS B	Y SUBLOTS			Sample ID
ONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : SP	190	LOT # : 5	0
PROJECT:	0	DATE: 01/00/00	TONS/MG 3000.0	UNIT BID PRICE MIX	\$45.00	% AC 5 % MA 94	.2
	DENSITY	ASPHALT CONTE		AIR VOIDS	Gmm	REMARKS	
JOB MIX	94.0	5.2	13.0	4.0			
SUBLOT A	± 2.0 93.3	± 0.3 5.7	-0.5/+2.0 13.3	± 1.0 3.9			
B	92.6	5.2	13.8	3.9			
С	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
QA1	92.5	5.2	13.0	3.8			
QA2		5.5	13.8	3.4			
QA3 QA4		5.6	13.0	3.8			
QA4 QA5				1 Prove			
QA6				122			
					Ì	QC TSR DAT	A*
AVE. X	92.87	5.22	13.22	3.42			
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
						Pay Adjustment (Sec 403.23.5)	98.0
JSL	96.0	5.5	15.0	5.0			
TARGET	94.0	5.2	13.0	4.0		Malar of the stand	00.000.00
SL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
	4	4	4	4		Contractor Lab	Contractor Laboratory
Qu	5.49	0.61	2.78	3.59			
21	1.53	0.70	1.13	0.95		* TSR results and pay adjustment for	
WLu	100.00	70.33	100.00	100.00		represented based on requirement of 10,000 tons or fraction thereof. This	
PWLI	100.00	73.33	87.67	81.67		separate from the PWL pay adjustm	
PWLt	100.00	43.66	87.67	81.67			
PAY FACT.	105.0	37.3	98.8	95.8			
	AL PAY FACTOR= . JOINT FACTOR=		OF SUBLOTS WITH UNCON	F. JOINT 3000		TOTAL \$ VALUE OF ADJUSTMEN	T -\$21,330.00
то	TAL PAY F	ACTOR= 84.2	•	Use s	mall	er of 90% (or 84.2%
NCON	F. JOINT F	ACTOR=	90 TONS / 5	SQ YD OF SUBL	LOTS V	WITH UNCONF. JO	INT 3000
		$\lambda + 2 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	1500/+01	MO 842	1 00	0) =	
то	(3000)						104 220
то			OF ADJ				\$21,330.

Superpave


Module 11

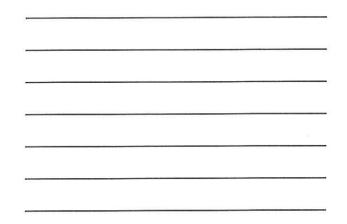
Unconfined Joint Factor

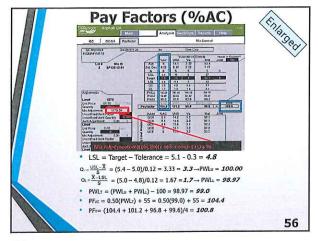
TSR	% of Contract price
≥90	103
75-89	100
70-74	98
65-69	97
<65	Remove

TSR Results

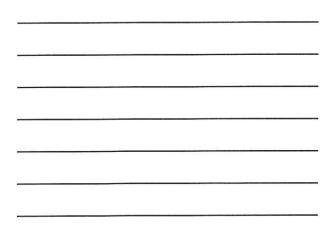
		QC	QA TEST RESULTS BY			Sample ID	
CONTRACT:	0	ROUTE: 0	COUNTY: 0	MIX # : S	P190	LOT # : 5	
PROJECT:	0	DATE: 01/00/00	TONEMO			% AC 5.2	
PROJECT	DENSITY	ASPHALT CONTE	TONS/MG 3000.0	UNIT BID PRICE MIX AIR VOIDS	\$45.00	% MA 94.8	3
JOB MIX	94.0	5.2	13.0		Gmm	REMARKS	
	± 2.0	± 0.3	-0.5/+2.0	4.0 ± 1.0			
A	93.3	5.7	13.3	± 1.0 3.9			
В	92.6	5.2	13.8	3.7			
С	93.4	5.4	13.5	3.0			
D	92.2	4.6	12.3	3.1			
			105037年5月21日3月				
				Linh Constant			
				Elle La Contra			
	G. H. H. H. H. H.						
			NO. AN INTERNET				
			中17月3日的1月1日2月		and the second second		
QA1	92.5	5.2	13.0	3.8			
QA2 QA3		5.5	13.8	3.4			
QA3 QA4		5.6	13.0	3.8			
QA4 QA5				0.00			
QA6							
0/10					CONTRACTOR OF		
AVE. X	92.87	5.22	13.22	3.42		QC TSR DATA	
STD. DEV.	0.57	0.46	0.64	0.44		Lots/Sublots	
OTD. DEV.	0.07	0.40	0.04	0.44		Quantity Represented	10000.0
QA COMP.	94 - 91.7	6.1 - 4.3	14.5 - 11.9	4.3 - 2.5		TSR %	72.0
ar comin.	34-31.7	0.1-4.5	14.5 - 11.9	4.5 - 2.5		Pay Adjustment (Sec 403.23.5)	98.0
USL	96.0	5.5	15.0	5.0		Fay Aujustment (Sec 403.23.5)	90.0
TARGET	94.0	5.2	13.0	4.0			
LSL	92.0	4.9	12.5	3.0		Value of Adjustment	-\$9,000.00
				0.0		tales of rigidimon	40,000.00
n	4	4	4	4		Contractor Lab	Contractor Laborato
Qu	5.49	0.61	2.78	3.59			
QI	1.53	0.70	1.13	0.95		TSR results and pay adjustment for	
						epresented based on requirement of	one test per
PWLu	100.00	70.33	100.00	100.00		0,000 tons or fraction thereof. This i	
PWLI	100.00	73.33	87.67	81.67		eparate from the PWL pay adjustme	nt.
PWLt	100.00	43.66	87.67	81.67			
DAVENCE	105.0	07.0	00.0				
PAY FACT.	105.0	37.3	98.8	95.8	1		

(0.98-1.00)(10,000 tons)(\$45/ ton)= -\$9000


TOTAL PAY FACTOR= 84.2

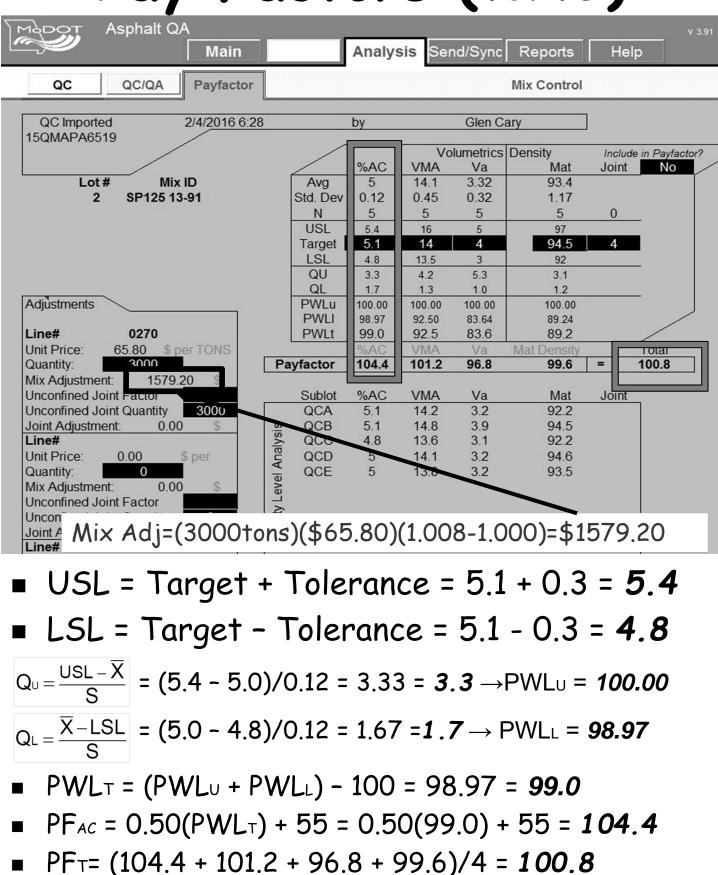

UNCONF. JOINT FACTOR= 90

TONS / S

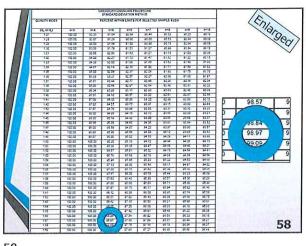

Pay Factor 5.01 7/6/200

Mapor Asphalt QA	Main	Quant	tity An	alvsis	Send Sync R	ecorts	Help
OC QCIQA	mall	Letanu		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Contraction of the local division of the loc	Control	
QC Imported 2	42016628		by		Gien Cary_		
		1	/olumetric	s	Density	QC Info	Use in
QCLd#	Sublot	%AC		Va	Mat Joint	Only	Paylactor?
2	QCA	5.1	142	32	922	No	Yes
	QCB	51	14.8	39	94.5	No	Yes
Sample Records Imported	000	48	136	31	922	No	Yes
150MAPA6519	QCD QCE	5	14.1 13.8	32	94.6 93.5	No No	Yes Yes
Average	VUC	5.0	14.1	1.000	93.4		
-				10-000			
 Std Deviation 		0.12	0.45	0.32	1.17		

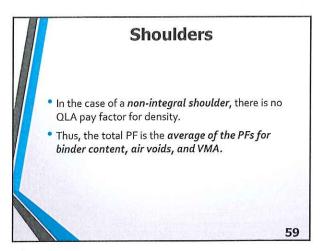
QUALITY INDEX		PERCENT	WITHIN	LE SIZES	arged			
(Qu or QL)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
- 3	.3 —	10		h				57


"Asphalt QA" / Analysis / QC

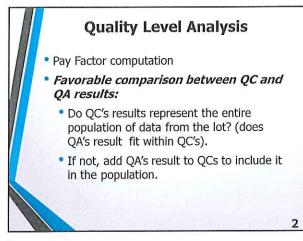
Modot Asphalt Q	A Main	Quant	ity Ana	alysis	Send/Sy	nc Re	ports	Help
QC QCIQA						Mix (Control	
QC Imported	2/4/2016 6:28		by		Gle	n Cary		
		٧	olumetrics	;	Density	r i	QC Info	Use in
QC Lot #	Sublot	%AC	VMA	Va	Mat	Joint	Only	Payfactor?
2	QCA	5.1	14.2	3.2	92.2		No	Yes
	QCB	5.1	14.8	3.9	94.5		No	Yes
Sample Records Imported:	QCC	4.8	13.6	3.1	92.2		No	Yes
	QCD	5	14.1	3.2	94.6		No	Yes
15QMAPA6519	QCE	5	13.8	3.2	93.5		No	Yes
Average		5.0	14.1	3.3	93.4			
Std Deviation		0.12	0.45	0.32	1.17			
			l		I			
• N = 5 (all Q	C)							


	VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD							
QUALITY INDEX	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES							
$(Q_U \text{ or } Q_L)$	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10
2.56	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98
2.57	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.98
2.58	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.59	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99
2.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

■ 3.3 → 100.00


Pay Factors (%AC)

Module 11


VARIABILITY-UNKNOWN PROCEDURE STANDARD-DEVIATION METHOD									
QUALITY INDEX	PERCENT WITHIN LIMITS FOR SELECTED SAMPLE SIZES								
(Q _U or Q _L)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
1.27	100.00	92.33	91.04	90.64	90.44	90.32	90.25	90.19	
1.28	100.00	92.67	91.29	90.86	90.65	90.53	90.44	90.38	
1.29	100.00	93.00	91.54	91.09	90.86	90.73	90.64	90.58	
1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78	
1.31	100.00	93.66	92.03	91.52	91.27	91.13	91.03	90.96	
1.32	100.00	94.00	92.27	91.73	91.47	91.32	91.22	91.15	
1.33	100.00	94.33	92.50	91.95	91.68	91.52	91.40	91.33	
1.34	100.00	94.67	92.74	92.16	91.88	91.71	91.59	91.52	
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70	
1.36	100.00	95.33	93.21	92.57	92.27	92.08	91.96	91.87	
1.37	100.00	95.67	93.44	92.77	92.46	92.26	92.14	92.04	
1.38	100.00	96.00	93.66	92.97	92.64	92.45	92.31	92.22	
1.39	100.00	96.34	93.89	93.17	92.83	92.63	92.49	92.39	
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56	
1.41	100.00	97.00	94.33	93.56	93.20	92.98	92.83	92.72	
1.42	100.00	97.33	94.55	93.75	93.37	93.15	93.00	92.88	
1.43	100.00	97.67	94.76	93.94	93.55	93.31	93.16	93.05	
1.44	100.00	98.00	94.98	94.13	93.72	93.48	93.33	93.21	
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37	
1.46	100.00	98.66	95.39	94.49	94.06	93.81	93.64	93.52	
1.47	100.00	99.00	95.59	94.67	94.23	93.97	93.80	93.67	
1.48	100.00	99.33	95.80	94.84	94.39	94.12	93.95	93.83	
1.49	100.00	99.67	96.00	95.02	94.56	94.28	94.11	93.98	
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13	
1.51	100.00	100.00	96.39	95.35	94.87	94.59	94.40	94.27	
1.52	100.00	100.00	96.57	95.51	95.02	94.73	94.54	94.41	
1.53	100.00	100.00	96.76	95.68	95.18	94.88	94.69	94.54	
1.54	100.00	100.00	96.94	95.84	95.33	95.02	94.83	94.68	
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82	
1.56	100.00	100.00	97.30	96.15	95.62	95.30	95.10	94.95	
1.57	100.00	100.00	97.47	96.30	95.76	95.44	95.23	95.08	
1.58	100.00	100.00	97.63	96.45	95.89	95.57	95.36	95.20	
1.59	100.00	100.00	97.80	96.60	96.03	95.71	95.49	95.33	
1.60	100.00	100.00	97.97	96.75	96.17	95.84	95.62	95.46	
1.61	100.00	100.00	98.12	96.88	96.30	95.96	95.74	95.58	
1.62	100.00	100.00	98.27	97.02	96.43	96.08	95.86	95.70	
1.63	100.00	100.00	98.42	97.15	96.55	96.21	95.98	95.81	
1.64	100.00	100.00	98.57	97.29	96.68	96.33	96.10	95.93	
1.65	100.00	100.00		97.42	96.81	96.45	96.22	96.05	
1.66	100.00	100.00	98.84	97.54	96.92	96.56	96.33	96.16	
1.67	100.00	100.00	98.97	97.66	97.04	96.67	96.44	96.27	
1.68	100.00	100.00	99.09	97.78	97.15	96.79	96.54	96.37	
1.69	100.00	100.00		97.90	97.27	96.90	96.65	96.48	

Module 12

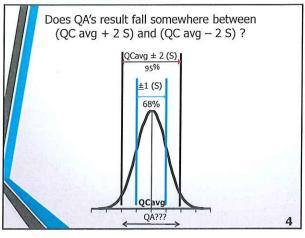
Quality Level Analysis (QLA)

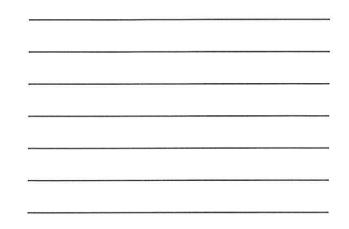
2

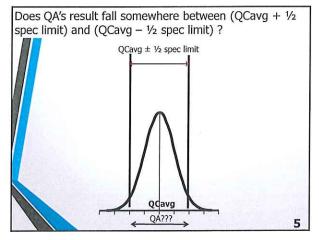
Quality Level Analysis Comparison of QA to QC

• Comparison of hotmix QA results to QC results:

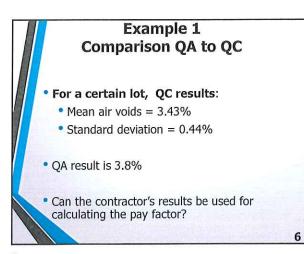
To consider the QC data to be valid (worthwhile), the QA result must be within 2 standard deviations of the QC mean (\overline{QC}) for a lot:


 $[\overline{QC}-2(S)] \le QA \le [\overline{QC}+2(S)]$

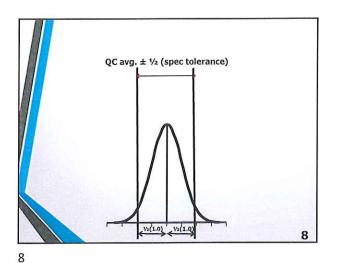

Or

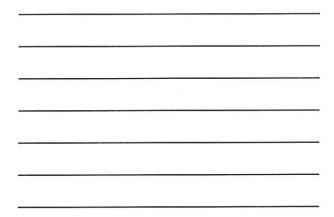

Within V_2 of the specification tolerance, whichever is greater.

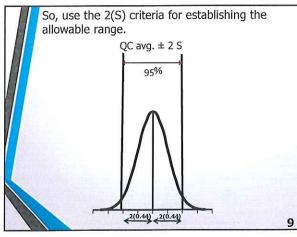
This applies to air voids(Va), VMA, %AC, and mat density.


3

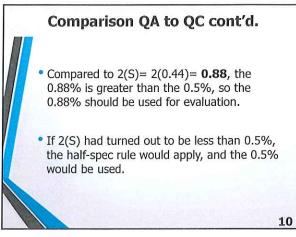
First, should you use **2 (S)** or 1/2 **the spec.** tolerance to establish the acceptable range??

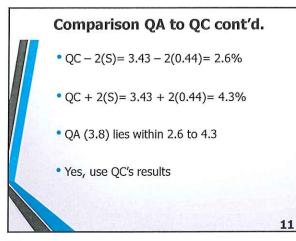

• Allowable range is -1.0% to + 1.0%, so the spec tolerance is 1.0%.

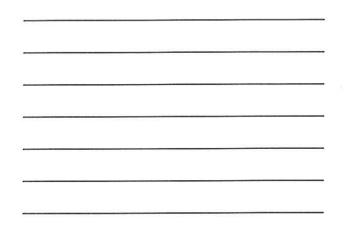

7

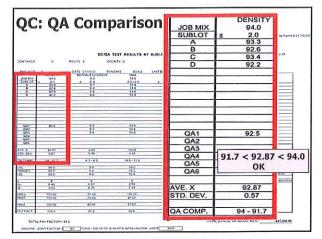

• Half of this is 0.5%.

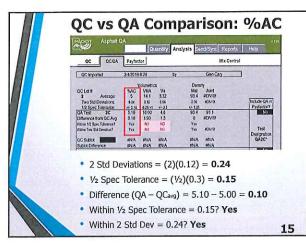
On the other hand:


• 2(S) = 2(0.44) = **0.88**

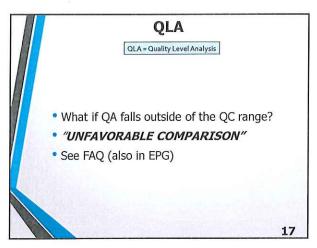








На	EPG 403.1.21	
Parameter	Spec Tolerance (%)	1/2 Spec Tolerance (%)
Air Voids (Va)	1.0	0.5
Binder Content (Pb)	0.3	0.15
Mat Density	2.5	1.25
VMA	-0.5 to 2.0 = 2.5 (1.25 each "side")	0.6


TSR - favorable comparison is when QA and QC are within 10% of each other.

If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.

If difference is >10%, initiate dispute resolution. QC and QA retained samples should be kept for extended periods.

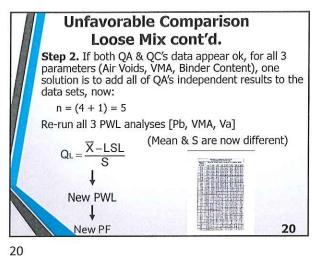
16

16

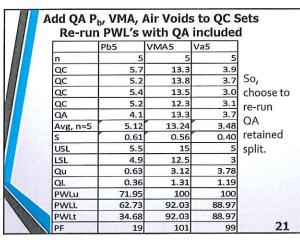
17

	ole: QA First Co			-
Example 1- QA Pb.x	ls		Initial QA	results:
			РЬ	4.1
			Gmm	2.472
Initial Comparison:			Gmb	2.381
Target Pb=	5.2		Gsb	2.634
QC	5.7		Va	3.7
"	5.2		VMA	13.3
	5.4			
0	5.2			
QC avg	5.38			
QCS	0.24			
Range, lower	4.90	QCavg -	2 (0.24)	
Range,upper	5.85	OCave +	2 (0.24)	
QA	4.1	2252	120	
Fit?	no			
	unfavorab	le		18

18



Unfavorable Comparison: Case: QA Binder Content (Pb)


Step 1. Check both QC & QA data & calculations, re-weigh pucks, Rice specimens, check spreadsheet cell formulas, ______

		functions file: 153 Mm Preserves Goo DFs Specimer ID:	Cate) 1/21/11 71881 14125 Techniciaty
	The second	1-1 0 1 2 3 4 0 0 7	
All and the		9 114.7 111.7 179.7 17.2 101.7 172.8 102.4 101.7 15 1 12.4 14 8 13.7 17.5 17.5 17.1 15.7 15.7	
and and a second		20 15.5 15.2 15.6 15.8 16.5	antesinte A
	1000	EXECT-	
		1112 8	
	25-14	82 T	
	1		
	()	With any	
			19

Unfavorable Comparison Loose Mix cont'd.

Step 3a. Or could jointly test a retained loose mix sample (QA or QC on suspect sublot):

Run whole suite of tests (G_{mm}, G_{mb}, P_b)

22

Unfavorable Comparison Loose Mix cont'd. • Favorable comparisons between loose mix splits (original vs. retained) is defined as:

- G_{mm}: within 0.005
- G_{mb}: within 0.010
- P_b: within 0.1%

• If this step verifies that all 3 *original test results are valid*, keep using the original results.

e valia, keep using ui

Step 3a:	QA		
	Retained	Original:	Close?
Pb	4.1	4.1	yes
Gmm	2.475	2.472	yes
Gmh	2 388	2 381	Ves

23

Unfavorable Comparison Loose Mix cont'd.

• Add QA's independent results to the 3 data sets (Pb, VMA, Va), now n = (4 + 1) = 5

• Re-run all 3 PWL analyses.

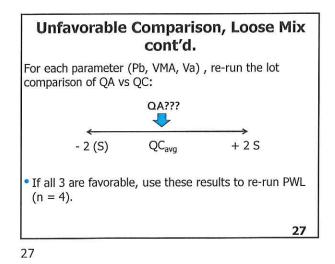
(This is shown in Step 2, previous slide 22)

$$Q_L = \frac{\overline{X} - LSL}{S}$$

24

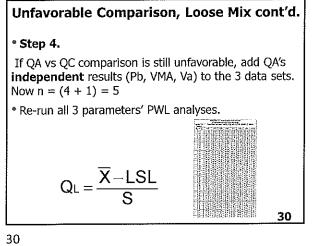
23

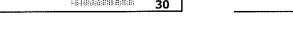
Unfavorable Comparison Loose Mix cont'd.

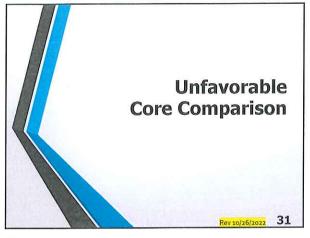

Step 3b. Alternate outcome of Step 3a. If running the retained loose mix split shows the original to be invalid, substitute all results (Pb, Gmm, Gmb) from the retained split. Re-calculate Va and VMA.

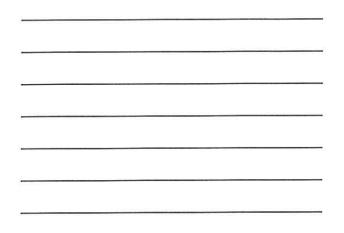
Now you have new QA test values for each parameter (air voids, VMA, binder content).

25

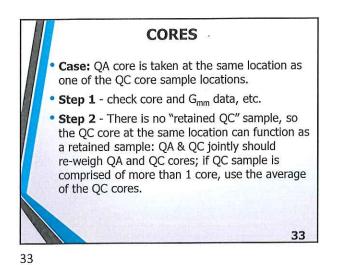

Step 3b:	QA		
	Retained	Original:	Close
Pb	5.3	4.1	no
Gmm	2.475	2.472	yes
Gmb	2.388	2.381	yes
Va	3.5	3.7	
VMA	14.1	13.3	

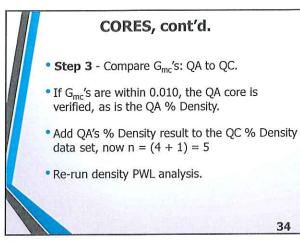


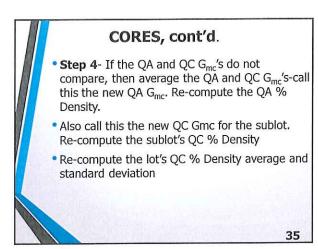



Con	Comparison Using QA Retained Sample Values						
		Pb	VMA	Va]		
ĺ	QC	5.7	13.3	3.9			
	QC	5.2	13.8	3.7			
	QC	5.4	13.5	3.0]		
	QC	5.2	12,3	3,1			
	QC avg	5.38	13.2	3.4			
	S	0.24	0.65	0.44			
	Range,lower	4.90	11.93	2.54			
	Range,upper	5.85	14.53	4.31			
	Retained QA	5.3	14,1	3.5			
	Fit?	yes	yes	yes			
		favorable	favorable	favorable	28		

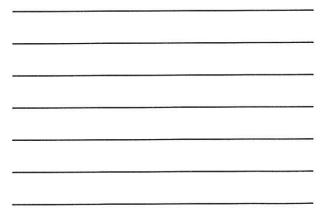
If All 3 Are Favorable, Use These Results to						
		<u>Re-run l</u>				
(n = 4)		Pb	VMA	Va		
	n	4	4	4		
	QC	5.7	13.3	3.9		
	QC	5,2	13.8	3.7		
	QC	5,4	13.5	3.0		
	QC	5,2	12.3	3.1		
	Avg, n=4	5.38	13.2	3.4		
	s	0.24	0.65	0,44		
	USL.	5.5	15.0	5.0		
	LSL	4.9	12.5	3.0		
	Qu	0,53	2.73	3,56		
	QL .	2.01	1.12	0.96		
	PWLu	67.67	100	100		
	PWLL	100	87,33	82		
	PWLt	67.67	87.33	82		
	PF	85	99	96	29	

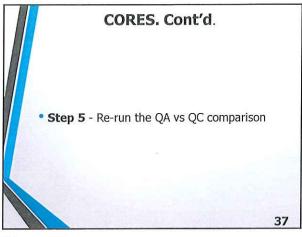


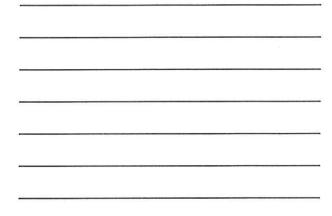




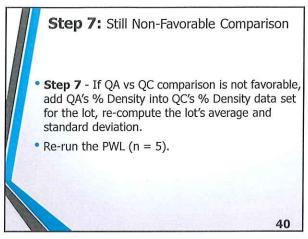
E>		Core is Suspe Comparison	ct
	QC	93.3	
	QC	92.6	
	QC	93.4	
	QC	92.2	
	QC avg	92.9	
	QC S	0.57	
	Range, lower	91.7	
	Range,upper	94.0	
	QA	91.2	
	Fit?	no	
		Unfavorable	32

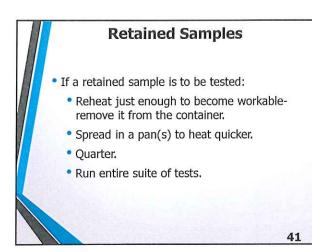

	and the local diversity of the second s	

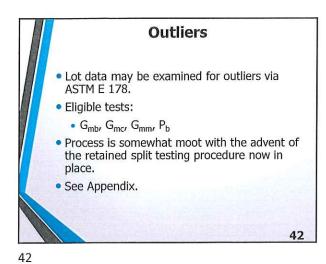


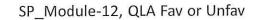


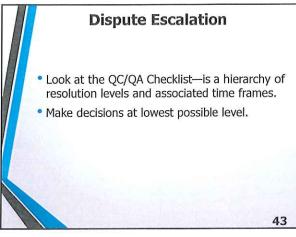
	and second size of the second second			
Step 4: Gmc	Comparison	i i		
New QC %Dens	sity Average	and	Standar	d Deviation.
	QC Gmc		2.304	
	QA Gmc		2.254	
	Avg	3	2.279	
This is new QA Gmc, so %dens	ity =	92.4	(using QC Gmr	n, no QA Gmm from Lot C)
Also, this is new QC Gmc for su	blot C, so %Density =	92.4	(using QC Gmr	n)
	QC		93.3	
	QC		92.6	
	new QC		92.4	
	QC		92.2	
	new avg		92.63	
	new S		0.48	36

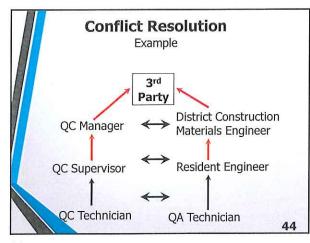


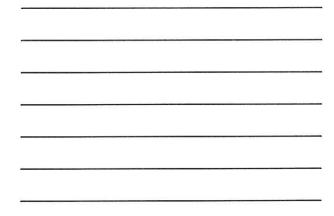


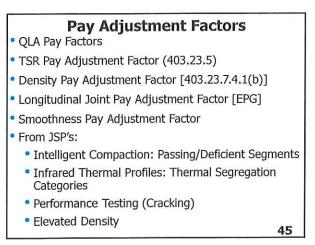


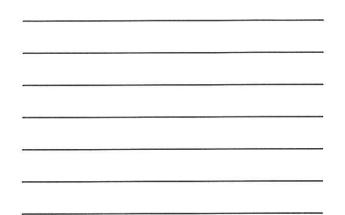

QC	93.3	
QC	92.6	
new QC	92.4	
QC	92.2	
QC avg	92.63	
QC S	0.48	
Range, lower	91.67	
Range,upper	93.58	
QA	92.4	
Fit?	yes	
	favorable	38

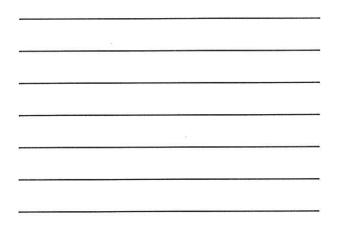

Step 6: If Favora	ble, Run the	PWL Analysis with New
QC Data		%Density
	n	4
	QC	93.3
	QC	92.6
	new QC	92.4
	QC	92.2
	Avg, n=4	92.63
	S	0.48
	USL	97
	LSL	92
	Qu	9.14
	QL	1.31
	PWLu	100
	PWLL	93.66
	PWLt	93.66
	PF	102 39



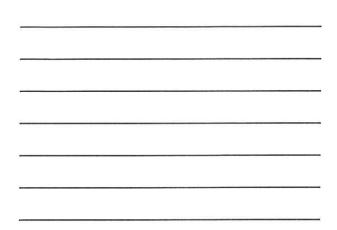


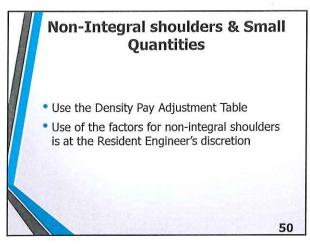






Where	Who	Core Location Determination	Coring Frequency	Pay Factor Type
Traveled Way	QC	Random Number	1 sample/ <u>sublot</u>	QLA Pay Factor
	QA	Random Number	1 sample/ 4 subiols	
Integral shoulder	none			
Non-integral shoulder	Not QLA	Random Number	RE discretion	Density Pay Adjustment Factor
Longitudinal Joint, confined	Considered part of the traveled way			
Longitudinal Joint, unconfined	QC	Random Number	1 sample/ <u>sublot</u>	Longitudinal Joint Density Pay Adjustment Factor
	QA	Random Number	1 sample/ 4 sublots	
Base widening, entrances	Not QLA	<u> </u>	RE discretion	Density Pay Adjustment Factor
Single lift (traveled way)	QC (not QLA)	Random Number	1 Sample/sublot	Density Pay Adjustment Factor


TSR	% of Contract price
≥90	103
75-89	100
70-74	98
65-69	97
<65	Remove

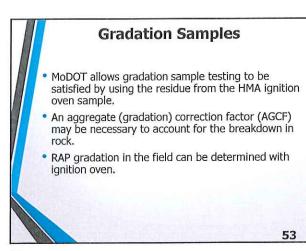


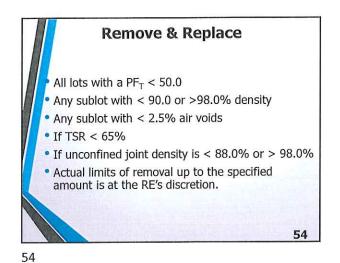
Density Pay Adjustment Factor		
Field Density, % of Gmm	% of Contract price	
92.0-97.0	100	
91.5-91.9 or 97.1-97.5	90	
91.0-91.4 or 97.1-97.5	85	
90.5-90.9 or 97.6-98.0	80	
90.0-90.4 or 97.6-98.0	75	
Below 90.0 or above 98.0	Remove & replace 48	

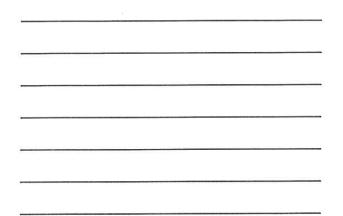
.

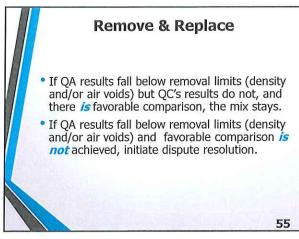
Longitudinal Joint Density Pay Adjustment Factor (PAF)		
Field Density, % of Gmm	% of Contract Unit Price	
90.0 - 96.0	100	
89.5 - 89.9 or 96.1 - 96.5	90	
89.0 - 89.4 or 96.6 - 97.0	85	
88.5 - 88.9 or 97.1 - 97.5	80	
88.0 - 88.4 or 97.6 - 98.0	75	
Below 88.0 or above 98.0	Remove & replace 49	

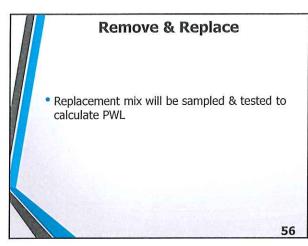
50

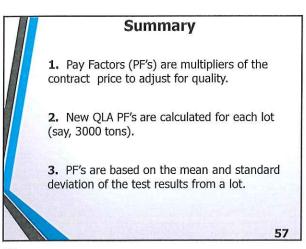

Confined Longitudinal Joint Density Evaluation

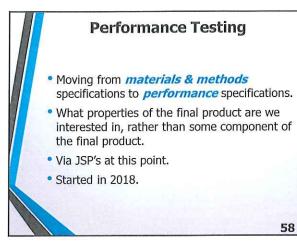

• Density in confined joints is handled with the traveled way coring. Required density is same as for the traveled way (94.5 \pm 2.5%).

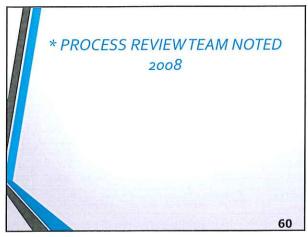

51

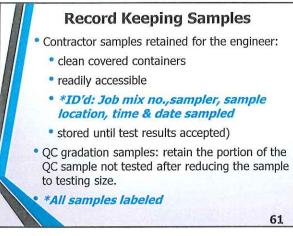

Smoothness Pay Adjustment (IRI)			
Table 1 (> 45 mph)			
IRI (in/mile)	% Contract Price		
40.0 or less	105		
40.1-54.0	103		
54.1-80.0	100		
80.1 or greater	100 after correction to 80.0		
Correction = diamond grinding			
Table 2 (≤45 mph)			
IRI (in/mile)	% Contract Price		
70.0 or less	103		
70.1-125.0	100		
125.1 or greater	100 after correction to 125.0 52		

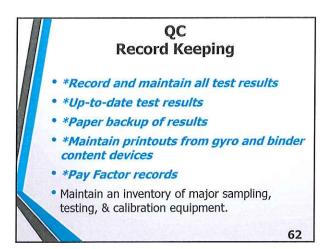


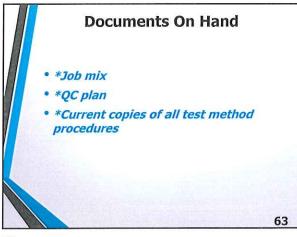


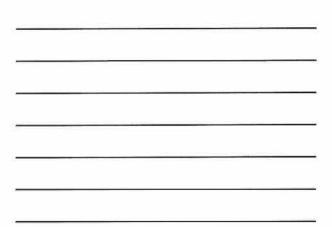


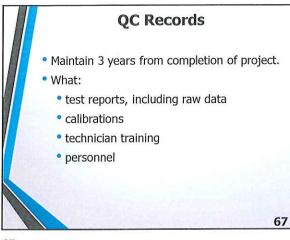


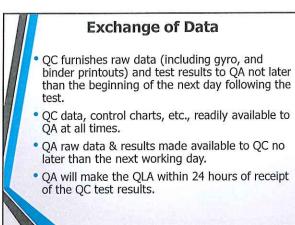










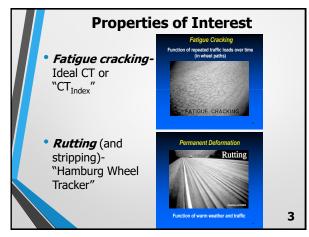


Calibration			
Equipment	Requirement	Interval (month)	
Gyro	Calibrate	12	
Gyro	Verify	Daily ; when moved	
Gyro molds	Dimensions	12	
Thermometer	Calibrate	12	
Vacuum	Pressure	12	
Pycnometer	Calibrate	Daily	
Ignition oven	Verify	12 or when moved	

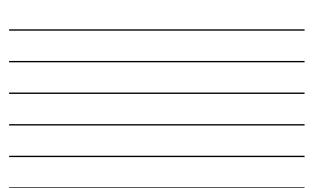
Calibration, Cont'd			
Equipment	Requirement	Interval (month)	
Nuclear gage	Drift & stability	1	
Shakers	Sieving thoroughness	12	
Sieves	Physical condition	12	
Ovens	Verify settings	12	
Balances	Verify	12 or when moved	
Timers	Accuracy	12 6	

Module 13

Performance Testing

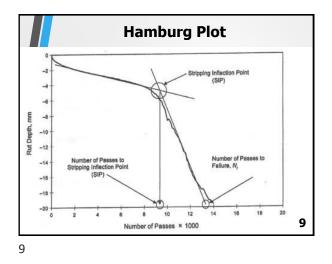


Balanced Mix Design Performance Testing and Increased Density

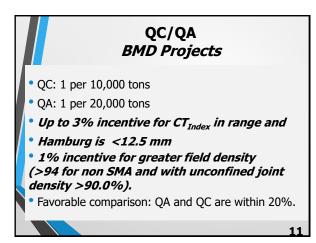

- Moving from *materials & methods.* specifications to *performance* specifications. (Balanced Mix Design = BMD).
- What properties of the final product are we interested in, rather than some component of the final product.
- Via Job Special Provisions (JSP's) at this point.

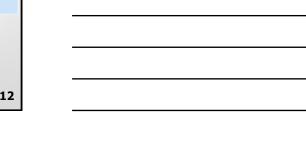
2

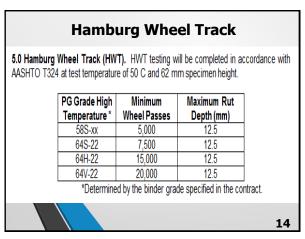
3

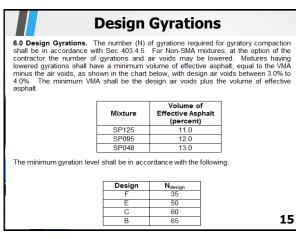


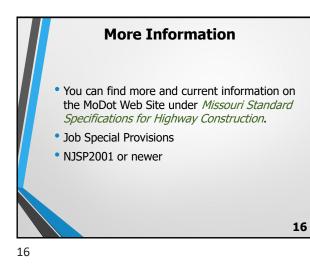
IDEAL-CT Ρ, Load (kN) Displacement (mm) Figure 2. Illustration of the PPP75 Point and Its Slope ||m75| Gf=Area under curve/tD For non-62 mm thick specimens: $CT_{Index} = \frac{t}{62} \times \frac{G_f}{|m_{75}|} \times \left(\frac{l_{75}}{D}\right)$

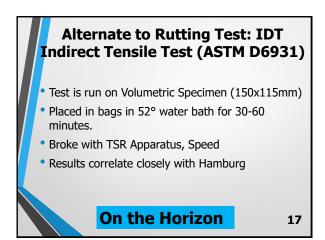

Hamburg Wheel Tracker Aashto t 324 • Capacity to resist rutting (and stripping) • Warm temperatures • Under water








Number and Size of Specimens				
Performance Test	Min # of Pucks/Set	Molded Ht. mm		
CT _{Index}	3	62		
HWT	4	62		
AMPT	5	180		
Cracking Tolerance Index – CT _{Index} Hamburg Wheel Track – HWT AMPT – Samples for Research Purposes				
12				



CT _{Index} Tested according to ASTM D8225 @ 25±1°C Non SMA Mixtures			
CT _{Index}	% of Contract Price		
< 45	97%		
45-97	100%		
>97	103%		
SMA Mixtures			
CT _{Index}	% of Contract Price		
< 135	97%		
135 – 240	100%		
>240 103%			

Balanced Mix Design Performance Testing and Increased Density NJSP-20-01B

1.0 Description. This work shall consist of providing asphalt mixture in accordance with Sec 403 and meet the Balanced Mix Design (BMD) performance requirements of cracking and rutting resistant properties at an increased density level. The BMD performance requirements will be applied to SuperPave mainline wearing surface mixtures. Bituminous binder and base, level course, shoulder, and pavement repair mixtures are excluded from the BMD requirements.

2.0 Performance Testing. Acceptable test results meeting the 100% pay criteria for both Cracking Tolerance Index (CT_{Index}) and Hamburg Wheel Track (HWT) tests shall be submitted with the mix design for approval. The contractor shall conduct Quality Control (QC) testing for CT_{Index} and HWT tests at a frequency of 1/10,000 tons for the mainline pavement. The random testing location will be determined by the engineer.

Incentive/disincentive payment will be calculated based upon the mixture cost for the tonnage represented by each sample, generally 10,000 tons. An incentive of 3% of the asphalt mixture item cost will be paid if the CT_{Index} results are within the incentive range and HWT results are below 12.5 mm. The engineer will conduct performance testing at a frequency of 1/20,000 tons for Quality Assurance (QA). A favorable comparison will be achieved if the results for QA and QC are within 20%.

In addition, a 1% incentive is being offered for sublots with qualifying density results above 94% for non-SMA mixtures and with unconfined joint density of 90.0% or above.

Gyratory compacted samples for the Asphalt Material Performance Tester (AMPT) shall be fabricated at a minimum of once per project or as directed by the engineer and submitted to the MoDOT Central Laboratory for informational purposes only.

3.0 Mix Sampling and Preparation. Laboratory mixed samples for mix design submittal shall be short term conditioned in accordance with AASHTO R30 prior to conducting performance testing. Loose mix samples from the plant shall be taken during production in accordance with AASHTO R 97 and split to the appropriate size in accordance with AASHTO R 47. No conditioning is required on plant mixed samples. Samples shall then be heated to the compaction temperature +/- 3° C prior to compacting necessary samples for QA/QC testing. QA personnel shall be present during the sampling, splitting, and molding process. QC shall fabricate all test specimens. QA will randomly select the specimens to submit to the MoDOT Central Laboratory for performance testing. The following table details the minimum number of specimens required:

Performance Test	Minimum Number of Specimens per Set	Molded Specimen Height (mm)
Cracking Tolerance Index (CT _{Index})	3	62
Hamburg Wheel Track (HWT)	4	62
AMPT Samples for Research Purposes	5	180

When QA testing is to be performed, three sets shall be fabricated for CT_{index} and HWT performance testing: QC, QA, and an additional set for QA retention.

AMPT samples for BMD research shall be fabricated in accordance with AASHTO PP 99-19, carefully following the exceptions noted herein:

- 1) Pour the mixture into the center of the mold to minimize air void variation between samples. Pouring material down the sides of the mold will result in lower air voids on that side of the mold.
- 2) Charge the mold in two equal lifts. After each lift, use the spatula to scrape the walls of the mold, inserting the spatula 8-10 times around the circumference of the mold. Insert the spatula into the center of the mixture 10-12 times in an evenly distributed pattern. Insert the spatula as far as possible into the mixture without damaging aggregates.

3.1 Molding Samples. The specimens shall be compacted to an air void content of 7.0 \pm 0.5% or 6.0 \pm 0.5% for SMA mixtures. The gyratory specimen weight for each performance test shall be submitted with the mix design. The compacted test specimens shall be allowed to cool to 25 \pm 3° C prior to determining the air void content.

3.2 Determining Air Voids. The bulk specific gravity of the test specimen will be determined in accordance with AASHTO T166. Specimens shall be air dried for 24 +/- 3 hours before preconditioning the test specimens for CT_{Index} testing. Test specimens shall be preconditioned as specified in the test methods. If a water bath is utilized, it is critical that samples are kept dry.

3.3 Records. Compaction temperature, times in and out of the oven, gyratory specimen weight, and sample identification shall be recorded.

4.0 Cracking Tolerance Index (CT_{Index}) **Testing.** The CT_{Index} testing shall be completed in accordance with ASTM D8225 and at a test temperature of 25 C +/- 1° C. Incentive/disincentive payment will be calculated based upon the mixture cost for the tonnage represented by each sample, generally 10,000 tons. An incentive of 3% of the asphalt mixture item cost will be paid if the CT_{Index} results are within the incentive range and HWT results are below 12.5 mm.

Non SMA Mixtures		
Cracking Tolerance Index	Percent of Contract	
(CT _{Index})	Price	
< 45	97%	
45 - 97	100%	
> 97	103%	

SMA Mixtures		
Cracking Tolerance Index	Percent of Contract	
(CT _{Index})	Price	
< 135	97%	
135 - 240	100%	
> 240	103%	

5.0 Hamburg Wheel Track (HWT). HWT testing will be completed in accordance with AASHTO T324 at test temperature of 50 C and 62 mm specimen height.

PG Grade High Temperature *	Minimum Wheel Passes	Maximum Rut Depth (mm)
58S-xx	5,000	12 <u>.</u> 5
64S-22	7,500	12.5
64H-22	15,000	12.5
64V-22	20,000	12.5

*Determined by the binder grade specified in the contract.

6.0 Design Gyrations. The number (N) of gyrations required for gyratory compaction shall be in accordance with Sec 403.4.5. For Non-SMA mixtures, at the option of the contractor the number of gyrations and air voids may be lowered. Mixtures having lowered gyrations shall have a minimum volume of effective asphalt, equal to the VMA minus the air voids, as shown in the chart below, with design air voids between 3.0% to 4.0%. The minimum VMA shall be the design air voids plus the volume of effective asphalt.

Mixture	Volume of Effective Asphalt (percent)
SP125	11.0
SP095	12.0
SP048	13.0

The minimum gyration level shall be in accordance with the following:

Design	N _{design}
F	35
E	50
С	60
В	65

7.0 VFA Requirements. Section 403.4.6.3 Voids Filled with Asphalt shall be omitted provided that the HWT requirements described above are satisfied and the CT_{Index} is 45 or greater.

8.0 Sec 403 Revisions.

Delete Section 403.5.2 and replace with the following...

403.5.2 Density. The final, in-place density of the mixture shall be between 92.0 and 97.5 percent of the theoretical maximum specific gravity for all mixtures except SMA. SMA mixtures shall have a minimum density of 94.0 percent of the theoretical maximum specific gravity. The theoretical maximum specific gravity shall be determined from a sample representing the material being tested. Tests shall be taken not later than the

day following placement of the mixture. The engineer will randomly determine test locations.

Delete Section 403.23.7.3 and replace with the following...

403.23.7.3 Removal of Material. All lots of material with a PFT less than 50.0 shall be removed and replaced with acceptable material by the contractor. Any sublot of material with a percent of theoretical maximum density of less than 90.0 percent or greater than 98.0 percent shall be removed and replaced with acceptable material by the contractor. For SMA mixtures, any sublot of material with a percent of theoretical maximum density of less than 92.0 percent shall be removed and replaced and replaced with acceptable material by the contractor. For SMA mixtures, any sublot of material with a percent of theoretical maximum density of less than 92.0 percent shall be removed and replaced with acceptable material by the contractor. Any sublot of material with air voids in the compacted specimens less than 2.0 percent shall be evaluated with Hamburg testing and removed and replaced with acceptable material by the contractor if the rut depth is greater than 14.0 mm at the designated number of wheel passes above. No additional payment will be made for such removal and replacement. The replaced material will be tested at the frequencies listed in Sec 403.19. Pay for the material will be determined in accordance with the applicable portions of Sec 403.23 based on the replacement material.

Delete Section 403.23.7.4.1 and replace with the following...

403.23.7.4.1 Small Quantities. Small quantities are defined in Sec 403.19.3.2.1. Unless the contractor has elected to use the normal evaluation in the Bituminous QC Plan for small quantities, the following shall apply for each separate mixture qualifying as a small quantity

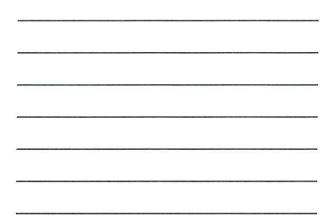
(a) QLA and PWL will not be required.

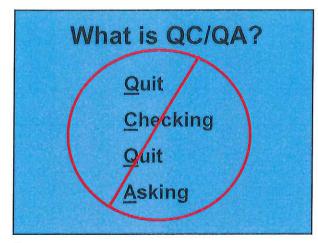
(b) Mixtures shall be within the specified limits for VMA, V_a , AC and density. In addition to any adjustments in pay due to profile, the contract unit price for the mixture represented by each set of cores will be adjusted based on actual field density above or below the specified density using the following schedule:

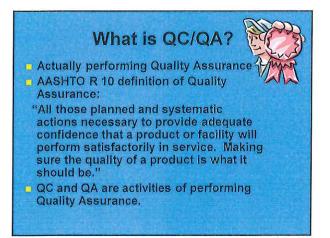
Field Density (Percent of Laboratory Max. Theoretical Density)		Pay Factor (Percent of Contract Unit Price)	
For all SP mixtures other than SMA:			
ç		92.0 to 97.5 inclusive	100
97.6 to 98.0	or	91.5 to 91.9 inclusive	90
	or	91.0 to 91.4 inclusive	85
	or	90.5 to 90.9 inclusive	80
	or	90.0 to 90.4 inclusive	75
Above 98.0	or	Below 90.0	Remove and Replace
For	For SMA mixtures:		
		>94.0	100


93.5 to 93.9 inclusive	90
93.0 to 93.4 inclusive	85
92.5 to 92.9 inclusive	80
92.0 to 92.4 inclusive	75
Below 92.0	Remove and Replace


9.0 Elevated Density. Sublots with a QC density test result which compares favorably with QA, has a density result of 97% - 94% and have unconfined joint densities of 90% or greater shall receive a 1% incentive based on the bituminous mixture unit price for non-SMA mixtures.

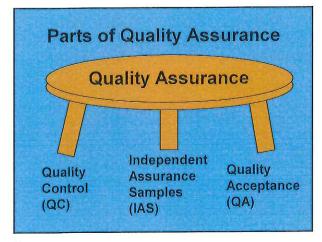

10.0 Basis of Pavement. Payment for compliance with this provision will be made at the contract unit price for Item No. 403-10.56, Asphalt Performance Testing, lump sum.


Module 14


Contract Administration

Benefits of Meeting Quality Requirements

- If meet or exceed quality requirements:
- Pavement/Material will perform satisfactory during its design life.
- Require less maintenance to maintain.
- Better use of highway funds.
- Driver satisfaction.



4

Quality Requirements

- Contract Documents contain the specification.
- Asphalt Mixture Tests
- Air voids, VMA, % asphalt, density, and TSR.
- Mostly using performance related.
- Moving towards performance tests
 Balance mix design using Ideal CT and Hamburg.

5

1		

Independent Assurance Samples(IAS)

- Being performed by MoDOT on behalf of the federal government.
- MoDOT personnel not directly involved with acceptance testing.
- Performed on all project with federal funds.
- Ensures that those performing acceptance testing, on the project, are sampling and testing properly. Also ensure testing equipment functioning correctly.
- EPG, Section 123 Federal-Aid Highway Program.

7

Quality Control (QC)

Being performed by the contractor.

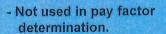
 Sum-total of the activities performed by the contractor to make sure that a product meets contract quality requirements.

The party producing the product is in the best position to exercise process Quality Control. [i.e., Contractor].

8

Quality Control (QC) - Activities performed: 1) Testing Material 2) Inspecting Operation

Quality Control (QC)


- Testing Material
- 1) Required Testing
- Minimum number required.
- Samples random & designated by engineer.
- Do not provide to much advance notice about random sample locations.
- Test results shall comply with the specifications.

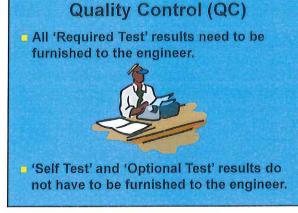
10

Quality Control (QC)

Testing Material (continued)

- 2) Self Testing (extra testing)
- Contractor's decision.
- Sample location not required to be random.

- Test results used to control the process.


11

Quality Control (QC)

- Testing Material (continued)
- 3) Optional Testing
- Contractor's decision.
- Doing non-required test to check quality.
- Most likely will encounter with concrete

(i.e., unit weight).

Quality Control (QC)

Inspecting Operation

1) Monitoring Materials

- Testing delivered aggregates.

Reviewing bill of lading or certifications.
 (i.e., asphalt binder, antistrip, rejuvenator, etc.)

- Review condition of material.

(i.e., contamination, segregation, etc.)

14

Quality Control (QC)

Inspecting Operation (continued)

- 2) Plant Setting
- Producing Job Mix Formula.
- Responsible for plant adjustments.
- 3) Monitoring Production Facility.
- Stockpiles
- Loading of material
- Equipment
- 15

Quality Control (QC)

Inspecting Operation (continued)

- 4) Monitoring Placement
- Aggregate base compaction.
- Tack/Prime coat application.
- Check mat appearance (i.e., Segregation).
- Work zone and PPE usage.
- Mat temperature Cross slope.

16

Quality Control (QC)

- Communication is critical
- Advising QA Inspector about:
- All test results.
- Mix design adjustments.
- Production schedules.

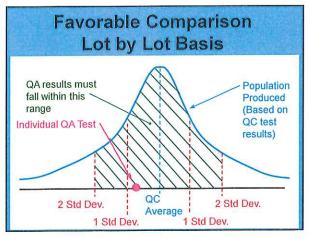
- Changes in production.

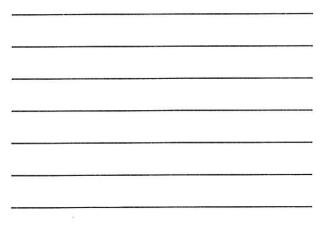
17

18

Quality Acceptance (QA)

Being performed by the MoDOT
 The sum total of the activities


performed by MoDOT to accept the Quality Control (QC) data and to confirm that the product provided meets the specification requirements.


Quality Acceptance (QA)

- Acceptance Testing
- Performing to accept QC test results.
- Test performed on independent samples.
- Minimum number of test required; perform as many test needed to ensure the quality.
- Random sample location.
- Favorable comparison required for each tested sample.

20

SP_Module_14, Contract Administration

Quality Acceptance (QA)

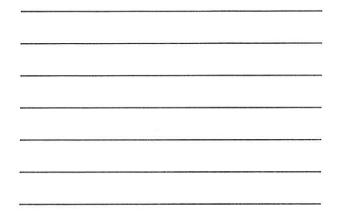
Acceptance Testing (continued)

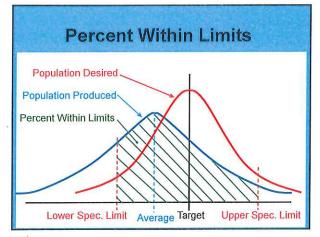
- If sample(s) do not compare, QC test results may not used to determine pay factors; need to resolve discrepancies.
- If unable to resolve disputes in the field.
- 1) Resolve by an independent third party.
- Use QC and QA test results to determine the pay factor (n = 5).

22

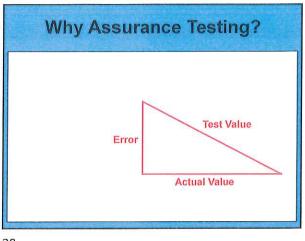
Why is Acceptance Testing Important?

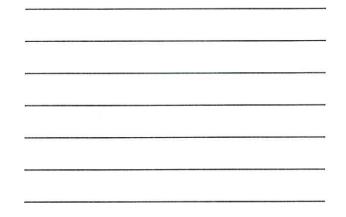
- Critical because of the incentive and disincentive aspect of the QC/QA program.
- Pay Factors based on percent within limits total (PWL_t):
- If PWL_t >= 70%; PF = (0.5 * PWL_t) + 55 If PWL_t < 70%; PF = (2 * PWL_t) - 50

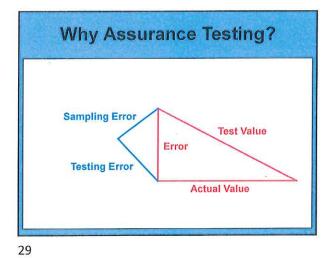

23

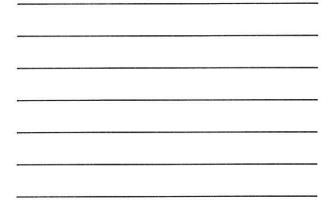

Did you know?

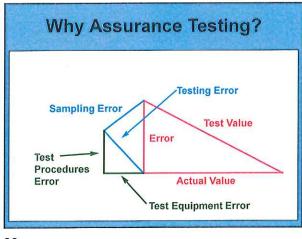
- Can sample material at anytime anywhere.
- "Material will be subject to inspection or test at any time during production or manufacture or at any subsequent time prior to or after incorporation into the work. Material for sampling will be selected by the engineer."
 (Standard Specification 106.1.4)
- 24

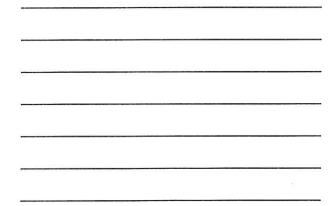



26


Quality Acceptance (QA)


Assurance Testing


- Performing to confirm (1) QC sampling and testing correctly and (2) using proper operating equipment.
- Test performed on split samples.
- Test performed on retained samples.
- Minimum number of test required.
- Should perform early in the project to ensure QC is performing test properly.
- Favorable comparison required.
- If not comparing need to resolve difference.



Quality Acceptance (QA)

Inspection

- 1) Witness QC Sampling & Testing
- Ensure proper procedures being used
- Review testing equipment to ensure

 (1) testing equipment in good working
 order and (2) confirm testing equipment
 has been calibrated.
- Review Control Charts.

31

Quality Acceptance (QA)

- Inspection (continued)
- 2) Inspecting Plant Operation
- Review stockpiles.
- Material Condition.
- Material Handling (e.g., loading at plant, hauling trucks, etc.).
- Review plant calibration records.
- Facility functioning properly.

Quality Acceptance (QA)

Inspection (continued)

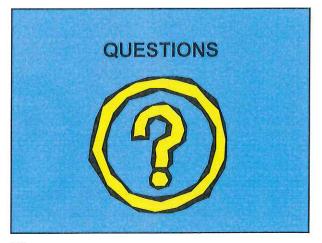
4) Inspecting Placement Operation

Check aggregate base compaction.

Check tack/prime application.

Check mat temperature.

Check mat appearance.
 Check work zone & PPE usage.....



34

Quality Acceptance (QA)

- Communication is critical.
- Advising QC Inspector about:
- All test results.
- Any items of concerns.
- QA inspector needs to keep Resident Engineer and District Construction & Materials Engineer advised of any problems.

35

Appendix

Items:

- 1. Outlier Evaluation ASTM E178
- 2. ASTM E178 Dealing with Outlying Observations
- 3. Mix Design Overview Binder, Rap, Shingles Module 2C(1)
- 4. Mix Design Overview Testing and Evaluation Module 2C(2)
- 5. Ignition Oven Test Cookbook
- 6. Rice Test (Maximum Specific Gravity) Cookbook
- 7. Equipment Information for :
 - AASHTO T312 Gyratory
 - AASHTO T209 Maximum Specific Gravity
 - AASHTO T308 Binder Ignition

Appendix Item #1.

OUTLIER EVALUATION ASTM E 178

Applies to test values: G_{mm}, G_{mb}, % binder, core sp. gravity

1. If the largest test value (x_{max}) in the set is suspected to be an outlier, calculate the t-statistic:

2. If the smallest test value (x_{min}) in the set is suspected to be an outlier, calculate the t-statistic:

3. Compare the largest *calculated t-statistic* to the *critical t-statistic*. The *critical t-statistic* depends on the desired significance level and the number of test results in the set. MoDOT has set the significance level at 5%. If the evaluation is of an outlier either being too high, or too low, the following is a table of t-critical values. Typically, there are 4 sublots per lot, with one test per sublot:

No. of tests	t @ 5% in tail
3	1.153
4	1.463
5	1.672
6	1.822
7	1.938
8	2.032
9	2.110
10	2.176

If the *calculated t-statistic* is greater than $t_{critical (\alpha = 5\%)}$, consider the test result to be an outlier. Material from the retained QA or QC sample may be tested to determine a replacement value.

QCQA/OutlierEvalE178.doc (12-18-02; revised 9-23-03; revised 3-2-09; 4-24-09))

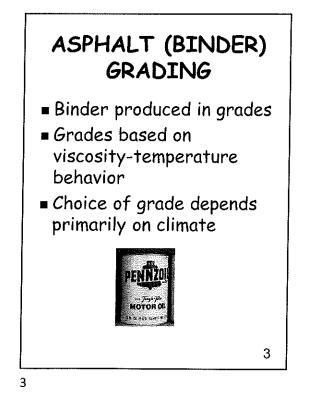
ASTM E-178 Dealing with Outlying Observations

Example

G_{mm} – 2.474, 2.478, 2.484, 2.522

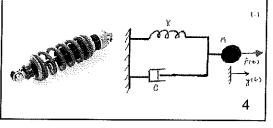
 $\bar{x} = 2.490$

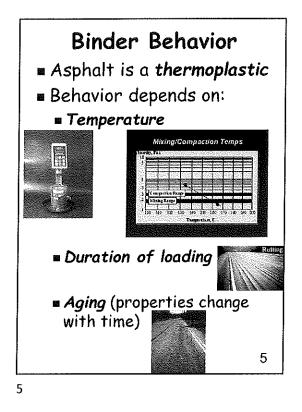
s = 0.022


$$T_{n} = \frac{(x_{n} - \bar{x})}{s} = \frac{(2.522 - 2.490)}{0.022} = 1.455 < 1.463$$
$$T_{1} = \frac{(\bar{x} - x_{1})}{s} = \frac{(2.490 - 2.474)}{0.022} = 0.727 < 1.463$$

From Table 1, 5% Significance at 4 observations the limit is 1.463. Therefore, there are no outlying data.

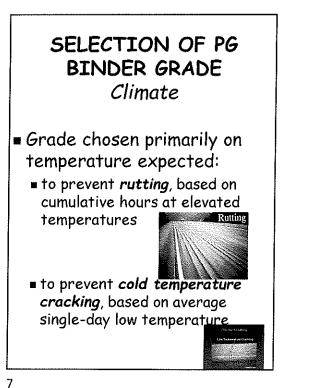
For specific gravity determinations, standard deviation (s) should be to the thousandth place, 0.XXX.

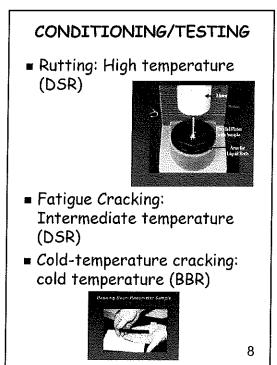

For asphalt content determinations, standard deviation (s) should be to the hundredth place, 0.XX.

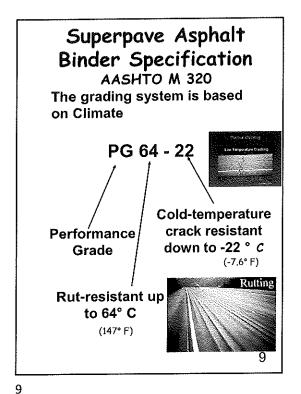

MoDOT SUPERPAVE QC/QA TRAINING/CERTIFICATION COURSE	OUTLINE
MODULE 2C(1) MIX DESIGN OVERVIEW: Binder Binder AAP & Shingles II-4-06 Revision II-9-07 Revision, 4-22-09 Revision II-8-09 Revision, 12-29-09 Revision II-17-10 Revision, 1-29-10 Revision 3-2-12 Revision, 22-29-09 Revision II-17-10 Revision, 1-29-10 Revision 3-2-12 Revision, 1-29-10 Revision 2-4-15 Revision, 12-28-16 Revision 2-4-15 Revision, 12-28-16 Revision 2-4-15 Revision, 12-28-16 Revision 2-16-18 Revision, 12-20-20 Revision	 Module 2c(1): Binder grading & selection M 332 grades Module 2c(2): Testing & evaluation RAP & shingles Mixing & compaction temperatures
	2
1	2

ASPHALT (BINDER) BEHAVIOR

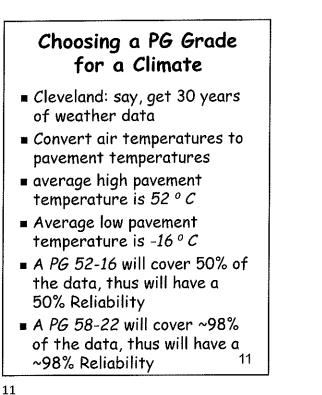
- Based on *rheology*
 - Rheology: study of flow and deformation
- Asphalt cement is a viscoelastic material:
 - Elastic: spring
 - Viscous: dashpot (piston)

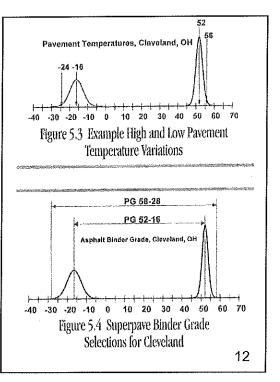


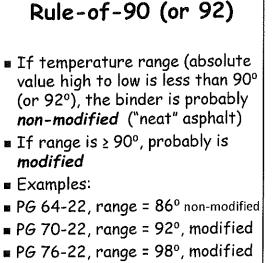


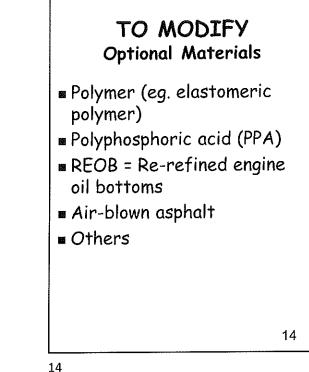

SELECTION OF PG BINDER GRADE

- Based on:
 - ∎Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - RAS (shingle) content
 - ■RAP content

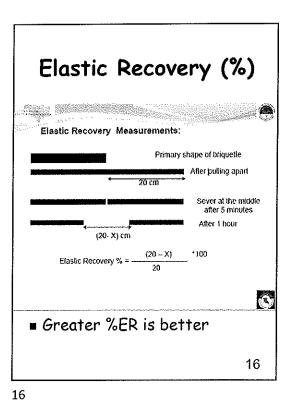

6

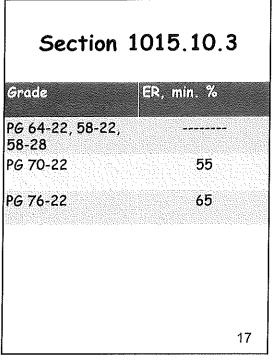


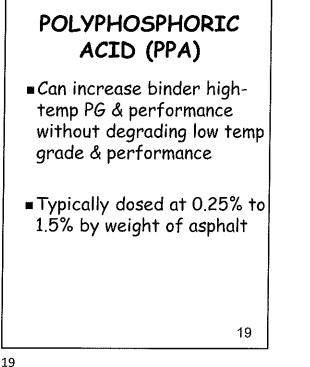


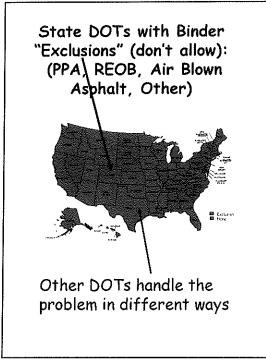


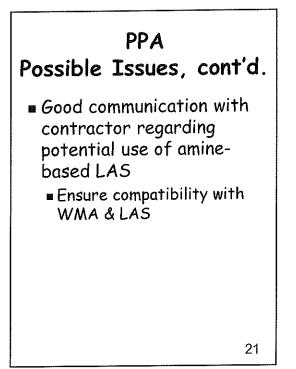
AASHTO M320 PG GRADING SYSTEM		
∎6 degree increments		
Table 3.1 Supe	igave Binder Grades	
High Temperature Grades (Degrees C)	Low Temperature Grades (Degrees C)	
PG 46 PG 52 PG 58 PG 64 PG 70	-34, -40, -46 10, -16, -22, -28, -34, -40, -4(-16, -22, -28, -34, -40 -10, -16, -22, -28, -34, -40 -10, -16, -22, -28, -34, -40	
PG 76 PG 82	- 10, -16, -22, -28, -34 -10, -16, -22, -28, -34 10	

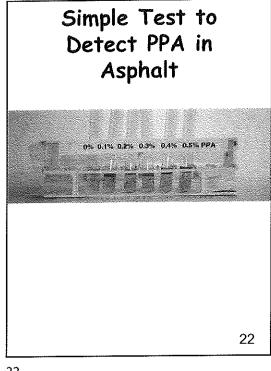




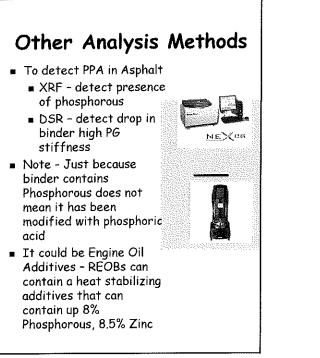




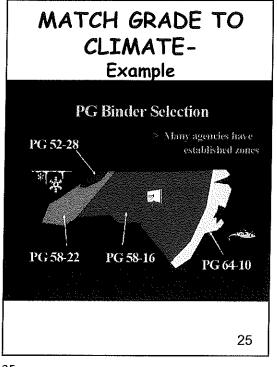


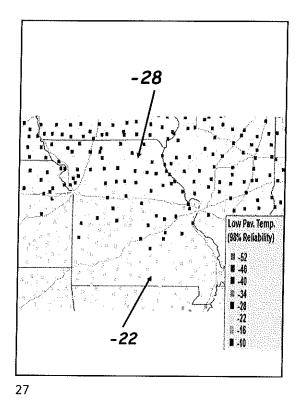


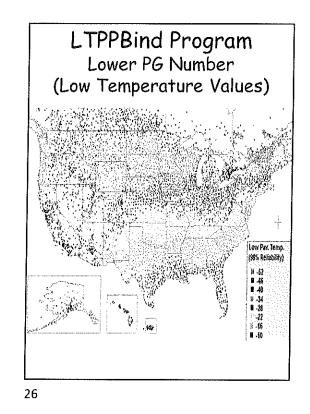
18

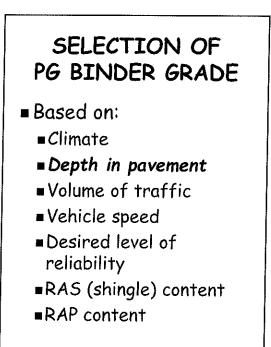

PPA Possible Issues

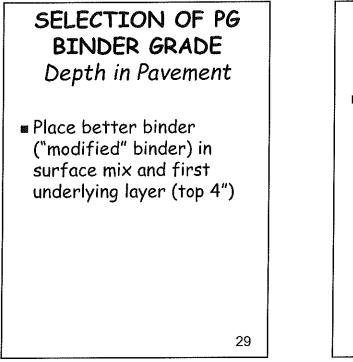
- May make mix more prone to moisture sensitivity
- PPA may react with amine-based Liquid Anti Strips (LAS) & Warm Mix Additives (WMA) which will lead to a partial decrease in hightemp PG improvement
- Chemically compatible LAS and WMA function should not be inhibited. Performance testing such as AASHTO T283 (TSR) or T324 (HWT) are highly recommended
- LAS and WMA suppliers make **PPA-compatible materials** 20

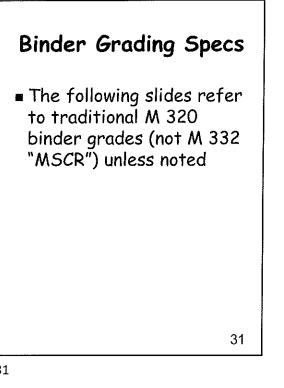

21

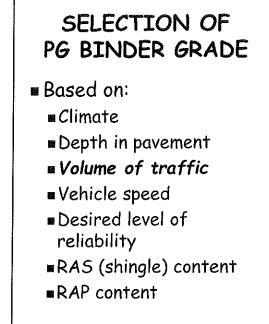

SELECTION OF PG BINDER GRADE Climate

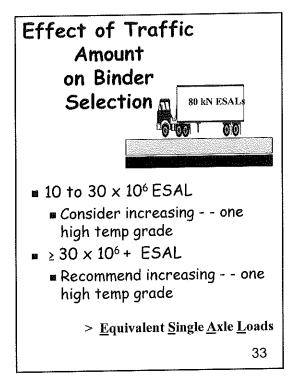

- Specify a higher upper number-grade to prevent rutting eg. 58→ 64
- Specify a lower numbergrade to prevent cold temperature cracking, eg.
 -28 → -34

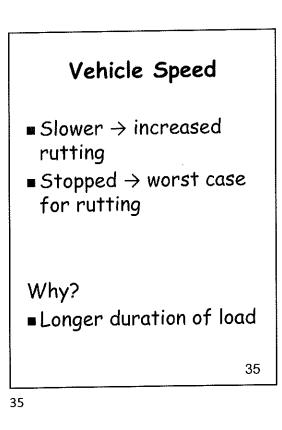

23

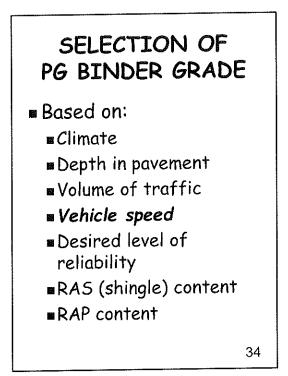






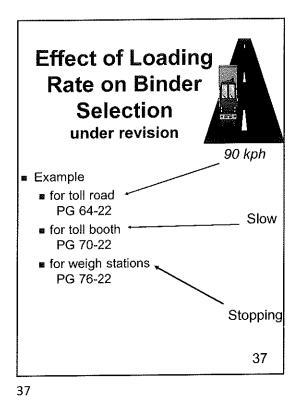


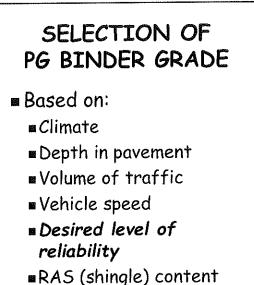

SELECTION OF A BINDER GRADE


30

32

- Can "bump" up a grade (increase the high temperature number) for high traffic levels (greater than 30 million ESAL's)
- Ex.: PG 64-22 → PG 70-22




34

36

Effect of Loading Rate (Vehicle Speed) on Binder Selection

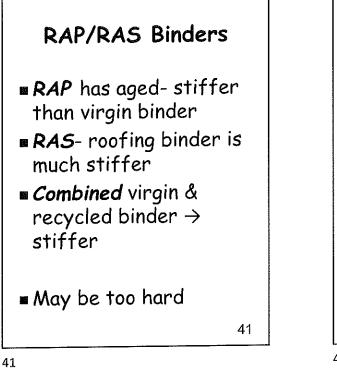
- Can bump up a grade (increase high temperature number) for slow moving (less than 35 mph) traffic [MoDOT uses 12-45 mph]
- MoDOT bumps 2 grades for <12 mph</p>
- Grade bumps apply to the surface mix and the top lift of the underlying mixture
- Grade bumping: no effect on low temp grade 36

■RAP content

38

38

SELECTION OF PG BINDER GRADE Reliability

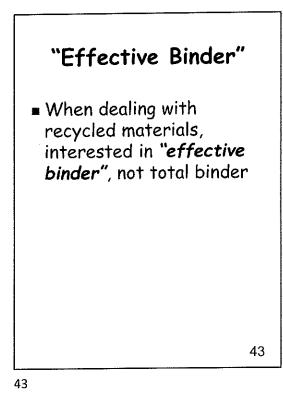

- Can increase reliability for a given climate & depth by increasing the high and/or low temperature values (this may lead to a modified binder)
- PG grades chosen to match average high & low temperatures will give ~ 50% reliability
- 98% reliability is typically chosen for more critical situations
- Some DOT's choose 98% reliability for all binder grades

39

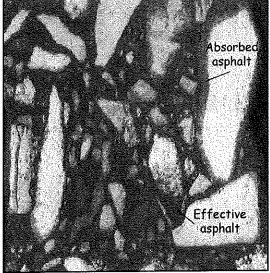
40

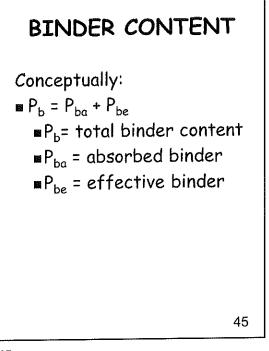
SELECTION OF PG BINDER GRADE

- Based on:
 - ∎Climate
 - Depth in pavement
 - Volume of traffic
 - Vehicle speed
 - Desired level of reliability
 - ■RAS (shingle) content
 - RAP content



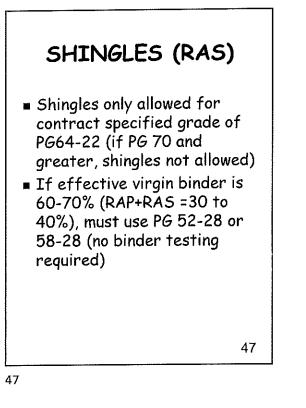
Solutions


- Limit the % of recycled effective binder (eg. 30% max)
- Use a softer virgin grade binder (eg. PG 58-28)
- Add a rejuvenator/viscosity modifier (eq. 3% Hydrogreen)
- Combinations of the above


42

42

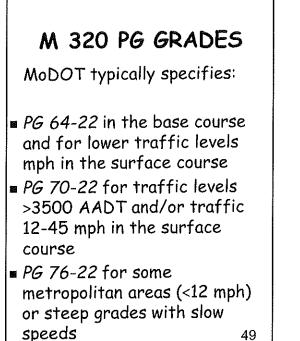
ABSORPTIVENESS OF AGGREGATE



RAP & SHINGLES (RAS)

- If effective virgin binder is less than 70% (more than 30% replacement by RAP+RAS), more binder testing (use of "blending charts") is required to assure that the combined binder meets the JMF specified binder grade
- So, typically contractors are limiting the effective recycle binder content of their mixes to ≤30%

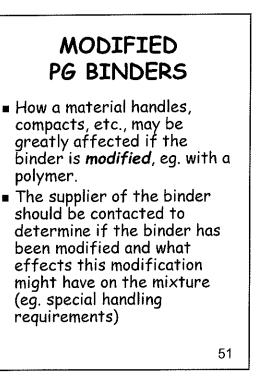
46

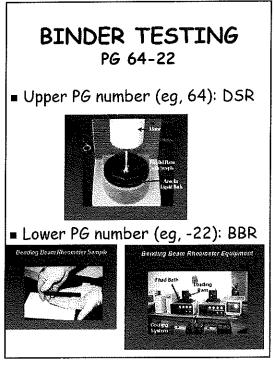

45

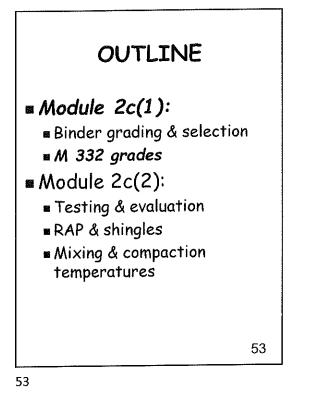
MoDOT Binder Grade PG 64-22

- Climate= whole state
- Position in pavement=
 - surface layer and first underlying layer (lower traffic)
 Lower lifts (~all traffic)
- Traffic speed > 45 mph
- Traffic volume < 30 million
 ESALS
- Reliability= ~98%
- Upper number (64) is bumped up for increased traffic and/or slower speeds in top layer/top underlying lift

48

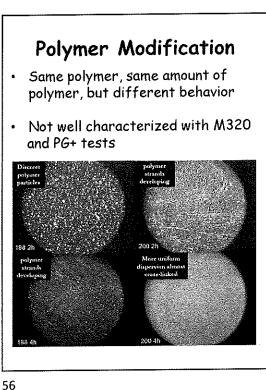



49


MoDOT Binder Selection-Depth, Traffic Volume, Vehicle Speed

Corridor	Layer	Binder Grade
Interstates	Surface= SP125 or SMA & 1 ^{s1} underlying lift Remaining	PG76-22 PG64-22
	lifts	DC70 00
Major Routes Heavy Volume	Surface= SP125 & 1 st underlying lift Remaining lifts	PG70-22 PG64-22
Major Routes Medium or	Surface= SP125 or BP-1	PG64-22
Low Volume	Underlying lifts	PG64-22
Minor Routes	All (generally BP-1 surface)	PG64-22 50

50



ALTERNATE GRADING SYSTEMS © Original: M 320 © ~New (MSCR): M 332

54

54

added "Plus Tests", such as % Elastic Recovery (% ER).

do PMAs justice

 However empirical tests such as % ER only show the presence of, but not the effectiveness of polymermodification.

AASHTO M 320 Issues

and the M 332 Solution

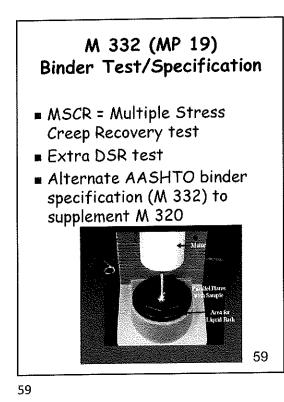
on neat asphalts and does not

> Therefore some Agencies have

■ M 320 was developed based

AASHTO M 320 Issues and the M 332 Solution

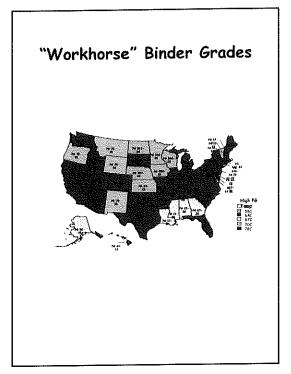
 The MSCR specification M332 corrects the M320 deficiencies by testing at the project climate temperatures and at the stress level commensurate with the expected traffic.
 M332 uses the nonrecoverable compliance % (Jnr) and % Recovery to better qualify the type of modification.

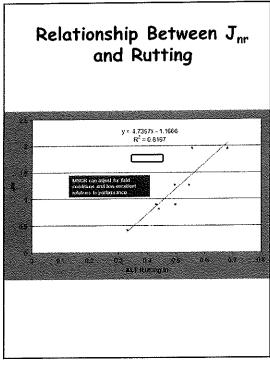

57

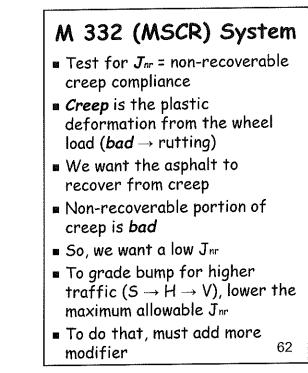
■ M332 (MSCR) is blind to

the *type* of modifier (because the test is physical, not chemical)

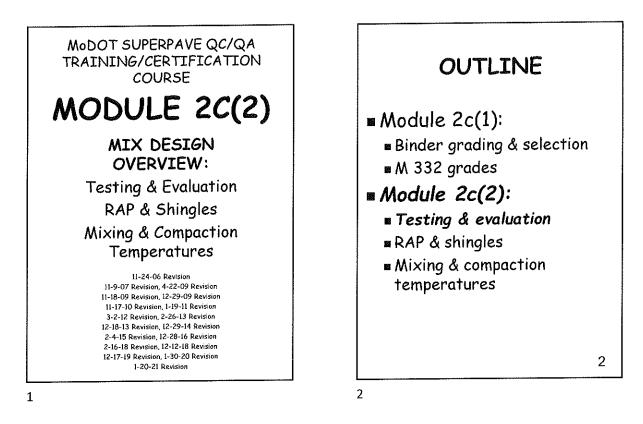
58

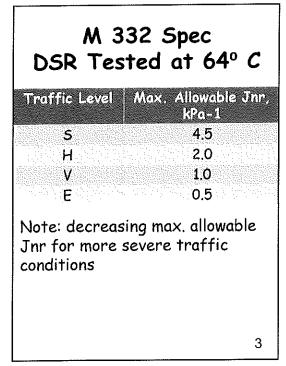

57



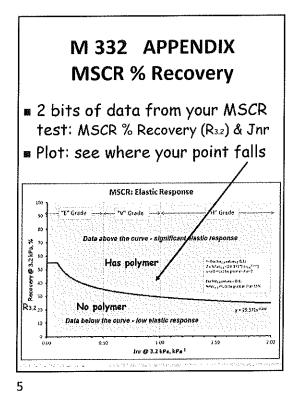

M 332 Binder Grades Section 1015.10.3.1

- Introduces "traffic grades" increasing $S \rightarrow H \rightarrow V \rightarrow E$
- Before M332, to bump a grade for more traffic, raise upper PG number (eg, PG 64 → PG 70)
- New: Stay in climate grade (PG 64-22 for Missouri), but bump up by traffic


6	320 M 332	
	4-22 64-22 Grade	: 5
	0-22 64-22 Grade	Н
	6-22 64-22 Grade) V



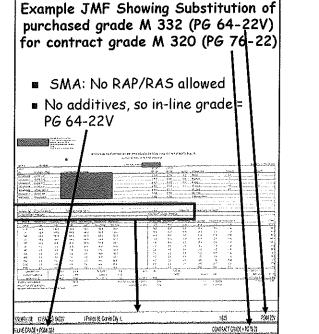
Grade	Traffic/ Speed	MoDOT Class
S (Standard)	<10 million ESALS AND > 44 mph	F, E, some C
H (Heavy)	10-30 million ESALs <i>OR</i> 12 - 44 mph	Some C
V (Very Heavy)	>30 million ESALS OR < 12 mph ("standing")	B
E (Extra Heavy)	>30 million ESALS AND "standing"	B
		64



Binder Grade System Transition: M 320 → M 332

- Contracts & EPG: still M 320 grades
- Many suppliers now supply M 332
- M 332 grades are cheaper than corresponding M 320 grades (less polymer), so contractors prefer
- [MoDOT did not adopt the Appendix in M 332]

4


3

What's My Grade? Different Example

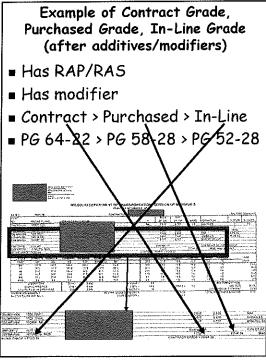
- "Contract Grade" = the PG grade in the contract, eg. PG 70-22
- "Purchased Grade" = what contractor buys from supplier (terminal), eg. PG 58-28 (if RAP/RAS will be used)
- "In-line Grade" = Purchased grade + additive (warm mix, anti-strip, etc.)
 eg. PG 58-28
- "In-line Grade" = Purchased grade + modifier (rejuvenator) eg. PG 52-28

7

6

8

What's My Grade, cont'd.


- "True Grade" = shows at what temperatures the binder actually met the required specs, eg., PG 59.2-29.7
- "Mixture Grade" = what the grade is after mixed with recycled binder in RAP/RAS

8

How Recycle Affects Binder Grade Strategy

- Contract Grade is what MoDOT wants for performance (eq. PG 64-22)
- RAP/RAS binder is stiff
- To meet Contract Grade, contractor may need to start with a softer Purchased Grade (eg. PG 58-28)
- RAP/RAS will provide additional stiffness
- Mixture grade, hopefully, will be close to the Contract Grade 9

9

ADDITIVES vs MODIFIERS

- Additives:
 - Compactibility
 - Warm mix
 - 🛚 Anti-strip
 - Usually a low amount (0.25-1.75% of binder)
 - Doesn't affect PG grade (Purchased grade and In-line grade ~ same)
- Modifiers:
 - Rejuvenators, viscosity modifiers, etc.
 - Changes the PG base asphalt
 - Usually a greater amount: 2-5
 % of binder)
 10

10

12

What is Sampled & Tested for Acceptance? Purchased (Terminal) Grade

Purchased (Terminal) Grade or

- In-line Grade (HMA plant)
- The results of the testing determine whether the sample passes; if rejected, penalties are assessed per Section 460.3.13 EPG:
 - If M 320 binder, the high temperature *True Grade* will be determined
 - If M 332 binder, penalties will be assessed based on the Jnr (except Grade S-test as if M320) 12

Tested On	A 320 Binde Non-Aged (Condition xample: PG 6	("Original")
Spec	DSR Testing	Penalty
DSR 2 1.00 kPa	DSR > 0.90 kPa	No penalty
	If sample fails:	
Spec temp	Hi-Temp True Grade Temp	Penalty
64°	< 2º low	No penalty
64°	> 2° & < 4° low	3% of mix unit price
64º	> 4º & < 6º low	10% of mix unit price
64°	> 6º low	16% of mix unit prite

13

ſ

M332 Binder Tested On RTFO-aged Condition For <i>Grade V</i>		
Spec	Jnr Tested	Penalty
Jnr ≤ 1.0 kPa+1	≤ 1.1 kPa-1	No penalty
Jnr ≤ 1.0 kPa-1	> 1.1 & < 1.3	3% of mix unit price
Jnr ≤ 1,0 kPa-1	> 1.3 & < 2.0	10% of mix unit price
Jnr ≤ 1.0 kPa+1	> 2,0	16% of mix unit price
		15

M332 Binder Tested On RTFO-Aged Condition For <i>Grade H</i>			
Spec	Jnr Tested	Penalty	
Jnr ≤ 2.0 kPa-1			
Jnr ≤ 2.0 kPa-1	> 2.1 & < 2.7	3% of mix unit price	
Jnr ≤ 2.0 kPa-1	> 2.7 & < 4.0	10% of mix unit price	
Jnr	> 4.0	16% of mix	

٦

unit price

14

Г

14

16

٦

What is Sampled & Tested

for Acceptance, cont'd.

- Mixture Grade not normally tested for acceptance (technically, it has been aged in the drum, so would be difficult to compare to the specification [some criteria require that the binder not be aged at all])
- Hopefully, the Mixture Grade is close to the Contract Grade
- More likely to be true if the % recycle is kept below 30%₁₆

TYPICAL TRENDS

- Most mixes are designed at less than 30% effective binder replacement
- Most products added are additives, not modifiers
- Small majority substitute M 332 for M 320
- Mixes with more than ~20% binder replacement use a softer Purchased Grade than Contract Grade; mixes with less than 20% replacement stay with Contract Grade
- Most softer Purchased Grades drop both upper & lower numbers
- 17

RECYCLED ASPHALT PAVEMENT (RAP): Considerations

- OK in all mixes except SMA
- Can use a maximum of 30% virgin effective binder replacement without changing the binder grade
- >30% effective binder replacement can be from RAP+RAS if binder testing (use of blending charts) shows that the combined binder meets the contract specified grade
- Aggregate must meet deleterious spec 1002 (1004 if a 401 mix)
- Aggregate must pass Micro-Deval test spec (waived if RAP is from a MoDOT project)

19

OUTLINE

- Module 2c(1):
 - Binder grading & selection
 - M 332 grades
- Module 2c(2):
 - Testing & evaluation
 - RAP & shingles
 - Mixing & compaction temperatures

18

18

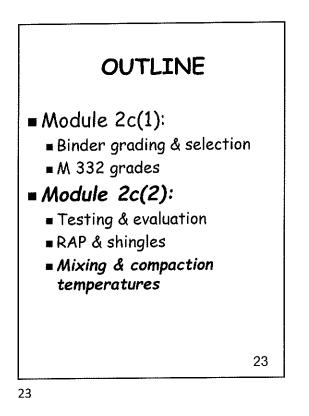
RAP Micro Deval

AASHTO T 327

- Remove binder coating by extraction or ignition
- Test aggregate
- % loss should be within 5% of the virgin aggregate utilized in the new mix design
- Ex.: New mix virgin MD = 21 RAP MD should be 16-26
- 1 test per 1500 tons
- Waived if from MoDOT roadway

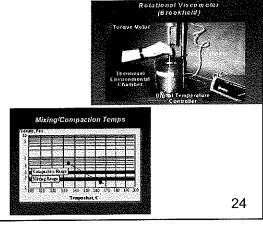
- May be used in any mix that has a specified contract grade of PG 64-22
- If virgin effective binder < 70% of blended total binder: drop virgin grade to PG 58-28 or PG 52-28

21


Other restrictions

Re-Calculation of RAP/RAS Binder

- The % effective virgin binder replacement content P_{bv} must be re-calculated when:
 - Change in % RAP or RAS from a field mix adjustment
 - Change in % binder content in the RAP (tested 1 per 4 sublots via T164 or T308)


22

21

DETERMINE MIXING & COMPACTION TEMPERATURES

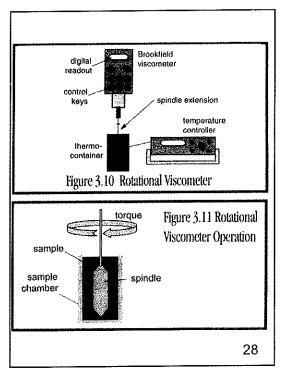
 Develop the temperatureviscosity curve

TEMPERATURE -VISCOSITY

- As temperature increases, binder viscosity decreases (it gets thinner)
- This can be plotted.
- Viscosity is important to:
 - pumping
 - spraying
 - aggregate coating in mixing
 - absorption by aggregate
 - laydown and compaction
 - rutting

25

25


TEMPERATURE-VISCOSITY, cont'd.

- Establish the curve by running viscosity tests at 2 different temperatures
- Old method: capillary tubes
- New method: Brookfield rotational viscometer
- The curve is used to establish mixing and compaction temperatures necessary to achieve the required viscosity for these operations.

26

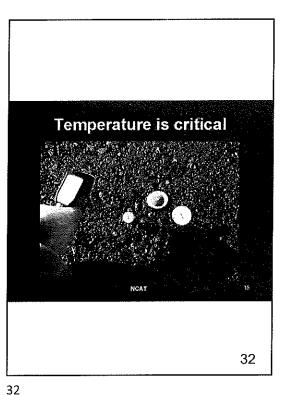
TEMPERATURE-VISCOSITY, cont'd.

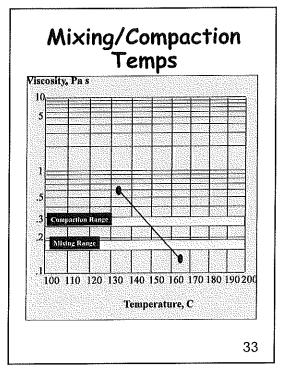
- The steepness of the curve is called "temperature sensitivity"--that is, how sensitive is a particular binder to a change in viscosity resulting from a change in temperature.
- We don't like change--so we don't like a sensitive material-we want a relatively flat curve. Modifiers help get the viscosity change under control.

29

30

LAB MIXING & COMPACTION TEMPERATURES


- For non-modified binders:
 - Mixing temperature range = what it takes to get a viscosity of 0.17 ± 0.02 Pa·s
 - Compaction temperature range= what it takes to get a viscosity of 0.28 ± 0.03 Pa·s
- For modified binders: follow manufacturer's recommendations.


30

29

Plant Mixing & Roadway Compaction Temperatures

- May be different than lab temperatures
- Determine compaction temperature using test strips-- typically 275-310F
- Set plant mixing temperature somewhat higher, say 300-330F
- Maximum recommended temperature is 338F, should avoid exceeding 350F.

Appendix Item #5

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Asphalt Binder Correction Factor (C_F) Determination (formerly "aggregate correction factor")

- 1. Run a butter mix through the mixing equipment.
- 2. For a given mix, prepare two asphalt binder correction factor (C_F) specimens at the design asphalt content using oven dry aggregate. It is recommended that the C_F and field verification specimen sizes be the same.
- 3. Obtain the tare weight of the baskets, pan, and lid.
- 4. Place the hot mix into the sample basket. If the mix has cooled, oven dry at $110 \pm 5^{\circ}$ C to constant mass prior to placing in the basket. Spread the mix in the basket, being careful to keep the mix away from the sides. Allow at least $\frac{3}{4}$ " clearance.
- 5. Test (burn) the specimens as discussed in "Test Procedure."
- 6. If the difference between the measured binder contents of the two replicate specimens is more than 0.15%, test two more specimens. Discard the high and low values.
- 7. Calculate the C_F by determining the difference between the actual and measured asphalt binder contents [Actual %AC – Measured %AC] for each sample, and averaging the two differences. The "Actual %AC" is the amount weighed out in the batching process, expressed as a percent by weight of the mix.
- 8. If the C_F exceeds 1.0%, MoDOT Standard Specification Section 403.19.3.1.1 modifies AASHTO T 308-18 in the following manner:
 - A. According to AASHTO T 308-18, if the C_F exceeds 1.0% at the typical chamber temperature of 538°C (1000°F), lower the chamber temperature to 482 ± 5°C (900 ± 8°F). If the C_F determined at this lower temperature is less than or equal to 1.0%, use that C_F for subsequent testing on that particular mix.
 - B. However, according to MoDOT Standard Specification Section 403.19.3.1.1, if the C_F determined at $482 \pm 5^{\circ}$ C (900 $\pm 8^{\circ}$ F) exceeds 1.0%, lower the chamber temperature to $427 \pm 5^{\circ}$ C (800 $\pm 8^{\circ}$ F). Use the C_F obtained at 427°C even if it exceeds 1.0%.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Asphalt Binder Correction Factor (C_F) Determination

Sample	Lab No	Date_	Initials	i
Replicate	1	2	3	4
Test Temperature				
Tare (basket, etc.) Mass (g)				
Total Dry Mass (g)				
Initial Dry Specimen Mass (g)				
Loss in Weight (g)				
%AC, measured = M				
%AC, actual = A				
$%AC_{diff}$ (M ₁ – M ₂)		> 0.15%? If	so, 2 more re	eplicates
$C_F = M - A$				
C _F , average				

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Specimen size: Use the following table. It is recommended that the field verification specimen size be the same as the correction factor specimen size.

NMS (mm)	Sieve Size	Minimum Specimen Size* (g)
4.75	#4	1200
9.5	3/8"	1200
12.5	1/2"	1500
19.0	3/4"	2000
25.0	1"	3000
37.5	1 1⁄2"	4000

*Specimen sizes shall not be more than 500g greater than the minimum.

POSSIBLE SETTING CHANGES

- 1. To change the Stability Threshold:
 - A. With oven off, press the "Calibration Factor" key while simultaneously pressing the Power Switch "on."
 - B. Enter new Stability Threshold value. Observe the Percent Loss window for the new value. Maximum allowable = 0.02.
 - C. Press the Power Switch "off" then "on" to return oven to normal operation.
- 2. To change filter (afterburner) temperature (750°C typically):
 - A. Press #5 key while simultaneously pressing the Power Switch "on."
 - B. Enter new temperature.
 - C. Press "Enter."
 - D. New setpoint will be displayed.

MAINTENANCE

- To check to see if the venting system is clogged, use the "Lift Test" procedure while the oven is at room temperature. With the power on, initiate a test (push "Start" button) without anything in the oven chamber. The blower fan will turn on. Watch the balance display. The display should read between -4 and -6 grams if the venting is adequate.
- 2. Burn accumulated soot out of the chamber by running the testing procedure at an elevated temperature without a sample.

TEST PROCEDURE

- 1. To change setpoint (furnace) temperature (538°C is typical):
 - A. Press "Temp"
 - B. Enter new setpoint
 - C. Press "Enter"
 - D. Press "Temp" again to verify new setpoint
- 2. To change the Asphalt Binder Correction Factor (C_F):
 - A. Press "Calib. Factor"
 - B. Enter new C_F
 - C. Press "Enter"
 - D. Press "Calib. Factor" again to verify
- 3. Preheat the oven to the setpoint, typically 538°C.
- 4. If the moisture content will not be determined, oven-dry the specimen at $110 \pm 5^{\circ}$ C to a constant mass.
- 5. Weigh the empty basket, etc. on an external scale to the nearest gram.
- 6. Place half the sample in the bottom basket and the other half in the top. Keep the specimen at least ¾" away from the basket sides. For larger samples, some operators make a hole in the middle of the mix.
- 7. Cool the loaded assembly to room temperature.
- 8. Weigh the loaded assembly. Calculate the mass of the specimen.

- 9. Press the "Weight" key and enter the specimen mass. Press "Enter."
- 10. Press the "Weight" key again to verify specimen mass entry.
- 11. Press the "0" (zero) key to tare the internal balance.
- 12. Don your clean gloves, safety face shield, and safety attire.
- 13. Carefully load the specimen into the oven by inserting the basket until the handle tines touch the back of the oven. Make sure the basket is centered and is not touching the walls. Shut the door.
- 14. Observe the internal scale reading. The displayed value should check with the external scale value of basket assembly + dry specimen within ± 5 grams.
- 15. Press the "Start/Stop" key to initiate the ignition procedure.
- 16. When weight loss stabilizes (the change in %AC readings will not exceed 0.01% for three consecutive minutes), the oven will automatically end the test and print out the results. Depending on the oven setup, an alarm may sound and one may have to press the "Start/Stop" key to unlock the door.
- 17. Remove the printed results before opening the door as the tape is heatsensitive.
- 18. Again don the safety gear, open the door, and remove the basket and mount it on the cooling plate. Cover with the cooling cage and allow to cool to room temperature.
- 19. Determine and record the final mass of the specimen, M_f.
- 20. From the total % loss, the oven will automatically subtract the C_F and the Temperature Compensation to give the %AC (by weight of mix). The %AC by weight of aggregate is the "Bitumen Ratio."
- 21. Check for unburned asphalt (coke). If present, start with a new specimen.

NOTE: Read the manufacturer's manual for additional information on safety and more detailed instructions on maintenance and operation.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Manual Weighing Method

Project No.	Job No.	Route	County
Technician	Date	Sublot No.	Mix No.
Empty Basket Asse	mbly Weight (g), [T _e]		
Initial Basket Assen	nbly + Wet (or dry) Sa	ample Weight (g), [T _i]	
Initial Wet (or dry) S			
Final Basket Assembly + Burned Sample Weight (g), [T _f]			
Loss in Weight (g),			
% Loss, [P _L = (L / W			
Aggregate Correction			
Calibrated %AC, $[P_{bcal} = P_L - C_f]$			
% Moisture Content, [MC]			
% AC, corrected (by weight of mix), $[P_b = P_{bcal} - MC]$			

Ignition Ovens Forms.doc (11-24-06;12-28-06;12-12-08;3-9-10;12-14-10;4-14-11; 12-18-13; 4-22-15;12-9-15; 12-28-16; 12-26-18)

Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures: AASHTO T 209-20

This test method shall be used to determine the maximum specific gravity (G_{mm}) of uncompacted asphalt mixtures. However, an option exists to obtain samples from pavement cores (AASHTO R 67) but that procedure is not presented, here.

<u>APPARATUS</u>	MINIMUM SAMPLE SIZE (MoDOT)	
	NOM. MAX SIZE (in.)	SAMPLE (g)
Balance	1	2500
Container (pycnometer)	3⁄4	2000
Thermometers	1/2	2000
Vacuum Pump/System	3/8	2000
Water Bath	#4	2000

PROCEDURE

Sample Preparation and Agitation

1. Dry the paving mix to a constant weight (mass repeats within 0.1%) at a temperature of $105 \pm 5^{\circ}$ C. This drying step shall be combined with any warming of the sample necessary to prepare it for separation.

NOTE: The drying of the mix to constant weight prior to separation may be waived provided AASHTO T 329 shows the moisture content to be less than 0.1%. If the drying step is waived due to T 329 results, this fact must be documented and included in the T 209 results.

- 2. Separate the particles of the paving mix by hand. A small trowel can be used, but care must be taken not to fracture the mineral aggregate. Continually work the mix while, ultimately, cooling to room temperature. The particles of the fine aggregate portion should not be larger than ¼" at the completion of the separation step. Periodically, shake the pan back and forth to bring the larger clumps to the top.
- 3. Determine and record the weight of the empty pycnometer (without the lid).
- 4. When the specimen is at room temperature, place and level the sample in the pycnometer.
- 5. Determine and record the combined weight of the specimen and pycnometer.
- 6. Subtract the weight of the pycnometer from the combined weight of the specimen and pycnometer.
- 7. Record the net dry sample weight (A).
- Add sufficient water at a temperature of approximately 25°C (77°F) to cover the sample completely (≈1 inch).
- 9. Wet O ring of vacuum lid and secure lid on pycnometer (use vacuum grease if necessary to obtain a good seal).

- 10. Gradually increase the vacuum and hold 27.5 \pm 2.5 mm Hg (3.7 \pm 0.3 kPa) absolute vacuum for 15 \pm 2 minutes.
- 11. Agitate the pycnometer and contents using mechanical or manual agitation during the vacuum period. Mechanical agitation is accomplished using a shaker device while manual agitation entails vigorously shaking the pycnometer at intervals of about 2 minutes.

Mass Determination: Weigh in Air Method:

- 1. At the end of the 15 ± 2 minute vacuum period, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage).
- 2. Immediately start a 10 ± 1 minute time period. The requirement is to obtain the final weight of the pycnometer, completely filled, within this second time period. It is suggested that the timer be set for 9 minutes. Since the pycnometer is to be placed back in the water bath to bring it and its contents back to $25 \pm 1^{\circ}$ C, this will allow 2 minutes after the timer goes off to obtain the final weight.
- 3. Slowly submerge the pycnometer in the $25 \pm 1^{\circ}$ C water bath, being careful not to expose the sample to the air.
- 4. Place the capillary lid on the pycnometer ensuring the removal of all air bubbles inside the pycnometer while retaining as many fines as possible.
- 5. When the timer goes off, carefully remove the pycnometer from the bath. Dry off the exterior of the pycnometer. Add water to the lid weephole to ensure that the pycnometer is full. Dry off the exterior of the pycnometer again.
- 6. Zero the balance, then obtain and record the combined weight of pycnometer and contents (E).
- 7. Completely empty the pycnometer and re-submerge the empty pycnometer in the $25 \pm 1^{\circ}$ C water bath.
- 8. Again, check for air bubbles clinging to the inside of the pycnometer and the bottom of the capillary lid prior to placement on the pycnometer.
- 9. Leave it in the water bath for 10 ± 1 minutes of immersion.
- 10. Remove the pycnometer and dry off the exterior. Add water to the weephole with an eyedropper until seepage occurs around the lid. Dry off the exterior again and obtain the total weight of the pycnometer filled with water (D).

Mass Determination: Weigh in Water Method:

A weigh-in-water station should be available that includes a water bath suitable for immersion of the suspended container with its deaerated sample, an overflow outlet for maintaining a default water level, a method for controlling or monitoring water temperature, a balance with a weigh-below capability, and some type of suspended platform on which the pycnometer/flask can be supported while submerged in the water bath. The platform and rod/wires that connect the platform to the balance should displace a minimum amount of water.

- Prepare and vacuum sample as described earlier. After 15 ± 2 minutes of agitation and vacuum at the specified level, slowly release the vacuum at a rate not to exceed 60 mm Hg (8 kPa) per second (2.36 in. Hg/sec; gage) then disassemble apparatus.
- 2. The temperature of the water bath should be adjusted to and maintained at $25 \pm 1^{\circ}$ C, the water level shall be at its default level (full, but not overflowing), then the weigh-in-water system balance shall be zeroed out (tared).
- 3. Suspend the pycnometer (without the lid) and deaerated sample in the water bath and determine the combined weight (C) after 10 ± 1 minutes of immersion.
- 4. After recording the combined weight (C), immediately remove the pycnometer from the water bath, completely remove the sample from the pycnometer, and then, without delay, obtain the mass of the empty pycnometer (B) after 10 ± 1 minutes of immersion.

Note: It is important that every weight determination begins by returning the water level to its default position; i.e. the water has just stopped dripping from the overflow.

CALCULATIONS

Weigh in Air Method: Calculation of maximum specific gravity is performed in accordance with AASHTO T 209-20, Section 12.1.3.

$$G_{mm} = \frac{A}{A+D-E}$$

Where:

- G_{mm} = maximum theoretical specific gravity (reported to three decimal places)
- A = mass of oven-dry sample in air, (gm)

D = mass of pycnometer filled with <u>water</u>, (gm)

E = mass of pycnometer filled with <u>water + sample</u>, (gm)

Weigh in Water Method: Calculation of maximum specific gravity for this method is performed in accordance with AASHTO T 209-20, Section 12.1.2.

$$G_{mm} = \frac{A}{A+B-C}$$

Where:

G_{mm} = maximum theoretical specific gravity (reported to three decimal places)

A = mass of oven-dry sample in air, (gm)

C = mass of <u>sample + pycnometer</u> in water, (gm)

B = mass of <u>pycnometer</u> in water, (gm)

NOTE: Section 12.2 describes how to calculate a weighted average G_{mm} for large samples tested a portion at a time, if necessary.

MAXIMUM SPECIFIC GRAVITY: G_{mm} AASHTO T 209

PROJECT	ROUTE	MIX NO
LOT NO	SUBLOT	TECHNICIAN
PRE-TEST REQU	JIREMENT: MIX MOISTUR	E CONTENT < 0.1%
1) Results from T	329: Moisture Content (%)	=
OR		
2) Mass repeats w	vithin 0.1% [percent loss < (0.1% (based on 2 nd wt. per interval)]:
P _{MC} = Pan	weight (g):	
$T_0 = Initial$	sample + pan weight (g):	
$W_0 = T_0 - F$	P _{MC} = Initial sample weight ((g):
1 st Drying I	nterval (DI)	
$T_1 = 1^{st} DI$	sample + pan weight (g):	
$W_1 = T_1 - F$	P _{MC} = 1 st DI sample weight ((g):
$L_1 = W_0 - V_0$	$N_1 = 1^{st}$ Loss in weight (g):	
$(L_1 / W_1) \times$	100 = 1 st Percent loss (%):	
2 nd Drying	Interval (DI)	
$T_2 = 2^{nd} DI$	sample + pan weight (g):	
$W_2 = T_2 - F$	P _{MC} = 2 nd DI sample weight	(g):
$L_2 = W_1 - V_1$	$N_2 = 2^{nd}$ Loss in weight (g):	
$(L_2 / W_2) \times$	$100 = 2^{nd}$ Percent loss (%):	
<u>3rd Drying I</u>	nterval (DI)	
	sample + pan weight (g):	
$W_3 = T_3 - F$	P _{MC} = 3 rd DI sample weight	(g):
$L_3 = W_2 - V_2$	$N_3 = 3^{rd}$ Loss in weight (g):	
(L ₃ / W ₃) ×	$100 = 3^{rd}$ Percent loss (%):	
4 th Drying I	nterval (DI)	
	sample + pan weight (g):	
$W_4 = T_4 - F_4$	$P_{MC} = 4^{th}$ DI sample weight	(g):
	$N_4 = 4^{\text{th}}$ Loss in weight (g):	
	$100 = 4^{\text{th}} \text{Percent loss (%)}$:	
Rice Test (2-3-21).docx		

"DRY-BACK" PROCEDURE: REQUIRED WHEN ANY COARSE AGGREGATE FRACTION HAS AN ABSORPTION GREATER THAN 2.0%.

Procedure complete when percent loss < 0.05% based on 2nd wt. per interval [mass repeats within 0.05%]

P _{DB} = Pan weight (g):	
T_0 = Initial sample + pan weight (g):	
$W_0 = T_0 - P_{DB}$ = Initial sample weight (g):	
1 st Drying Interval (DI)	
$T_1 = 1^{st}$ DI sample + pan weight (g):	
$W_1 = T_1 - P_{DB} = 1^{st} DI \text{ sample weight (g):}$	
$L_1 = W_0 - W_1 = 1^{st}$ Loss in weight (g):	
$(L_1 / W_1) \times 100 = 1^{st}$ Percent loss (%):	
2 nd Drying Interval (DI)	
$T_2 = 2^{nd}$ DI sample + pan weight (g):	
$W_2 = T_2 - P_{DB} = 2^{nd} DI \text{ sample weight (g):}$	
$L_2 = W_1 - W_2 = 2^{nd}$ Loss in weight (g):	
$(L_2 / W_2) \times 100 = 2^{nd}$ Percent loss (%):	
<u>3rd Drying Interval (DI)</u>	
T ₃ = 3 rd DI sample + pan weight (g):	
$W_3 = T_3 - P_{DB} = 3^{rd}$ DI sample weight (g):	
$L_3 = W_2 - W_3 = 3^{rd}$ Loss in weight (g):	
$(L_3 / W_3) \times 100 = 3^{rd}$ Percent loss (%):	
4 th Drying Interval (DI)	
$T_4 = 4^{th}$ DI sample + pan weight (g):	
$W_4 = T_4 - P_{DB} = 4^{th}$ DI sample weight (g):	
$L_4 = W_3 - W_4 = 4^{th}$ Loss in weight (g):	
$(L_4 / W_4) \times 100 = 4^{th}$ Percent loss (%):	
5 th Drying Interval (DI)	
$T_5 = 5^{th}$ DI sample + pan weight (g):	
$W_5 = T_5 - P_{DB} = 5^{th} DI sample weight (g):$	
$L_5 = W_4 - W_5 = 5^{th}$ Loss in weight (g):	
$(L_5 / W_5) \times 100 = 5^{th}$ Percent loss (%):	

SPECIFIC GRAVITY DETERMINATION: NO "DRY-BACK" PROCEDURE

S = Weight of oven-dry sample & empty flask (g):	
P = Weight of empty flask (g):	
A = S – P = Weight of oven-dry sample (g):	
Weigh-in-air Method	
D = Weight of flask filled with water (g):	
X = A + D (g):	
E = Weight of flask filled with water & sample (g):	
Y = X - E(g):	
Gmm = A / Y	
Weigh-in-water Method	
C = Weight of flask & sample under water (g):	
B = Weight of flask under water (g):	
Q = C - B (g):	
Z = A - Q (g):	
Gmm = A / Z	

SPECIFIC GRAVITY DETERMINATION: WITH "DRY-BACK" PROCEDURE

A = Weight of oven-dry sample (g):A2 = Weight of surface-dry sample (g):Weigh-in-air MethodD = Weight of flask filled with water (g):X = A2 + D (g):E = Weight of flask filled with water & sample (g):Y = X - E (g):Gmm = A / YWeigh-in-water MethodC = Weight of flask & sample under water (g):B = Weight of flask under water (g):Q = C - B (g):Z = A2 - Q (g):Gmm = A / Z

Appendix Item #7 Revised on 10/20/2022

Equipment Information

for

AASHTO T 312

Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor

Equipment

Referenced Documents on Equipment

M 339M/M 339, Thermometers Used in the Testing of Construction Materials

APPARATUS

Superpave Gyratory Compactor—An electrohydraulic or electromechanical compactor with a ram and ram heads as described in Section 4.3. The axis of the ram shall be perpendicular to the platen of the compactor. The ram shall apply and maintain a pressure of 600 ± 18 kPa perpendicular to the cylindrical axis of the specimen during compaction (Note 1). The compactor shall tilt the specimen molds at an average internal angle of 20.2 ± 0.35 mrad (1.16 ± 0.02 degrees), determined in accordance with T 344. The compactor shall gyrate the specimen molds at a rate of 30.0 ± 0.5 gyrations per minute throughout compaction.

Note 1—This stress calculates to $10\ 600 \pm 310\ N$ total force for 150-mm specimens.

Specimen Height Measurement and Recording Device—When specimen density is to be monitored during compaction, a means shall be provided to continuously measure and record the height of the specimen to the nearest 0.1 mm during compaction once per gyration.

The system may include a connected printer capable of printing test information, such as specimen height per gyration. In addition to a printer, the system may include a computer and suitable software for data acquisition and reporting.

4.1.3.	The loading system, ram, and pressure indicator shall be capable of providing and measuring a
	constant vertical pressure of 600 ± 60 kPa during the first five gyrations, and 600 ± 18 kPa during
	the remainder of the compaction period.

4.2. Specimen Molds—Specimen molds shall have steel walls that are at least 7.5 mm thick and are hardened to at least a Rockwell hardness of C48. The initial inside finish of the molds shall have a root mean square (rms) of 1.60 µm or smoother when measured in accordance with ASME B46.1 (see Note 2). New molds shall be manufactured to have an inside diameter of 149.90 to 150.00 mm. The inside diameter of in-service molds shall not exceed 150.2 mm. Molds shall be at least 250 mm in length. The inside diameter and length of the molds shall be measured in accordance with Annex A.

Note 2—One source of supply for a surface comparator, which is used to verify the rms value of 1.60 µm, is GAR Electroforming, Danbury, Connecticut.

- 4.3. *Ram Heads and End Plates*—Ram heads and end plates shall be fabricated from steel with a minimum Rockwell hardness of C48. The ram heads shall stay perpendicular to their axis. The platen side of each end plate shall be flat and parallel to its face. All ram and end plate faces (the sides presented to the specimen) shall be flat to meet the smoothness requirement in Section 4.2 and shall have a diameter of 149.50 to 149.75 mm.
- 4.4. *Thermometers*—Thermometers for measuring temperature of aggregates, binder, and asphalt mixtures shall meet the requirements of M 339M/M 339 with a temperature range of at least 10 to 230°C, and an accuracy of ±2.5°C (±4.5°F) (see Note 3).

Note 3—Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E230/E230M thermocouple thermometer, Type J, any Class, or Type K, Class 1 or 2; IEC 60584 thermocouple thermometer, Type J, any Class, or Type K, Class 1 or 2; ASTM E2877 digital metal stem thermometer; or dial gauge metal stem (bi-metal) thermometer.

- 4.5. *Balance*—A balance meeting the requirements of M 231, Class G 5, for determining the mass of aggregates, binder, and asphalt mixtures.
- 4.6. Oven—An oven, thermostatically controlled to ±3°C, for heating aggregates, binder, asphalt mixtures, and equipment as required. The oven shall be capable of maintaining the temperature required for mixture conditioning in accordance with R 30.

Miscellaneous—Flat-bottom metal pans for heating aggregates, scoop for batching aggregates, containers (grill-type tins, beakers, containers for heating asphalt), large mixing spoon or small trowel, large spatula, gloves for handling hot equipment, paper disks, mechanical mixer (optional), lubricating materials recommended by the compactor manufacturer.

Maintenance—In addition to routine maintenance recommended by the manufacturer, check the Superpave gyratory compactor's mechanical components for wear, and perform repair, as recommended by the manufacturer.

STANDARDIZATION

Items requiring periodic verification of calibration include the ram pressure, angle of gyration, gyration frequency, LVDT (or other means used to continuously record the specimen height), and

T 312-3	AASHTO
© 2022 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.	

oven temperature. Verification of the mold and platen dimensions and the inside finish of the mold are also required. When the computer and software options are used, periodically verify the dataprocessing system output using a procedure designed for such purposes. Verification of calibration, system standardization, and quality checks may be performed by the manufacturer, other agencies providing such services, or in-house personnel. Frequency of verification shall follow the manufacturer's recommendations.

The angle of gyration refers to the internal angle (the tilt of the mold with respect to the end plate surface within the gyratory mold). The calibration of the internal angle of gyration shall be verified in accordance with T 344.

ANNEX A—EVALUATING SUPERPAVE GYRATORY COMPACTOR (SGC) MOLDS

A2.5. *Infrared Thermometer*—For measuring the temperature of molds, end plates, and equipment, shall meet the requirements of M 339M/M 339 with a D:s ratio of 6:1.

Equipment Information

for

AASHTO T 209

Theoretical Maximum Specific Gravity (Gmm) and Density of Asphalt Mixtures

Equipment

Referenced Documents on Equipment

M 339M/M 339, Thermometers Used in the Testing of Construction Materials

5.	APPARATUS	
5.1.	Follow the procedures for performing equipment calibrations, standardizations, and checks that conform to R 18 and R 61.	
5.2.	Vacuum Container:	
5.2.1.	The vacuum containers described must be capable of withstanding the full vacuum applied, and each must be equipped with the fittings and other accessories required by the test procedure being	
TS-2c	T 209-2 AASHTO	
	employed. The opening in the container leading to the vacuum pump shall be covered by a piece of 0.075-mm (No. 200) wire mesh to minimize the loss of fine material.	
5.2.2.	The capacity of the vacuum container should be between 2000 and 10 000 mL and depends on th minimum sample size requirements given in Section 6.3. Avoid using a small sample in a large container.	
5.2.3.	<i>Bowl for Mass Determination in Water Only (Section 11.1)</i> —Either a metal or plastic bowl with a diameter of approximately 180 to 260 mm (7 to 10 in.) and a bowl height of at least 160 mm (6.3 in.) equipped with a transparent cover fitted with a rubber gasket and a connection for the vacuum line.	

5.2.4.	Flask for Mass Determination in Air Only (Section 11.2)-A thick-walled volumetric glass flask
	with a factory-inscribed line and a rubber stopper with a connection for the vacuum line.

- 5.2.5. Pycnometer for Mass Determination in Air Only (Section 11.2)—A glass, metal, or plastic pycnometer with a volume defined by means of a glass capillary stopper, capillary lid, or glass plate.
- 5.3. Balance—A balance conforming to the requirements of M 231, Class G 2. The balance shall be standardized at least every 12 months.
- 5.3.1. For the mass determination-in-water method (Section 11.1), the balance shall be equipped with a suitable apparatus and holder to permit determining the mass of the sample while suspended below the balance. The wire suspending the holder shall be the smallest practical size to minimize any possible effects of a variable immersed length.
- 5.4. Vacuum Pump or Water Aspirator—Capable of evacuating air from the vacuum container to a residual pressure of 3.4 kPa (25 mmHg).
- 5.4.1. When an oil vacuum pump is used, a suitable trap of one or more filter flasks, or equivalent, shall be installed between the vacuum vessel and vacuum source to reduce the amount of water vapor entering the vacuum pump.
- 5.5. Vacuum Measurement Device—Residual pressure manometer¹ or vacuum gauge to be connected directly to the vacuum vessel and capable of measuring residual pressure down to 3.4 kPa (25 mmHg) or less (preferably to zero). The device shall be standardized at least annually and be accurate to 0.1 kPa (1 mmHg). It shall be connected at the end of the vacuum line using an appropriate tube and either a "T" connector on the top of the vessel or a separate opening (from the vacuum line) in the top of the vessel to attach the hose. To avoid damage, the manometer shall not be situated on top of the vessel.

Note 2—A residual pressure of 4.0 kPa (30 mmHg) absolute pressure is approximately equivalent to a 97 kPa (730 mmHg) reading on a vacuum gauge at sea level.

Note 3—Residual pressure in the vacuum container, measured in millimeters of mercury, is the difference in the height of mercury in the Torricellian vacuum leg of the manometer and the height of mercury in the other leg of the manometer that is attached to the vacuum container.

Note 4—An example of a suitable arrangement of the testing equipment is shown in Figure 1. In the figure, the purpose of the train of small filter flasks is to trap water vapor from the vacuum container that otherwise would enter the oil in the vacuum pump and decrease the pump's ability to provide adequate vacuum.

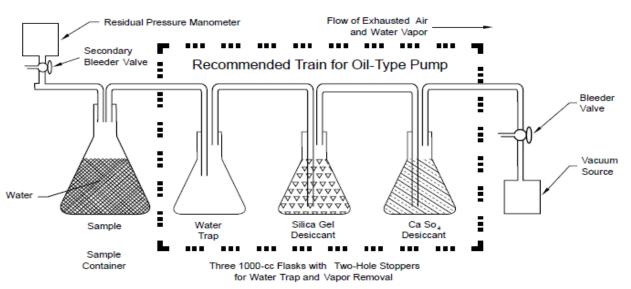


Figure 1-Example of Suitable Arrangement of Testing Apparatus

Figure 1-Example of Suitable Arrangement of Testing Apparatus

5.6.	<i>Bleeder Valve</i> —attached to the vacuum train to facilitate adjustment of the vacuum being applied to the vacuum container.
5.7.	Thermometer (Mass Determination in Air)—For measuring the temperature of the mass determination in air, meeting the requirements of M 339M/M 339 with a temperature range of at least 20 to 45°C (68 to 113°F) and an accuracy of ± 0.25 °C (± 0.45 °F) (Note 5).
	Note 5 —Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E879 thermistor thermometer; ASTM E1137/E1137M Pt-100 RTD platinum resistance thermometer, Class A; or IEC 60751: 2008 Pt-100 RTD platinum resistance thermometer, Class AA.
5.8.	Drying Oven—A thermostatically controlled drying oven capable of maintaining a temperature of $135 \pm 5^{\circ}$ C ($275 \pm 9^{\circ}$ F) or $105 \pm 5^{\circ}$ C ($221 \pm 9^{\circ}$ F). The oven(s) for heating and drying shall be capable of operation at the temperatures required as corrected, if necessary, by standardization. More than one oven may be used, provided each is used within its proper operating temperature range. The thermometer for measuring the oven temperature shall meet the requirements of M 339M/M 339 with a temperature range of at least 90 to 150° C (194 to 302° F) and an accuracy of $\pm 1.25^{\circ}$ C ($\pm 2.25^{\circ}$ F) (Note 6).
	Note 6 —Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E2877 digital metal stem thermometer; ASTM E230/E230M thermocouple thermometer, Type T, Standard Class; or IEC 60584 thermocouple thermometer, Type T, Class 2.

5.9.	<i>Water Bath</i> —Of sufficient size, capable of maintaining a uniform temperature when used within the proper operating temperature range, to determine the mass determination in water at $25 \pm 1^{\circ}$ C ($77 \pm 2^{\circ}$ F). The thermometer for measuring the temperature of water baths shall meet the requirements of M 339M/M 339 with a temperature range of at least 20 to 45° C (68 to 113° F) and an accuracy of $\pm 0.25^{\circ}$ C ($\pm 0.45^{\circ}$ F) (Note 7).
	Note 7 —Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E879 thermistor thermometer; ASTM E1137/E1137M Pt-100 RTD platinum resistance thermometer, Class A; or IEC 60751: 2008 Pt-100 RTD platinum resistance thermometer, Class AA.
5.9.1.	For bowls, a water bath capable of maintaining a constant temperature between 20 and 30°C (68 and 86°F) is required.

T 209-4

AASHTO

Equipment Information

for

AASHTO T 308

Determining the Asphalt Binder Content of asphalt Mixtures by the Ignition Method

M 339M/M 339, Thermometers Used in the Testing of Construction Materials

5. APPARATUS

5.1. Ignition Furnace—A forced-air ignition furnace that heats the specimens by either the convection or direct IR irradiation method. The convection-type furnace must be capable of maintaining a temperature of $538 \pm 5^{\circ}$ C ($1000 \pm 9^{\circ}$ F). The furnace chamber dimensions shall be adequate to accommodate a specimen size of 3500 g. The furnace door shall be equipped so that the door cannot be opened during the ignition test. A method for reducing furnace emissions shall be provided. The furnace shall be vented into a hood or to the outside and, when set up properly, shall have no noticeable odors escaping into the laboratory. The furnace shall have a fan capable of pulling air through the furnace to expedite the test and reduce the escape of smoke into the laboratory. The ignition furnace shall be capable of operation at the temperatures required, between at least 530 and 545°C (986 and 1013°F), and have a temperature control accurate within $\pm 5^{\circ}$ C ($\pm 9^{\circ}$ F) as corrected, if necessary, by standardization. More than one furnace may be used, provided each is used within its proper operating temperature range. When measuring temperature during use, the thermometer for measuring the temperature of materials shall meet the

TS-2c

T 308-2

AASHTO

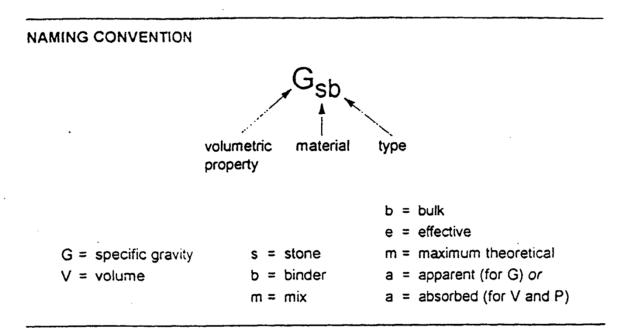
requirements of M 339M/M 339 with a temperature range of at least 530 to 545°C (986 to 1013°F) and an accuracy of ± 1.25 °C (± 2.25 °F) (Note 1).

Note 1—Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class; or IEC 60584 thermocouple thermometer, Type J or K, Class 1.

- 5.1.1. For Method A, the furnace shall also have an internal balance thermally isolated from the furnace chamber and accurate to 0.1 g. The balance shall be capable of weighing a 3500-g specimen in addition to the specimen baskets. A data collection system will be included so that the mass can be automatically determined and displayed during the test. The furnace shall have a built-in computer program to calculate the change in mass of the specimen baskets and provide for the input of a correction factor for aggregate loss. The furnace shall provide a printed ticket with the initial specimen mass, specimen mass loss, temperature compensation, correction factor, corrected asphalt binder content (percent), test time, and test temperature. The furnace shall provide an audible alarm and indicator light when the specimen mass loss does not exceed 0.01 percent of the total specimen mass for 3 consecutive min. The furnace shall also allow the operator to change the ending mass loss percentage to 0.02 percent.
- 5.2. Specimen Basket Assembly—Consisting of specimen basket(s), catch pan, and an assembly guard to secure the specimen basket(s) to the catch pan.
- 5.2.1. *Specimen Basket(s)*—Of appropriate size to allow the specimens to be thinly spread and allow air to flow through and around the specimen particles. Sets with two or more baskets shall be nested. The specimen shall be completely enclosed with screen mesh, perforated stainless steel plate, or other suitable material.

Note 2—Screen mesh or other suitable material with maximum and minimum openings of 2.36 mm (No. 8) and 0.600 mm (No. 30), respectively, has been found to perform well.

- 5.2.2. *Catch Pan*—Of sufficient size to hold the specimen basket(s) so that aggregate particles and melting asphalt binder falling through the screen are caught.
- 5.3. Oven—Capable of maintaining 110 ± 5°C (230 ± 9°F). The oven(s) for heating shall be capable of operation at the temperatures required, between 100 and 120°C (212 and 248°F), within ±5°C (±9°F) as corrected, if necessary, by standardization. More than one oven may be used, provided each is used within its proper operating temperature range. The thermometer for measuring the oven temperature shall meet the requirements of M 339M/M 339 with a temperature range of at least 90 to 130°C (194 to 266°F) and an accuracy of ±1.25°C (±2.25°F) (Note 3).


Note 3—Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E2877 digital metal stem thermometer; ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class; IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class; or dial gauge metal stem (bi-metal) thermometer.

- 5.4. Balance—Of sufficient capacity and conforming to the requirements of M 231, Class G 2.
- 5.5. Safety Equipment—Safety glasses or face shield, dust mask, high-temperature gloves, longsleeved jacket, a heat-resistant surface capable of withstanding 650°C (1202°F), and a protective cage capable of surrounding the specimen baskets during the cooling period.
- 5.6. *Miscellaneous Equipment*—A pan larger than the specimen basket(s) for transferring the specimen after ignition, spatulas, bowls, and wire brushes.

Glossary

SUMMARY OF DEFINITIONS AND CONVENTIONS

DEFINITIONS

V, = volume of air voids V_{ba} = volume of binder absorbed = volume of effective binder V_{be} Gb = specific gravity of binder G_{sh} = bulk specific gravity of stone G_{se} = effective specific gravity of stone Gsa = apparent specific gravity of stone Gmb = bulk specific gravity of mix Gmm = maximum theoretical specific gravity of mix = bulk specific gravity of the core = percent air Gme Va P_s = percent stone $(100 - P_b)$ Pb = percent binder = percent binder absorbed Pba Pbe = percent effective binder Ws = weight of stone VMA = Voids in Mineral Aggregate VFA = Voids Filled with Asphalt

GLOSSARY

Maximum Size	One sieve size larger than the Nominal Maximum Size
Nominal Max Size	One sieve size larger than the first sieve retaining equal to or more than 10% of the combined gradation
G _{mm}	D, Maximum Specific Gravity of mix as determined by the Rice Method, AASHTO T 209
G _{mb}	d, Bulk Specific Gravity: specific gravity including permeable and impermeable voids of aggregates or compacted mix.
G _{mc}	Bulk Specific Gravity of core.
G _{sb}	Stone (Aggregate) Bulk Specific Gravity: weighted sum of bulk specific gravities of combined aggregates.
G _{sa}	Stone Apparent Specific Gravity: weighted sum of apparent specific gravities of combined aggregates. This excludes the water permeable voids.
G _{se}	Stone Effective Specific Gravity: specific gravity including asphalt permeable voids.
N _{des}	Gyrations simulating design life of mix to yield 4% air voids.
Nini	Compaction \ge 89% indicates a tender mix that may rut prematurely.
N _{max}	Gyrations simulating maximum life of pavement. At < 2% air voids the mix becomes plastic.
Pb	Percent binder in total mix.
́Р _s	Percent stone in total mix.
TSR	Tensile Strength Ratio: Result of AASHTO T 283 indicating the indirect tensile strength of wet cured specimens compared to dry cured specimens.
Va	Percent air voids in compacted mix.
V_{ba}	Volume of absorbed binder.
V _{be}	Effective volume of binder not absorbed into the stone.
VMA	Voids in Mineral Aggregate: percent of voids in the aggregate structure.
VFA	Voids Filled with Asphalt: percent VMA filled with asphalt cement.

- Annald

and the second se

Abbreviations Meaning